print("\n**Other statistical operations**\n") a = cf.read('timeseries.nc')[0] print(a) b = a.cumsum('T') print(b) print(a.coordinate('T').bounds[-1].dtarray) print(b.coordinate('T').bounds[-1].dtarray) q, t = cf.read('file.nc') print(q.array) indices, bins = q.digitize(10, return_bins=True) print(indices) print(indices.array) print(bins.array) h = cf.histogram(indices) print(h) print(h.array) print(h.coordinate('specific_humidity').bounds.array) q, t = cf.read('file.nc') print(q.array) indices = q.digitize(5) b = q.bin('range', digitized=indices) print(b) print(b.array) print(b.coordinate('specific_humidity').bounds.array) p, t = cf.read('file2.nc') print(t) print(p) t_indices = t.digitize(4) p_indices = p.digitize(6)
print("\n**Other statistical operations**\n") a = cf.read('timeseries.nc')[0] print(a) b = a.cumsum('T') print(b) print(a.coordinate('T').bounds[-1].dtarray) print(b.coordinate('T').bounds[-1].dtarray) q, t = cf.read('file.nc') print(q.array) indices, bins = q.digitize(10, return_bins=True) print(indices) print(indices.array) print(bins.array) h = cf.histogram(indices) print(h) print(h.array) print(h.coordinate('specific_humidity').bounds.array) g = q.copy() g.standard_name = 'air_temperature' import numpy g[...] = numpy.random.normal(loc=290, scale=10, size=40).reshape(5, 8) g.override_units('K', inplace=True) print(g) indices_t = g.digitize(5) h = cf.histogram(indices, indices_t) print(h) print(h.array) h.sum() q, t = cf.read('file.nc')