def test_03_08_masked_errors(self):
     numpy.random.seed(38)
     ground_truth = numpy.random.uniform(size=(20, 10)) > .5
     test = ground_truth.copy()
     mask = numpy.random.uniform(size=(20, 10)) > .5
     test[~mask] = numpy.random.uniform(size=numpy.sum(~mask)) > .5
     workspace, module = self.make_workspace(dict(image=ground_truth),
                                             dict(image=test, mask=mask))
     module.run(workspace)
     measurements = workspace.measurements
     for feature, expected in (
         (cellprofiler.modules.measureimageoverlap.FTR_FALSE_POS_RATE, 0),
         (cellprofiler.modules.measureimageoverlap.FTR_FALSE_NEG_RATE, 0),
         (cellprofiler.modules.measureimageoverlap.FTR_TRUE_POS_RATE,
          1), (cellprofiler.modules.measureimageoverlap.FTR_TRUE_NEG_RATE,
               1), (cellprofiler.modules.measureimageoverlap.FTR_RECALL, 1),
         (cellprofiler.modules.measureimageoverlap.FTR_PRECISION,
          1), (cellprofiler.modules.measureimageoverlap.FTR_F_FACTOR, 1)):
         mname = '_'.join(
             (cellprofiler.modules.measureimageoverlap.C_IMAGE_OVERLAP,
              feature, TEST_IMAGE_NAME))
         value = measurements.get_current_image_measurement(mname)
         self.assertAlmostEqual(expected,
                                value,
                                msg="%s is wrong" % feature)
def test_volume_and_objects(image, measurements, module, objects, workspace):
    object_data = skimage.morphology.ball(3, dtype=numpy.uint8)

    image.set_image(numpy.ones_like(object_data, dtype=numpy.uint8), convert=False)

    image.dimensions = 3

    objects.segmented = object_data

    module.images[0].wants_objects.value = True

    module.run(workspace)

    expected = {
        "Intensity_TotalIntensity_image_objects": 123.0,
        "Intensity_MeanIntensity_image_objects": 1.0,
        "Intensity_MedianIntensity_image_objects": 1.0,
        "Intensity_StdIntensity_image_objects": 0.0,
        "Intensity_MADIntensity_image_objects": 0.0,
        "Intensity_MaxIntensity_image_objects": 1.0,
        "Intensity_MinIntensity_image_objects": 1.0,
        "Intensity_TotalArea_image_objects": 123.0,
        "Intensity_PercentMaximal_image_objects": 100.0,
        "Intensity_UpperQuartileIntensity_image_objects": 1.0,
        "Intensity_LowerQuartileIntensity_image_objects": 1.0
    }

    for feature, value in expected.iteritems():
        actual = measurements.get_current_measurement(
            cellprofiler.measurement.IMAGE,
            feature
        )

        assert actual == value, "{} expected {}, got {}".format(feature, value, actual)
 def test_03_05_one_false_positive(self):
     i, j = numpy.mgrid[0:10, 0:20]
     ground_truth = ((i + j) % 2) == 0
     test = ground_truth.copy()
     test[0, 1] = True
     workspace, module = self.make_workspace(dict(image=ground_truth),
                                             dict(image=test))
     module.run(workspace)
     measurements = workspace.measurements
     precision = 100.0 / 101.0
     f_factor = 2 * precision / (1 + precision)
     for feature, expected in (
         (cellprofiler.modules.measureimageoverlap.FTR_FALSE_POS_RATE,
          0.01),
         (cellprofiler.modules.measureimageoverlap.FTR_FALSE_NEG_RATE, 0),
         (cellprofiler.modules.measureimageoverlap.FTR_TRUE_POS_RATE,
          1), (cellprofiler.modules.measureimageoverlap.FTR_TRUE_NEG_RATE,
               0.99), (cellprofiler.modules.measureimageoverlap.FTR_RECALL,
                       1),
         (cellprofiler.modules.measureimageoverlap.FTR_PRECISION,
          precision),
         (cellprofiler.modules.measureimageoverlap.FTR_F_FACTOR,
          f_factor), (cellprofiler.modules.measureimageoverlap.
                      FTR_EARTH_MOVERS_DISTANCE, 0)):
         mname = '_'.join(
             (cellprofiler.modules.measureimageoverlap.C_IMAGE_OVERLAP,
              feature, TEST_IMAGE_NAME))
         value = measurements.get_current_image_measurement(mname)
         self.assertAlmostEqual(expected,
                                value,
                                msg="%s is wrong" % feature)
    def test_gray_outlines_max_possible_on_volume(self):
        numpy.random.seed(0)

        image = numpy.random.uniform(size=(9, 9, 9)).astype(numpy.float32)

        labels = numpy.zeros_like(image)

        k, i, j = numpy.mgrid[-4:5, -4:5, -4:5]

        labels[k**2 + i**2 + j**2 <= 9] = 1

        workspace, module = self.make_workspace(image,
                                                labels=[labels.astype(int)],
                                                dimensions=3)

        module.blank_image.value = False

        module.wants_color.value = cellprofiler.modules.overlayoutlines.WANTS_GRAYSCALE

        module.max_type.value = cellprofiler.modules.overlayoutlines.MAX_POSSIBLE

        module.run(workspace)

        output_image = workspace.image_set.get_image(OUTPUT_IMAGE_NAME)

        expected = numpy.zeros(labels.shape + (3, ))

        for index, plane in enumerate(labels):
            expected[index] = skimage.segmentation.mark_boundaries(
                image[index], plane, color=1.0, mode="inner")

        expected = skimage.color.rgb2gray(expected)

        numpy.testing.assert_array_almost_equal(output_image.pixel_data,
                                                expected)
Ejemplo n.º 5
0
def test_color_outlines_on_color_volume():
    numpy.random.seed(0)

    image = numpy.random.uniform(size=(9, 9, 9, 3)).astype(numpy.float32)

    labels = numpy.zeros((9, 9, 9))

    k, i, j = numpy.mgrid[-4:5, -4:5, -4:5]

    labels[k**2 + i**2 + j**2 <= 9] = 1

    workspace, module = make_workspace(image,
                                       labels=[labels.astype(int)],
                                       dimensions=3)

    module.blank_image.value = False

    module.wants_color.value = cellprofiler.modules.overlayoutlines.WANTS_COLOR

    module.outlines[0].color.value = "Red"

    module.run(workspace)

    output_image = workspace.image_set.get_image(OUTPUT_IMAGE_NAME)

    expected = numpy.zeros_like(image)

    for index, plane in enumerate(labels):
        expected[index] = skimage.segmentation.mark_boundaries(image[index],
                                                               plane,
                                                               color=(1, 0, 0),
                                                               mode="inner")

    numpy.testing.assert_array_equal(output_image.pixel_data, expected)
Ejemplo n.º 6
0
    def test_relate_zeros_with_step_parent(self):
        # https://github.com/CellProfiler/CellProfiler/issues/2441
        parents = numpy.zeros((10, 10), dtype=numpy.uint8)

        children = numpy.zeros_like(parents)

        step_parents = numpy.zeros_like(parents)

        step_parents_object = cellprofiler.object.Objects()

        step_parents_object.segmented = step_parents

        workspace, module = self.make_workspace(parents, children)

        workspace.measurements.add_measurement(
            "Step", cellprofiler.measurement.FF_PARENT % PARENT_OBJECTS, [])

        module.step_parent_names[0].step_parent_name.value = "Step"

        workspace.object_set.add_objects(step_parents_object, "Step")

        module.wants_step_parent_distances.value = True

        module.find_parent_child_distances.value = (
            cellprofiler.modules.relateobjects.D_MINIMUM)

        module.run(workspace)

        expected = []

        actual = workspace.measurements.get_current_measurement(
            CHILD_OBJECTS,
            cellprofiler.modules.relateobjects.FF_MINIMUM % "Step")
        numpy.testing.assert_array_equal(actual, expected)
    def test_calculate_centroid_distances_volume(self):
        parents = numpy.zeros((9, 11, 11), dtype=numpy.uint8)

        children = numpy.zeros_like(parents)

        k, i, j = numpy.mgrid[0:9, 0:11, 0:11]

        parents[(k - 4) ** 2 + (i - 5) ** 2 + (j - 5) ** 2 <= 16] = 1

        children[(k - 3) ** 2 + (i - 3) ** 2 + (j - 3) ** 2 <= 4] = 1

        children[(k - 4) ** 2 + (i - 7) ** 2 + (j - 7) ** 2 <= 4] = 2

        workspace, module = self.make_workspace(parents, children)

        module.find_parent_child_distances.value = cellprofiler.modules.relateobjects.D_CENTROID

        module.run(workspace)

        expected = [3, numpy.sqrt(8)]

        actual = workspace.measurements.get_current_measurement(
            CHILD_OBJECTS,
            cellprofiler.modules.relateobjects.FF_CENTROID % PARENT_OBJECTS
        )

        numpy.testing.assert_array_equal(actual, expected)
Ejemplo n.º 8
0
    def test_13_01_load_filename(self):
        #
        # Load a file, only specifying the FileName in the CSV
        #
        csv_text = '''"Image_FileName_DNA"
"%s"
''' % self.test_filename
        pipeline, module, filename = self.make_pipeline(csv_text)
        assert isinstance(module, cellprofiler.modules.loaddata.LoadData)
        module.image_directory.dir_choice = cellprofiler.setting.ABSOLUTE_FOLDER_NAME
        module.image_directory.custom_path = self.test_path
        m = cellprofiler.measurement.Measurements()
        workspace = cellprofiler.workspace.Workspace(pipeline, module, m, cellprofiler.object.ObjectSet(),
                                                     m, cellprofiler.image.ImageSetList())
        self.assertTrue(module.prepare_run(workspace))
        self.assertEqual(m.get_measurement(cellprofiler.measurement.IMAGE, "FileName_DNA", 1),
                         self.test_filename)
        path = m.get_measurement(cellprofiler.measurement.IMAGE, "PathName_DNA", 1)
        self.assertEqual(path, self.test_path)
        self.assertEqual(
                m.get_measurement(cellprofiler.measurement.IMAGE, "URL_DNA", 1),
                cellprofiler.modules.loadimages.pathname2url(os.path.join(self.test_path, self.test_filename)))
        module.prepare_group(workspace, {}, [1])
        module.run(workspace)
        img = workspace.image_set.get_image("DNA", must_be_grayscale=True)
        self.assertEqual(tuple(img.pixel_data.shape), self.test_shape)
Ejemplo n.º 9
0
    def test_13_03_extra_fields(self):
        #
        # Regression test of issue #853, extra fields
        #
        csv_text = '''"Image_URL_DNA"
"{cp_logo_url}", "foo"
"http:{cp_logo_url_filename}"
"bogusurl.png"
'''.format(**{
            "cp_logo_url": tests.modules.cp_logo_url,
            "cp_logo_url_filename": tests.modules.cp_logo_url_filename
        })
        pipeline, module, filename = self.make_pipeline(csv_text)
        assert isinstance(module, cellprofiler.modules.loaddata.LoadData)
        m = cellprofiler.measurement.Measurements()
        workspace = cellprofiler.workspace.Workspace(pipeline, module, m, cellprofiler.object.ObjectSet(),
                                                     m, cellprofiler.image.ImageSetList())
        self.assertTrue(module.prepare_run(workspace))
        self.assertEqual(m.get_measurement(cellprofiler.measurement.IMAGE, "FileName_DNA", 1),
                         tests.modules.cp_logo_url_filename)
        path = m.get_measurement(cellprofiler.measurement.IMAGE, "PathName_DNA", 1)
        self.assertEqual(path, tests.modules.cp_logo_url_folder)
        self.assertEqual(m.get_measurement(cellprofiler.measurement.IMAGE, "URL_DNA", 1),
                         tests.modules.cp_logo_url)
        self.assertEqual(m[cellprofiler.measurement.IMAGE, "FileName_DNA", 2], tests.modules.cp_logo_url_filename)
        self.assertEqual(m[cellprofiler.measurement.IMAGE, "PathName_DNA", 2], "http:")
        self.assertEqual(m[cellprofiler.measurement.IMAGE, "FileName_DNA", 3], "bogusurl.png")
        self.assertEqual(m[cellprofiler.measurement.IMAGE, "PathName_DNA", 3], "")
        module.prepare_group(workspace, {}, [1])
        module.run(workspace)
        img = workspace.image_set.get_image("DNA", must_be_color=True)
        self.assertEqual(tuple(img.pixel_data.shape), tests.modules.cp_logo_url_shape)
def test_manual_io_range(image, module, workspace):
    data = image.pixel_data

    module.rescale_method.value = "Choose specific values to be reset to a custom range"

    module.wants_automatic_low.value = "Custom"

    module.wants_automatic_high.value = "Custom"

    module.source_scale.value = (50, 205)

    module.dest_scale.value = (0.2, 0.8)

    module.run(workspace)

    output = workspace.image_set.get_image("RescaleIntensity")

    actual = output.pixel_data

    expected = skimage.exposure.rescale_intensity(1.0 * data, (50, 205), (0.2, 0.8))

    numpy.testing.assert_array_equal(expected, actual)

    assert numpy.any(actual == 0.2)

    assert numpy.any(actual == 0.8)
Ejemplo n.º 11
0
 def test_13_06_load_default_input_folder(self):
     # Regression test of issue #1365 - load a file from the default
     # input folder and check that PathName_xxx is absolute
     csv_text = '''"Image_FileName_DNA","Image_PathName_DNA"\n"%s","%s"''' \
                % (self.test_filename, self.test_path)
     pipeline, module, filename = self.make_pipeline(csv_text)
     try:
         assert isinstance(module, cellprofiler.modules.loaddata.LoadData)
         module.image_directory.dir_choice = cellprofiler.setting.ABSOLUTE_FOLDER_NAME
         module.image_directory.custom_path = self.test_path
         m = cellprofiler.measurement.Measurements()
         workspace = cellprofiler.workspace.Workspace(pipeline, module, m, cellprofiler.object.ObjectSet(),
                                                      m, cellprofiler.image.ImageSetList())
         self.assertTrue(module.prepare_run(workspace))
         self.assertEqual(m.get_measurement(cellprofiler.measurement.IMAGE, "FileName_DNA", 1),
                          self.test_filename)
         path_out = m.get_measurement(cellprofiler.measurement.IMAGE, "PathName_DNA", 1)
         self.assertEqual(self.test_path, path_out)
         self.assertEqual(
                 m.get_measurement(cellprofiler.measurement.IMAGE, "URL_DNA", 1),
                 cellprofiler.modules.loadimages.pathname2url(os.path.join(self.test_path, self.test_filename)))
         module.prepare_group(workspace, {}, [1])
         module.run(workspace)
         img = workspace.image_set.get_image("DNA", must_be_grayscale=True)
         self.assertEqual(tuple(img.pixel_data.shape), self.test_shape)
     finally:
         os.remove(filename)
def test_volume_zeros(image, measurements, module, workspace):
    image.pixel_data = numpy.zeros((10, 10, 10))

    image.dimensions = 3

    module.run(workspace)

    expected = {
        "Intensity_TotalIntensity_image": 0.0,
        "Intensity_MeanIntensity_image": 0.0,
        "Intensity_MedianIntensity_image": 0.0,
        "Intensity_StdIntensity_image": 0.0,
        "Intensity_MADIntensity_image": 0.0,
        "Intensity_MaxIntensity_image": 0.0,
        "Intensity_MinIntensity_image": 0.0,
        "Intensity_TotalArea_image": 1000.0,
        "Intensity_PercentMaximal_image": 100.0,
        "Intensity_UpperQuartileIntensity_image": 0.0,
        "Intensity_LowerQuartileIntensity_image": 0.0
    }

    for feature, value in expected.iteritems():
        actual = measurements.get_current_measurement(
            cellprofiler.measurement.IMAGE,
            feature
        )

        assert actual == value, "{} expected {}, got {}".format(feature, value, actual)
def test_01_04_image_and_objects_and_mask(image, measurements, module, objects, workspace):
    '''Test operation on an image masked by objects and a mask'''
    numpy.random.seed(0)

    pixels = numpy.random.uniform(size=(10, 10)).astype(numpy.float32)

    mask = numpy.zeros((10, 10), bool)

    mask[1:9, :9] = True

    image.pixel_data = pixels

    image.mask = mask

    labels = numpy.zeros((10, 10), int)

    labels[1:9, 1:5] = 1

    labels[1:9, 5:] = 2

    objects.segmented = labels

    module.images[0].wants_objects.value = True

    module.run(workspace)

    assert measurements.get_current_measurement(cellprofiler.measurement.IMAGE, "Intensity_TotalArea_image_objects") == 64

    assert measurements.get_current_measurement(cellprofiler.measurement.IMAGE, "Intensity_TotalIntensity_image_objects") == numpy.sum(pixels[1:9, 1:9])

    assert measurements.get_current_measurement(cellprofiler.measurement.IMAGE, "Intensity_MeanIntensity_image_objects") == numpy.sum(pixels[1:9, 1:9]) / 64.0
def test_01_02_image_and_mask(image, measurements, module, workspace):
    '''Test operation on a masked image'''
    numpy.random.seed(0)

    pixels = numpy.random.uniform(size=(10, 10)).astype(numpy.float32) * .99

    pixels[1:3, 1:3] = 1

    mask = numpy.zeros((10, 10), bool)

    mask[1:9, 1:9] = True

    image.pixel_data = pixels

    image.mask = mask

    module.run(workspace)

    assert measurements.get_current_measurement(cellprofiler.measurement.IMAGE, "Intensity_TotalArea_image") == 64

    assert measurements.get_current_measurement(cellprofiler.measurement.IMAGE, "Intensity_TotalIntensity_image") == numpy.sum(pixels[1:9, 1:9])

    assert measurements.get_current_measurement(cellprofiler.measurement.IMAGE, "Intensity_MeanIntensity_image") == numpy.sum(pixels[1:9, 1:9]) / 64.0

    assert measurements.get_current_measurement(cellprofiler.measurement.IMAGE, "Intensity_PercentMaximal_image") == 400. / 64.
    def test_05_02_test_objects_rand_index(self):
        r = numpy.random.RandomState()
        r.seed(52)
        base = numpy.zeros((100, 100), bool)
        base[r.randint(0, 100, size=10), r.randint(0, 100, size=10)] = True
        gt = base.copy()
        gt[r.randint(0, 100, size=5), r.randint(0, 100, size=5)] = True
        test = base.copy()
        test[r.randint(0, 100, size=5), r.randint(0, 100, size=5)] = True
        gt = scipy.ndimage.binary_dilation(gt, numpy.ones((5, 5), bool))
        test = scipy.ndimage.binary_dilation(test, numpy.ones((5, 5), bool))
        workspace, module = self.make_workspace(dict(image=gt),
                                                dict(image=test))
        module.wants_emd.value = False
        module.run(workspace)

        measurements = workspace.measurements
        mname = '_'.join(
            (cellprofiler.modules.measureimageoverlap.C_IMAGE_OVERLAP,
             cellprofiler.modules.measureimageoverlap.FTR_RAND_INDEX,
             TEST_IMAGE_NAME))
        expected_rand_index = measurements.get_current_image_measurement(mname)
        mname = '_'.join(
            (cellprofiler.modules.measureimageoverlap.C_IMAGE_OVERLAP,
             cellprofiler.modules.measureimageoverlap.FTR_ADJUSTED_RAND_INDEX,
             TEST_IMAGE_NAME))
        expected_adjusted_rand_index = \
            measurements.get_current_image_measurement(mname)
    def test_03_03_masked(self):
        '''Test ground-truth of a masked image'''

        workspace, module = self.make_workspace(
                dict(image=numpy.zeros((20, 10), bool)),
                dict(image=numpy.zeros((20, 10), bool),
                     mask=numpy.zeros((20, 10), bool)))

        self.assertTrue(isinstance(module, cellprofiler.modules.measureimageoverlap.MeasureImageOverlap))
        module.run(workspace)
        measurements = workspace.measurements
        self.assertTrue(isinstance(measurements, cellprofiler.measurement.Measurements))
        for feature, expected in ((cellprofiler.modules.measureimageoverlap.FTR_FALSE_POS_RATE, 0),
                                  (cellprofiler.modules.measureimageoverlap.FTR_FALSE_NEG_RATE, 0),
                                  (cellprofiler.modules.measureimageoverlap.FTR_TRUE_POS_RATE, 1),
                                  (cellprofiler.modules.measureimageoverlap.FTR_TRUE_NEG_RATE, 1),
                                  (cellprofiler.modules.measureimageoverlap.FTR_RECALL, 1),
                                  (cellprofiler.modules.measureimageoverlap.FTR_PRECISION, 1),
                                  (cellprofiler.modules.measureimageoverlap.FTR_F_FACTOR, 1),
                                  (cellprofiler.modules.measureimageoverlap.FTR_EARTH_MOVERS_DISTANCE, 0)):
            mname = '_'.join((cellprofiler.modules.measureimageoverlap.C_IMAGE_OVERLAP, feature, TEST_IMAGE_NAME))
            value = measurements.get_current_image_measurement(mname)
            self.assertEqual(expected, value)
        for feature in (cellprofiler.modules.measureimageoverlap.FTR_RAND_INDEX, cellprofiler.modules.measureimageoverlap.FTR_ADJUSTED_RAND_INDEX):
            mname = '_'.join((cellprofiler.modules.measureimageoverlap.C_IMAGE_OVERLAP, feature, TEST_IMAGE_NAME))
            value = measurements.get_current_image_measurement(mname)
            self.assertTrue(numpy.isnan(value))
def test_run_uint16(workspace, module):
    module.object_name.value = "inputobjects"

    module.image_name.value = "outputimage"

    module.image_mode.value = "uint16"

    module.run(workspace)

    image = workspace.image_set.get_image("outputimage")

    objects = workspace.get_objects("inputobjects")

    assert image.dimensions == objects.segmented.ndim

    pixel_data = image.pixel_data

    assert pixel_data.shape == objects.shape

    expected = numpy.reshape(numpy.arange(256), (16, 16))

    if objects.segmented.ndim == 3:
        expected = numpy.tile(expected, (3, 1))

        expected = numpy.reshape(expected, (3, 16, 16))

    assert numpy.all(pixel_data == expected)
 def test_03_09_cropped(self):
     numpy.random.seed(39)
     i, j = numpy.mgrid[0:10, 0:20]
     ground_truth = ((i + j) % 2) == 0
     test = ground_truth.copy()
     test[0, 1] = True
     cropping = numpy.zeros((20, 40), bool)
     cropping[10:20, 10:30] = True
     big_ground_truth = numpy.random.uniform(size=(20, 40)) > .5
     big_ground_truth[10:20, 10:30] = ground_truth
     workspace, module = self.make_workspace(
             dict(image=big_ground_truth),
             dict(image=test, crop_mask=cropping))
     module.run(workspace)
     measurements = workspace.measurements
     precision = 100.0 / 101.0
     f_factor = 2 * precision / (1 + precision)
     for feature, expected in ((cellprofiler.modules.measureimageoverlap.FTR_FALSE_POS_RATE, 0.01),
                               (cellprofiler.modules.measureimageoverlap.FTR_FALSE_NEG_RATE, 0),
                               (cellprofiler.modules.measureimageoverlap.FTR_TRUE_POS_RATE, 1),
                               (cellprofiler.modules.measureimageoverlap.FTR_TRUE_NEG_RATE, 0.99),
                               (cellprofiler.modules.measureimageoverlap.FTR_RECALL, 1),
                               (cellprofiler.modules.measureimageoverlap.FTR_PRECISION, precision),
                               (cellprofiler.modules.measureimageoverlap.FTR_F_FACTOR, f_factor)):
         mname = '_'.join((cellprofiler.modules.measureimageoverlap.C_IMAGE_OVERLAP, feature, TEST_IMAGE_NAME))
         value = measurements.get_current_image_measurement(mname)
         self.assertAlmostEqual(expected, value,
                                msg="%s is wrong. Expected %f, got %f" %
                                    (feature, expected, value))
Ejemplo n.º 19
0
    def test_04_01_distance_centroids(self):
        '''Check centroid-centroid distance calculation'''
        i, j = numpy.mgrid[0:14, 0:30]
        parent_labels = (i >= 7) * 1 + (j >= 15) * 2 + 1
        # Centers should be at i=3 and j=7
        parent_centers = numpy.array([[3, 7], [10, 7], [3, 22], [10, 22]], float)
        child_labels = numpy.zeros(i.shape)
        numpy.random.seed(0)
        # Take 12 random points and label them
        child_centers = numpy.random.permutation(numpy.prod(i.shape))[:12]
        child_centers = numpy.vstack((i.flatten()[child_centers],
                                      j.flatten()[child_centers]))
        child_labels[child_centers[0], child_centers[1]] = numpy.arange(1, 13)
        parent_indexes = parent_labels[child_centers[0],
                                       child_centers[1]] - 1
        expected = numpy.sqrt(numpy.sum((parent_centers[parent_indexes, :] -
                                         child_centers.transpose()) ** 2, 1))

        workspace, module = self.make_workspace(parent_labels, child_labels)
        self.assertTrue(isinstance(module, cellprofiler.modules.relateobjects.Relate))
        module.find_parent_child_distances.value = cellprofiler.modules.relateobjects.D_CENTROID
        module.run(workspace)
        self.features_and_columns_match(workspace)
        meas = workspace.measurements
        v = meas.get_current_measurement(CHILD_OBJECTS,
                                         cellprofiler.modules.relateobjects.FF_CENTROID % PARENT_OBJECTS)
        self.assertEqual(v.shape[0], 12)
        self.assertTrue(numpy.all(numpy.abs(v - expected) < .0001))
    def test_05_02_test_objects_rand_index(self):
        r = numpy.random.RandomState()
        r.seed(52)
        base = numpy.zeros((100, 100), bool)
        base[r.randint(0, 100, size=10),
             r.randint(0, 100, size=10)] = True
        gt = base.copy()
        gt[r.randint(0, 100, size=5),
           r.randint(0, 100, size=5)] = True
        test = base.copy()
        test[r.randint(0, 100, size=5),
             r.randint(0, 100, size=5)] = True
        gt = scipy.ndimage.binary_dilation(gt, numpy.ones((5, 5), bool))
        test = scipy.ndimage.binary_dilation(test, numpy.ones((5, 5), bool))
        workspace, module = self.make_workspace(
                dict(image=gt),
                dict(image=test))
        module.wants_emd.value = False
        module.run(workspace)

        measurements = workspace.measurements
        mname = '_'.join((cellprofiler.modules.measureimageoverlap.C_IMAGE_OVERLAP, cellprofiler.modules.measureimageoverlap.FTR_RAND_INDEX,
                          TEST_IMAGE_NAME))
        expected_rand_index = measurements.get_current_image_measurement(mname)
        mname = '_'.join((cellprofiler.modules.measureimageoverlap.C_IMAGE_OVERLAP, cellprofiler.modules.measureimageoverlap.FTR_ADJUSTED_RAND_INDEX,
                          TEST_IMAGE_NAME))
        expected_adjusted_rand_index = \
            measurements.get_current_image_measurement(mname)
Ejemplo n.º 21
0
    def test_calculate_minimum_distances_volume(self):
        parents = numpy.zeros((9, 11, 11), dtype=numpy.uint8)

        children = numpy.zeros_like(parents)

        parents[1:8, 1:10, 1:10] = 1

        children[3:6, 2:3, 2:3] = 1

        children[4:7, 3:8, 3:8] = 2

        workspace, module = self.make_workspace(parents, children)

        module.find_parent_child_distances.value = cellprofiler.modules.relateobjects.D_MINIMUM

        module.run(workspace)

        expected = [1, 2]

        actual = workspace.measurements.get_current_measurement(
            CHILD_OBJECTS,
            cellprofiler.modules.relateobjects.FF_MINIMUM % PARENT_OBJECTS
        )

        numpy.testing.assert_array_equal(actual, expected)
Ejemplo n.º 22
0
    def test_04_02_distance_minima(self):
        '''Check centroid-perimeter distance calculation'''
        i, j = numpy.mgrid[0:14, 0:30]
        #
        # Make the objects different sizes to exercise more code
        #
        parent_labels = (i >= 6) * 1 + (j >= 14) * 2 + 1
        child_labels = numpy.zeros(i.shape)
        numpy.random.seed(0)
        # Take 12 random points and label them
        child_centers = numpy.random.permutation(numpy.prod(i.shape))[:12]
        child_centers = numpy.vstack((i.flatten()[child_centers],
                                      j.flatten()[child_centers]))
        child_labels[child_centers[0], child_centers[1]] = numpy.arange(1, 13)
        #
        # Measure the distance from the child to the edge of its parent.
        # We do this using the distance transform with a background that's
        # the edges of the labels
        #
        background = ((i != 0) & (i != 5) & (i != 6) & (i != 13) &
                      (j != 0) & (j != 13) & (j != 14) & (j != 29))
        d = scipy.ndimage.distance_transform_edt(background)
        expected = d[child_centers[0], child_centers[1]]

        workspace, module = self.make_workspace(parent_labels, child_labels)
        self.assertTrue(isinstance(module, cellprofiler.modules.relateobjects.Relate))
        module.find_parent_child_distances.value = cellprofiler.modules.relateobjects.D_MINIMUM
        module.run(workspace)
        self.features_and_columns_match(workspace)
        meas = workspace.measurements
        v = meas.get_current_measurement(CHILD_OBJECTS,
                                         cellprofiler.modules.relateobjects.FF_MINIMUM % PARENT_OBJECTS)
        self.assertEqual(v.shape[0], 12)
        self.assertTrue(numpy.all(numpy.abs(v - expected) < .0001))
Ejemplo n.º 23
0
def test_ijv():
    numpy.random.seed(0)
    image = numpy.random.uniform(size=(50, 50, 3)).astype(numpy.float32)
    image[0, 0] = 1
    labels0 = numpy.zeros(image.shape[:2], int)
    labels0[20:30, 20:30] = 1
    labels1 = numpy.zeros(image.shape[:2], int)
    labels1[25:35, 25:35] = 2
    labels = [labels0, labels1]
    expected = image.copy()
    mask = numpy.zeros(image.shape[:2], bool)
    mask[20:30, 20] = True
    mask[20:30, 29] = True
    mask[20, 20:30] = True
    mask[29, 20:30] = True
    mask[25:35, 25] = True
    mask[25:35, 34] = True
    mask[25, 25:35] = True
    mask[34, 25:35] = True
    expected[mask, 0] = 1
    expected[mask, 1:] = 0
    workspace, module = make_workspace(image, labels=labels)
    module.wants_color.value = cellprofiler.modules.overlayoutlines.WANTS_COLOR
    module.outlines[0].color.value = "Red"
    module.line_mode.value = "Inner"
    module.run(workspace)
    output_image = workspace.image_set.get_image(OUTPUT_IMAGE_NAME)
    numpy.testing.assert_array_equal(output_image.pixel_data, expected)
Ejemplo n.º 24
0
 def test_04_01_ijv(self):
     numpy.random.seed(0)
     image = numpy.random.uniform(size=(50, 50, 3)).astype(numpy.float32)
     image[0, 0] = 1
     labels0 = numpy.zeros(image.shape[:2], int)
     labels0[20:30, 20:30] = 1
     labels1 = numpy.zeros(image.shape[:2], int)
     labels1[25:35, 25:35] = 2
     labels = [labels0, labels1]
     expected = image.copy()
     mask = numpy.zeros(image.shape[:2], bool)
     mask[20:30, 20] = True
     mask[20:30, 29] = True
     mask[20, 20:30] = True
     mask[29, 20:30] = True
     mask[25:35, 25] = True
     mask[25:35, 34] = True
     mask[25, 25:35] = True
     mask[34, 25:35] = True
     expected[mask, 0] = 1
     expected[mask, 1:] = 0
     workspace, module = self.make_workspace(image, labels=labels)
     module.wants_color.value = cellprofiler.modules.overlayoutlines.WANTS_COLOR
     module.outlines[0].color.value = "Red"
     module.line_mode.value = "Inner"
     module.run(workspace)
     output_image = workspace.image_set.get_image(OUTPUT_IMAGE_NAME)
     numpy.testing.assert_array_equal(output_image.pixel_data, expected)
Ejemplo n.º 25
0
def test_gray_outlines_on_blank_volume():
    image = numpy.zeros((9, 9, 9))

    labels = numpy.zeros_like(image)

    k, i, j = numpy.mgrid[-4:5, -4:5, -4:5]

    labels[k**2 + i**2 + j**2 <= 9] = 1

    workspace, module = make_workspace(image,
                                       labels=[labels.astype(int)],
                                       dimensions=3)

    module.blank_image.value = True

    module.wants_color.value = cellprofiler.modules.overlayoutlines.WANTS_GRAYSCALE

    module.run(workspace)

    output_image = workspace.image_set.get_image(OUTPUT_IMAGE_NAME)

    expected = numpy.zeros(labels.shape + (3, ))

    for index, plane in enumerate(labels):
        expected[index] = skimage.segmentation.mark_boundaries(image[index],
                                                               plane,
                                                               color=1.0,
                                                               mode="inner")

    expected = skimage.color.rgb2gray(expected)

    numpy.testing.assert_array_equal(output_image.pixel_data, expected)
Ejemplo n.º 26
0
    def test_color_outlines_on_color_volume(self):
        numpy.random.seed(0)

        image = numpy.random.uniform(size=(9, 9, 9, 3)).astype(numpy.float32)

        labels = numpy.zeros((9, 9, 9))

        k, i, j = numpy.mgrid[-4:5, -4:5, -4:5]

        labels[k ** 2 + i ** 2 + j ** 2 <= 9] = 1

        workspace, module = self.make_workspace(image, labels=[labels.astype(int)], dimensions=3)

        module.blank_image.value = False

        module.wants_color.value = cellprofiler.modules.overlayoutlines.WANTS_COLOR

        module.outlines[0].color.value = "Red"

        module.run(workspace)

        output_image = workspace.image_set.get_image(OUTPUT_IMAGE_NAME)

        expected = numpy.zeros_like(image)

        for index, plane in enumerate(labels):
            expected[index] = skimage.segmentation.mark_boundaries(
                image[index],
                plane,
                color=(1, 0, 0),
                mode="inner"
            )

        numpy.testing.assert_array_equal(output_image.pixel_data, expected)
 def test_03_04_all_right(self):
     numpy.random.seed(34)
     image = numpy.random.uniform(size=(10, 20)) > .5
     workspace, module = self.make_workspace(dict(image=image),
                                             dict(image=image))
     module.run(workspace)
     measurements = workspace.measurements
     self.assertTrue(
         isinstance(measurements, cellprofiler.measurement.Measurements))
     for feature, expected in (
         (cellprofiler.modules.measureimageoverlap.FTR_FALSE_POS_RATE, 0),
         (cellprofiler.modules.measureimageoverlap.FTR_FALSE_NEG_RATE, 0),
         (cellprofiler.modules.measureimageoverlap.FTR_TRUE_POS_RATE,
          1), (cellprofiler.modules.measureimageoverlap.FTR_TRUE_NEG_RATE,
               1), (cellprofiler.modules.measureimageoverlap.FTR_RECALL, 1),
         (cellprofiler.modules.measureimageoverlap.FTR_PRECISION,
          1), (cellprofiler.modules.measureimageoverlap.FTR_F_FACTOR,
               1), (cellprofiler.modules.measureimageoverlap.FTR_RAND_INDEX,
                    1),
         (cellprofiler.modules.measureimageoverlap.FTR_ADJUSTED_RAND_INDEX,
          1), (cellprofiler.modules.measureimageoverlap.
               FTR_EARTH_MOVERS_DISTANCE, 0)):
         mname = '_'.join(
             (cellprofiler.modules.measureimageoverlap.C_IMAGE_OVERLAP,
              feature, TEST_IMAGE_NAME))
         value = measurements.get_current_image_measurement(mname)
         self.assertEqual(expected, value)
Ejemplo n.º 28
0
    def test_gray_outlines_on_blank_volume(self):
        image = numpy.zeros((9, 9, 9))

        labels = numpy.zeros_like(image)

        k, i, j = numpy.mgrid[-4:5, -4:5, -4:5]

        labels[k ** 2 + i ** 2 + j ** 2 <= 9] = 1

        workspace, module = self.make_workspace(image, labels=[labels.astype(int)], dimensions=3)

        module.blank_image.value = True

        module.wants_color.value = cellprofiler.modules.overlayoutlines.WANTS_GRAYSCALE

        module.run(workspace)

        output_image = workspace.image_set.get_image(OUTPUT_IMAGE_NAME)

        expected = numpy.zeros(labels.shape + (3,))

        for index, plane in enumerate(labels):
            expected[index] = skimage.segmentation.mark_boundaries(
                image[index],
                plane,
                color=1.0,
                mode="inner"
            )

        expected = skimage.color.rgb2gray(expected)

        numpy.testing.assert_array_equal(output_image.pixel_data, expected)
 def test_03_07_one_false_negative_and_mask(self):
     i, j = numpy.mgrid[0:10, 0:20]
     ground_truth = ((i + j) % 2) == 0
     test = ground_truth.copy()
     test[0, 0] = False
     mask = j < 10
     workspace, module = self.make_workspace(dict(image=ground_truth),
                                             dict(image=test, mask=mask))
     module.run(workspace)
     measurements = workspace.measurements
     recall = 0.98
     f_factor = 2 * recall / (1 + recall)
     for feature, expected in (
         (cellprofiler.modules.measureimageoverlap.FTR_FALSE_POS_RATE,
          0), (cellprofiler.modules.measureimageoverlap.FTR_FALSE_NEG_RATE,
               0.02),
         (cellprofiler.modules.measureimageoverlap.FTR_TRUE_POS_RATE, 0.98),
         (cellprofiler.modules.measureimageoverlap.FTR_TRUE_NEG_RATE,
          1), (cellprofiler.modules.measureimageoverlap.FTR_RECALL, recall),
         (cellprofiler.modules.measureimageoverlap.FTR_PRECISION, 1),
         (cellprofiler.modules.measureimageoverlap.FTR_F_FACTOR, f_factor)):
         mname = '_'.join(
             (cellprofiler.modules.measureimageoverlap.C_IMAGE_OVERLAP,
              feature, TEST_IMAGE_NAME))
         value = measurements.get_current_image_measurement(mname)
         self.assertAlmostEqual(expected,
                                value,
                                msg="%s is wrong" % feature)
Ejemplo n.º 30
0
    def test_calculate_centroid_distances_volume(self):
        parents = numpy.zeros((9, 11, 11), dtype=numpy.uint8)

        children = numpy.zeros_like(parents)

        k, i, j = numpy.mgrid[0:9, 0:11, 0:11]

        parents[(k - 4)**2 + (i - 5)**2 + (j - 5)**2 <= 16] = 1

        children[(k - 3)**2 + (i - 3)**2 + (j - 3)**2 <= 4] = 1

        children[(k - 4)**2 + (i - 7)**2 + (j - 7)**2 <= 4] = 2

        workspace, module = self.make_workspace(parents, children)

        module.find_parent_child_distances.value = (
            cellprofiler.modules.relateobjects.D_CENTROID)

        module.run(workspace)

        expected = [3, numpy.sqrt(8)]

        actual = workspace.measurements.get_current_measurement(
            CHILD_OBJECTS,
            cellprofiler.modules.relateobjects.FF_CENTROID % PARENT_OBJECTS)

        numpy.testing.assert_array_equal(actual, expected)
 def test_03_09_cropped(self):
     numpy.random.seed(39)
     i, j = numpy.mgrid[0:10, 0:20]
     ground_truth = ((i + j) % 2) == 0
     test = ground_truth.copy()
     test[0, 1] = True
     cropping = numpy.zeros((20, 40), bool)
     cropping[10:20, 10:30] = True
     big_ground_truth = numpy.random.uniform(size=(20, 40)) > .5
     big_ground_truth[10:20, 10:30] = ground_truth
     workspace, module = self.make_workspace(
         dict(image=big_ground_truth), dict(image=test, crop_mask=cropping))
     module.run(workspace)
     measurements = workspace.measurements
     precision = 100.0 / 101.0
     f_factor = 2 * precision / (1 + precision)
     for feature, expected in (
         (cellprofiler.modules.measureimageoverlap.FTR_FALSE_POS_RATE,
          0.01),
         (cellprofiler.modules.measureimageoverlap.FTR_FALSE_NEG_RATE, 0),
         (cellprofiler.modules.measureimageoverlap.FTR_TRUE_POS_RATE,
          1), (cellprofiler.modules.measureimageoverlap.FTR_TRUE_NEG_RATE,
               0.99), (cellprofiler.modules.measureimageoverlap.FTR_RECALL,
                       1),
         (cellprofiler.modules.measureimageoverlap.FTR_PRECISION,
          precision),
         (cellprofiler.modules.measureimageoverlap.FTR_F_FACTOR, f_factor)):
         mname = '_'.join(
             (cellprofiler.modules.measureimageoverlap.C_IMAGE_OVERLAP,
              feature, TEST_IMAGE_NAME))
         value = measurements.get_current_image_measurement(mname)
         self.assertAlmostEqual(expected,
                                value,
                                msg="%s is wrong. Expected %f, got %f" %
                                (feature, expected, value))
Ejemplo n.º 32
0
    def test_calculate_minimum_distances_volume(self):
        parents = numpy.zeros((9, 11, 11), dtype=numpy.uint8)

        children = numpy.zeros_like(parents)

        parents[1:8, 1:10, 1:10] = 1

        children[3:6, 2:3, 2:3] = 1

        children[4:7, 3:8, 3:8] = 2

        workspace, module = self.make_workspace(parents, children)

        module.find_parent_child_distances.value = (
            cellprofiler.modules.relateobjects.D_MINIMUM)

        module.run(workspace)

        expected = [1, 2]

        actual = workspace.measurements.get_current_measurement(
            CHILD_OBJECTS,
            cellprofiler.modules.relateobjects.FF_MINIMUM % PARENT_OBJECTS)

        numpy.testing.assert_array_equal(actual, expected)
Ejemplo n.º 33
0
 def test_11_02_invert_binary_invert(self):
     #
     # Regression for issue #1329
     #
     r = numpy.random.RandomState()
     r.seed(1102)
     m = cellprofiler.measurement.Measurements()
     pixel_data = r.uniform(size=(20, 20)) > .5
     m.add("inputimage", cellprofiler.image.Image(pixel_data))
     module = cellprofiler.modules.imagemath.ImageMath()
     module.images[0].image_name.value = "inputimage"
     module.output_image_name.value = "intermediateimage"
     module.operation.value = cellprofiler.modules.imagemath.O_INVERT
     module.module_num = 1
     pipeline = cellprofiler.pipeline.Pipeline()
     pipeline.add_module(module)
     module = cellprofiler.modules.imagemath.ImageMath()
     module.images[0].image_name.value = "intermediateimage"
     module.output_image_name.value = "outputimage"
     module.operation.value = cellprofiler.modules.imagemath.O_INVERT
     module.module_num = 2
     pipeline = cellprofiler.pipeline.Pipeline()
     workspace = cellprofiler.workspace.Workspace(pipeline, module, m, None,
                                                  m, None)
     for module in pipeline.modules():
         module.run(workspace)
     numpy.testing.assert_array_equal(
         pixel_data,
         m.get_image("inputimage").pixel_data > .5)
    def test_03_01_zeros(self):
        '''Test ground-truth of zeros and image of zeros'''

        workspace, module = self.make_workspace(
            dict(image=numpy.ones((20, 10), bool)),
            dict(image=numpy.ones((20, 10), bool)))

        self.assertTrue(
            isinstance(
                module,
                cellprofiler.modules.measureimageoverlap.MeasureImageOverlap))
        module.run(workspace)
        measurements = workspace.measurements
        self.assertTrue(
            isinstance(measurements, cellprofiler.measurement.Measurements))
        self.assertEqual(
            measurements.get_current_image_measurement(
                "Overlap_FalseNegRate_test"), 0)
        features = measurements.get_feature_names(
            cellprofiler.measurement.IMAGE)
        for feature in cellprofiler.modules.measureimageoverlap.FTR_ALL + [
                cellprofiler.modules.measureimageoverlap.
                FTR_EARTH_MOVERS_DISTANCE
        ]:
            field = '_'.join(
                (cellprofiler.modules.measureimageoverlap.C_IMAGE_OVERLAP,
                 feature, TEST_IMAGE_NAME))
            self.assertTrue(field in features, "Missing feature: %s" % feature)
        ftr_emd = module.measurement_name(
            cellprofiler.modules.measureimageoverlap.FTR_EARTH_MOVERS_DISTANCE)
        self.assertEqual(measurements[cellprofiler.measurement.IMAGE, ftr_emd],
                         0)
def test_enhance(accuracy, image, module, workspace):
    data = numpy.zeros((20, 30))

    expected = numpy.zeros((20, 30))

    i, j = numpy.mgrid[-10:10, -10:20]

    data[i ** 2 + j ** 2 <= 7 ** 2] = 1

    i, j = numpy.mgrid[-10:10, -25:5]

    data[i ** 2 + j ** 2 <= 9] = 1

    expected[i ** 2 + j ** 2 <= 9] = 1

    image.pixel_data = data

    module.method.value = "Enhance"

    module.enhance_method.value = "Speckles"

    module.speckle_accuracy.value = accuracy

    module.object_size.value = 14

    module.run(workspace)

    output = workspace.image_set.get_image("output")

    actual = output.pixel_data

    numpy.testing.assert_array_equal(expected, actual)
def test_enhance_circles_volume(image, module, workspace):
    k, i, j = numpy.mgrid[-15:16, -15:16, -15:16]

    data = numpy.abs(numpy.sqrt(k * k + i * i + j * j) - 6) <= 1.5

    data = data.astype(float)

    image.pixel_data = data

    image.dimensions = 3

    module.method.value = "Enhance"

    module.enhance_method.value = "Circles"

    module.object_size.value = 12

    module.run(workspace)

    actual = workspace.image_set.get_image("output").pixel_data

    expected = numpy.zeros_like(data)

    for index, plane in enumerate(data):
        expected[index] = skimage.transform.hough_circle(plane, 6)[0]

    numpy.testing.assert_array_almost_equal(expected, actual)
def test_enhance_neurites_tubeness_negative(image, module, workspace):
    data = numpy.ones((20, 30))

    data[5:15, 10:20] -= numpy.identity(10)

    image.pixel_data = data

    module.method.value = "Enhance"

    module.enhance_method.value = "Neurites"

    module.neurite_choice.value = "Tubeness"

    module.smoothing.value = 1.0

    module.run(workspace)

    output = workspace.image_set.get_image("output")

    actual = output.pixel_data

    expected = centrosome.filter.hessian(
        scipy.ndimage.gaussian_filter(data, 1.0),
        return_hessian=False,
        return_eigenvectors=False
    )

    expected = -expected[:, :, 0] * (expected[:, :, 0] < 0)

    expected = skimage.exposure.rescale_intensity(expected)

    numpy.testing.assert_array_almost_equal(expected, actual, decimal=5)
def test_enhance_circles_masked(image, module, workspace):
    data = numpy.zeros((31, 62))

    mask = numpy.ones_like(data, dtype=numpy.bool)

    i, j = numpy.mgrid[-15:16, -15:16]

    circle = numpy.abs(numpy.sqrt(i * i + j * j) - 6) <= 1.5

    data[:, :31] = circle

    data[:, 31:] = circle

    mask[:, 31:][circle] = False

    image.pixel_data = data

    image.mask = mask

    module.method.value = "Enhance"

    module.enhance_method.value = "Circles"

    module.object_size.value = 12

    module.run(workspace)

    actual = workspace.image_set.get_image("output").pixel_data

    assert actual[15, 15] == 1

    assert actual[15, 15 + 31] == 0
def test_suppress_masked_volume(image, module, workspace):
    data = numpy.zeros((20, 20, 30))

    mask = numpy.ones_like(data, dtype=numpy.bool)

    k, i, j = numpy.mgrid[-10:10, -10:10, -10:20]

    data[k ** 2 + i ** 2 + j ** 2 <= 7 ** 2] = 1

    k, i, j = numpy.mgrid[-10:10, -10:10, -25:5]

    data[k ** 2 + i ** 2 + j ** 2 <= 9] = 1

    mask[k ** 2 + i ** 2 + j ** 2 <= 9] = False

    expected = data

    image.pixel_data = data

    image.mask = mask

    image.dimensions = 3

    module.method.value = "Suppress"

    module.object_size.value = 14

    module.run(workspace)

    output = workspace.image_set.get_image("output")

    actual = output.pixel_data

    numpy.testing.assert_array_equal(expected, actual)
def test_enhance_neurites_gradient_volume(image, module, workspace):
    resources = os.path.realpath(os.path.join(os.path.dirname(__file__), "..", "resources"))

    data = numpy.load(os.path.join(resources, "neurite.npy"))

    data = skimage.exposure.rescale_intensity(1.0 * data)

    data = numpy.tile(data, (3, 1)).reshape(3, *data.shape)

    image.pixel_data = data

    image.dimensions = 3

    module.method.value = "Enhance"

    module.enhance_method.value = "Neurites"

    module.neurite_choice.value = "Line structures"

    module.object_size.value = 8

    module.run(workspace)

    output = workspace.image_set.get_image("output")

    actual = output.pixel_data

    expected = numpy.load(os.path.join(resources, "enhanced_neurite.npy"))

    expected = numpy.tile(expected, (3, 1)).reshape(3, *expected.shape)

    numpy.testing.assert_array_almost_equal(expected, actual)
def test_run_binary(workspace, module):
    module.object_name.value = "inputobjects"

    module.image_name.value = "outputimage"

    module.image_mode.value = "Binary (black & white)"

    module.run(workspace)

    image = workspace.image_set.get_image("outputimage")

    objects = workspace.get_objects("inputobjects")

    assert image.dimensions == objects.segmented.ndim

    pixel_data = image.pixel_data

    assert pixel_data.shape == objects.shape

    if objects.segmented.ndim == 2:
        assert not pixel_data[0, 0]

        assert numpy.all(pixel_data[:, 1:])

        assert numpy.all(pixel_data[1:, :])
    else:
        assert not numpy.all(pixel_data[:, 0, 0])

        assert numpy.all(pixel_data[:, :, 1:])

        assert numpy.all(pixel_data[:, 1:, :])
    def test_05_02_test_objects_rand_index(self):
        r = numpy.random.RandomState()
        r.seed(52)
        base = numpy.zeros((100, 100), bool)
        base[r.randint(0, 100, size=10),
             r.randint(0, 100, size=10)] = True
        gt = base.copy()
        gt[r.randint(0, 100, size=5),
           r.randint(0, 100, size=5)] = True
        test = base.copy()
        test[r.randint(0, 100, size=5),
             r.randint(0, 100, size=5)] = True
        gt = scipy.ndimage.binary_dilation(gt, numpy.ones((5, 5), bool))
        test = scipy.ndimage.binary_dilation(test, numpy.ones((5, 5), bool))

        gt_labels, _ = scipy.ndimage.label(gt, numpy.ones((3, 3), bool))
        test_labels, _ = scipy.ndimage.label(test, numpy.ones((3, 3), bool))

        workspace, module = self.make_obj_workspace(
                gt_labels, test_labels,
                dict(image=numpy.ones(gt_labels.shape)),
                dict(image=numpy.ones(test_labels.shape)))
        module.run(workspace)

        measurements = workspace.measurements
        mname = '_'.join((cellprofiler.modules.measureobjectoverlap.C_IMAGE_OVERLAP, cellprofiler.modules.measureobjectoverlap.FTR_RAND_INDEX,
                          GROUND_TRUTH_OBJ, ID_OBJ))
        expected_rand_index = measurements.get_current_image_measurement(mname)
        rand_index = measurements.get_current_image_measurement(mname)
        self.assertAlmostEqual(rand_index, expected_rand_index)
        mname = '_'.join((cellprofiler.modules.measureobjectoverlap.C_IMAGE_OVERLAP, cellprofiler.modules.measureobjectoverlap.FTR_ADJUSTED_RAND_INDEX,
                          GROUND_TRUTH_OBJ, ID_OBJ))
        adjusted_rand_index = \
            measurements.get_current_image_measurement(mname)
def test_01_02_image_and_mask(image, measurements, module, workspace):
    '''Test operation on a masked image'''
    numpy.random.seed(0)

    pixels = numpy.random.uniform(size=(10, 10)).astype(numpy.float32) * .99

    pixels[1:3, 1:3] = 1

    mask = numpy.zeros((10, 10), bool)

    mask[1:9, 1:9] = True

    image.pixel_data = pixels

    image.mask = mask

    module.run(workspace)

    assert measurements.get_current_measurement(
        cellprofiler.measurement.IMAGE, "Intensity_TotalArea_image") == 64

    assert measurements.get_current_measurement(
        cellprofiler.measurement.IMAGE,
        "Intensity_TotalIntensity_image") == numpy.sum(pixels[1:9, 1:9])

    assert measurements.get_current_measurement(
        cellprofiler.measurement.IMAGE,
        "Intensity_MeanIntensity_image") == numpy.sum(pixels[1:9, 1:9]) / 64.0

    assert measurements.get_current_measurement(
        cellprofiler.measurement.IMAGE,
        "Intensity_PercentMaximal_image") == 400. / 64.
def test_volume_zeros(image, measurements, module, workspace):
    image.pixel_data = numpy.zeros((10, 10, 10))

    image.dimensions = 3

    module.run(workspace)

    expected = {
        "Intensity_TotalIntensity_image": 0.0,
        "Intensity_MeanIntensity_image": 0.0,
        "Intensity_MedianIntensity_image": 0.0,
        "Intensity_StdIntensity_image": 0.0,
        "Intensity_MADIntensity_image": 0.0,
        "Intensity_MaxIntensity_image": 0.0,
        "Intensity_MinIntensity_image": 0.0,
        "Intensity_TotalArea_image": 1000.0,
        "Intensity_PercentMaximal_image": 100.0,
        "Intensity_UpperQuartileIntensity_image": 0.0,
        "Intensity_LowerQuartileIntensity_image": 0.0
    }

    for feature, value in expected.iteritems():
        actual = measurements.get_current_measurement(
            cellprofiler.measurement.IMAGE, feature)

        assert actual == value, "{} expected {}, got {}".format(
            feature, value, actual)
def test_volume_and_objects(image, measurements, module, objects, workspace):
    object_data = skimage.morphology.ball(3, dtype=numpy.uint8)

    image.set_image(numpy.ones_like(object_data, dtype=numpy.uint8),
                    convert=False)

    image.dimensions = 3

    objects.segmented = object_data

    module.images[0].wants_objects.value = True

    module.run(workspace)

    expected = {
        "Intensity_TotalIntensity_image_objects": 123.0,
        "Intensity_MeanIntensity_image_objects": 1.0,
        "Intensity_MedianIntensity_image_objects": 1.0,
        "Intensity_StdIntensity_image_objects": 0.0,
        "Intensity_MADIntensity_image_objects": 0.0,
        "Intensity_MaxIntensity_image_objects": 1.0,
        "Intensity_MinIntensity_image_objects": 1.0,
        "Intensity_TotalArea_image_objects": 123.0,
        "Intensity_PercentMaximal_image_objects": 100.0,
        "Intensity_UpperQuartileIntensity_image_objects": 1.0,
        "Intensity_LowerQuartileIntensity_image_objects": 1.0
    }

    for feature, value in expected.iteritems():
        actual = measurements.get_current_measurement(
            cellprofiler.measurement.IMAGE, feature)

        assert actual == value, "{} expected {}, got {}".format(
            feature, value, actual)
def test_01_01_image(image, measurements, module, workspace):
    '''Test operation on a single unmasked image'''
    numpy.random.seed(0)

    pixels = numpy.random.uniform(size=(10, 10)).astype(numpy.float32) * .99

    pixels[0:2, 0:2] = 1

    image.pixel_data = pixels

    module.run(workspace)

    assert measurements.get_current_measurement(
        cellprofiler.measurement.IMAGE, "Intensity_TotalArea_image") == 100

    assert measurements.get_current_measurement(
        cellprofiler.measurement.IMAGE,
        "Intensity_TotalIntensity_image") == numpy.sum(pixels)

    assert measurements.get_current_measurement(
        cellprofiler.measurement.IMAGE,
        "Intensity_MeanIntensity_image") == numpy.sum(pixels) / 100.0

    assert measurements.get_current_image_measurement(
        'Intensity_MinIntensity_image') == numpy.min(pixels)

    assert measurements.get_current_image_measurement(
        'Intensity_MaxIntensity_image') == numpy.max(pixels)

    assert measurements.get_current_image_measurement(
        'Intensity_PercentMaximal_image') == 4.0
Ejemplo n.º 47
0
def test_run_binary(workspace, module):
    module.object_name.value = "inputobjects"

    module.image_name.value = "outputimage"

    module.image_mode.value = "Binary (black & white)"

    module.run(workspace)

    image = workspace.image_set.get_image("outputimage")

    objects = workspace.get_objects("inputobjects")

    assert image.dimensions == objects.segmented.ndim

    pixel_data = image.pixel_data

    assert pixel_data.shape == objects.shape

    if objects.segmented.ndim is 2:
        assert not pixel_data[0, 0]

        assert numpy.all(pixel_data[:, 1:])

        assert numpy.all(pixel_data[1:, :])
    else:
        assert not numpy.all(pixel_data[:, 0, 0])

        assert numpy.all(pixel_data[:, :, 1:])

        assert numpy.all(pixel_data[:, 1:, :])
Ejemplo n.º 48
0
def test_run_uint16(workspace, module):
    module.object_name.value = "inputobjects"

    module.image_name.value = "outputimage"

    module.image_mode.value = "uint16"

    module.run(workspace)

    image = workspace.image_set.get_image("outputimage")

    objects = workspace.get_objects("inputobjects")

    assert image.dimensions == objects.segmented.ndim

    pixel_data = image.pixel_data

    assert pixel_data.shape == objects.shape

    expected = numpy.reshape(numpy.arange(256), (16, 16))

    if objects.segmented.ndim is 3:
        expected = numpy.tile(expected, (3, 1))

        expected = numpy.reshape(expected, (3, 16, 16))

    assert numpy.all(pixel_data == expected)
Ejemplo n.º 49
0
def test_run_color(workspace, module):
    for color in [
            "Default", "autumn", "bone", "colorcube", "cool", "copper", "flag",
            "gray", "hot", "hsv", "jet", "lines", "pink", "prism", "spring",
            "summer", "white", "winter"
    ]:
        module.object_name.value = "inputobjects"

        module.image_name.value = "outputimage"

        module.image_mode.value = "Color"

        module.colormap.value = color

        module.run(workspace)

        image = workspace.image_set.get_image("outputimage")

        objects = workspace.get_objects("inputobjects")

        assert image.dimensions == objects.segmented.ndim

        pixel_data = image.pixel_data

        assert pixel_data.shape == objects.shape + (3, )
def test_enhance_texture_volume(image, module, workspace):
    r = numpy.random.RandomState()

    r.seed(81)

    data = r.uniform(size=(8, 19, 24))

    image.pixel_data = data

    image.dimensions = 3

    sigma = 2.1

    module.method.value = "Enhance"

    module.enhance_method.value = "Texture"

    module.smoothing.value = sigma

    module.run(workspace)

    gaussian_mask = skimage.filters.gaussian(numpy.ones_like(data), sigma, mode='constant')

    gaussian = skimage.filters.gaussian(data, sigma, mode='constant') / gaussian_mask

    squared_gaussian = skimage.filters.gaussian(data ** 2, sigma, mode='constant') / gaussian_mask

    expected = squared_gaussian - gaussian ** 2

    actual = workspace.image_set.get_image("output").pixel_data

    numpy.testing.assert_almost_equal(expected, actual)
def test_volume(image, measurements, module, workspace):
    image.set_image(skimage.morphology.ball(3), convert=False)

    image.dimensions = 3

    module.run(workspace)

    expected = {
        "Intensity_TotalIntensity_image": 123.0,
        "Intensity_MeanIntensity_image": 0.358600583090379,
        "Intensity_MedianIntensity_image": 0.0,
        "Intensity_StdIntensity_image": 0.47958962134059907,
        "Intensity_MADIntensity_image": 0.0,
        "Intensity_MaxIntensity_image": 1.0,
        "Intensity_MinIntensity_image": 0.0,
        "Intensity_TotalArea_image": 343.0,
        "Intensity_PercentMaximal_image": 35.8600583090379,
        "Intensity_UpperQuartileIntensity_image": 1.0,
        "Intensity_LowerQuartileIntensity_image": 0.0
    }

    for feature, value in expected.iteritems():
        actual = measurements.get_current_measurement(
            cellprofiler.measurement.IMAGE, feature)

        assert actual == value, "{} expected {}, got {}".format(
            feature, value, actual)
def test_volume(image, measurements, module, workspace):
    image.set_image(skimage.morphology.ball(3), convert=False)

    image.dimensions = 3

    module.run(workspace)

    expected = {
        "Intensity_TotalIntensity_image": 123.0,
        "Intensity_MeanIntensity_image": 0.358600583090379,
        "Intensity_MedianIntensity_image": 0.0,
        "Intensity_StdIntensity_image": 0.47958962134059907,
        "Intensity_MADIntensity_image": 0.0,
        "Intensity_MaxIntensity_image": 1.0,
        "Intensity_MinIntensity_image": 0.0,
        "Intensity_TotalArea_image": 343.0,
        "Intensity_PercentMaximal_image": 35.8600583090379,
        "Intensity_UpperQuartileIntensity_image": 1.0,
        "Intensity_LowerQuartileIntensity_image": 0.0
    }

    for feature, value in expected.iteritems():
        actual = measurements.get_current_measurement(
            cellprofiler.measurement.IMAGE,
            feature
        )

        assert actual == value, "{} expected {}, got {}".format(feature, value, actual)
 def test_03_01_binary_ijv(self):
     workspace, module, ijv = self.make_workspace_ijv()
     self.assertTrue(isinstance(module, cellprofiler.modules.convertobjectstoimage.ConvertObjectsToImage))
     module.image_mode.value = "Binary (black & white)"
     module.run(workspace)
     pixel_data = workspace.image_set.get_image(IMAGE_NAME).pixel_data
     self.assertEqual(len(numpy.unique(ijv[:, 0] + ijv[:, 1] * pixel_data.shape[0])),
                      numpy.sum(pixel_data))
     self.assertTrue(numpy.all(pixel_data[ijv[:, 0], ijv[:, 1]]))