Ejemplo n.º 1
0
def _predict_transition_probabilities_numpy(
    X: np.ndarray,
    W: np.ndarray,
    softmax_scale: float = 1.0,
    center_mean: bool = True,
    scale_by_norm: bool = True,
) -> Tuple[np.ndarray, np.ndarray]:
    if center_mean:
        # pearson correlation
        W -= np.expand_dims(np_mean(W, axis=1), axis=1)

    if X.shape[0] == 1:
        if center_mean:
            # pearson correlation
            X = X - np.mean(X)

        if scale_by_norm:
            # cosine or pearson correlation
            denom = np.linalg.norm(X) * norm(W, axis=1)
            mask = denom == 0
            denom[mask] = 1
            return _softmax_masked(W.dot(X[0]) / denom, mask, softmax_scale)

        return _softmax(W.dot(X[0]), softmax_scale)

    assert X.shape[0] == W.shape[0], "Wrong shape."

    if center_mean:
        X = X - np.expand_dims(np_mean(X, axis=1), axis=1)

    if scale_by_norm:
        denom = norm(X, axis=1) * norm(W, axis=1)
        mask = denom == 0
        denom[mask] = 1
        return _softmax_masked(
            np.array([np.dot(X[i], W[i]) for i in range(X.shape[0])]) / denom,
            mask,
            softmax_scale,
        )

    return _softmax(np.array([np.dot(X[i], W[i]) for i in range(X.shape[0])]),
                    softmax_scale)
Ejemplo n.º 2
0
    def test_numba_norm_axis_1(self, seed):
        np.random.seed(seed)
        x = np.random.normal(size=(10, 10))

        np.testing.assert_allclose(np.linalg.norm(x, axis=1), norm(x, 1))