Ejemplo n.º 1
0
    def test_NumpyArray__array__(self):
        a = numpy.array([1, 2, 3, 4])

        x = cfdm.NumpyArray(a)

        b = numpy.array(x)
        self.assertTrue((b == a).all())
Ejemplo n.º 2
0
    def test_NumpyArray_copy(self):
        a = numpy.array([1, 2, 3, 4])

        x = cfdm.NumpyArray(a)
        y = copy.deepcopy(x)
        self.assertTrue((x.array == a).all())
        self.assertTrue((x.array == y.array).all())
Ejemplo n.º 3
0
    def test_GATHERING_create(self):
        if self.test_only and inspect.stack()[0][3] not in self.test_only:
            return

        # Define the gathered values
        gathered_array = numpy.array([[280, 282.5, 281], [279, 278, 277.5]],
                                     dtype='float32')
        # Define the list array values
        list_array = [1, 4, 5]

        # Initialise the list variable
        list_variable = cfdm.List(data=cfdm.Data(list_array))

        # Initialise the gathered array object
        array = cfdm.GatheredArray(
            compressed_array=cfdm.NumpyArray(gathered_array),
            compressed_dimension=1,
            shape=(2, 3, 2),
            size=12,
            ndim=3,
            list_variable=list_variable)

        # Create the field construct with the domain axes and the gathered
        # array
        tas = cfdm.Field(properties={
            'standard_name': 'air_temperature',
            'units': 'K'
        })

        # Create the domain axis constructs for the uncompressed array
        T = tas.set_construct(cfdm.DomainAxis(2))
        Y = tas.set_construct(cfdm.DomainAxis(3))
        X = tas.set_construct(cfdm.DomainAxis(2))

        # Set the data for the field
        tas.set_data(cfdm.Data(array), axes=[T, Y, X])

        self.assertTrue(
            (tas.data.array == numpy.ma.masked_array(data=[[[1, 280.0], [1, 1],
                                                            [282.5, 281.0]],
                                                           [[1, 279.0], [1, 1],
                                                            [278.0, 277.5]]],
                                                     mask=[[[True, False],
                                                            [True, True],
                                                            [False, False]],
                                                           [[True, False],
                                                            [True, True],
                                                            [False, False]]],
                                                     fill_value=1e+20,
                                                     dtype='float32')).all())

        self.assertTrue(tas.data.get_compression_type() == 'gathered')

        self.assertTrue((tas.data.compressed_array == numpy.array(
            [[280., 282.5, 281.], [279., 278., 277.5]],
            dtype='float32')).all())

        self.assertTrue(
            (tas.data.get_list().data.array == numpy.array([1, 4, 5])).all())
Ejemplo n.º 4
0
    def test_NumpyArray__array__(self):
        """Test the NumPy array conversion of NumpyArray."""
        a = numpy.array([1, 2, 3, 4])

        x = cfdm.NumpyArray(a)

        b = numpy.array(x)
        self.assertTrue((b == a).all())
Ejemplo n.º 5
0
    def test_NumpyArray_copy(self):
        """Test the copy module copying behaviour of NumpyArray."""
        a = numpy.array([1, 2, 3, 4])

        x = cfdm.NumpyArray(a)
        y = copy.deepcopy(x)
        self.assertTrue((x.array == a).all())
        self.assertTrue((x.array == y.array).all())
Ejemplo n.º 6
0
    def test_DSG_contiguous(self):
        if self.test_only and inspect.stack()[0][3] not in self.test_only:
            return

        f = self.c.copy()

        self.assertEqual(len(f), 2)

        # Select the specific humidity field
        q = [g for g in f
             if g.get_property('standard_name') == 'specific_humidity'][0]

        self.assertTrue(q._equals(self.a, q.data.array))

        cfdm.write(f, tempfile)
        g = cfdm.read(tempfile)

        self.assertEqual(len(g), len(f))

        for i in range(len(f)):
            self.assertTrue(g[i].equals(f[i], verbose=3))

        # ------------------------------------------------------------
        # Test creation
        # ------------------------------------------------------------
        # Define the ragged array values
        ragged_array = numpy.array([280, 282.5, 281, 279, 278, 279.5],
                                   dtype='float32')

        # Define the count array values
        count_array = [2, 4]

        # Create the count variable
        count_variable = cfdm.Count(data=cfdm.Data(count_array))
        count_variable.set_property('long_name',
                                    'number of obs for this timeseries')

        # Create the contiguous ragged array object
        array = cfdm.RaggedContiguousArray(
                         compressed_array=cfdm.NumpyArray(ragged_array),
                         shape=(2, 4), size=8, ndim=2,
                         count_variable=count_variable)

        # Create the field construct with the domain axes and the ragged
        # array
        tas = cfdm.Field()
        tas.set_properties({'standard_name': 'air_temperature',
                            'units': 'K',
                            'featureType': 'timeSeries'})

        # Create the domain axis constructs for the uncompressed array
        X = tas.set_construct(cfdm.DomainAxis(4))
        Y = tas.set_construct(cfdm.DomainAxis(2))

        # Set the data for the field
        tas.set_data(cfdm.Data(array), axes=[Y, X])

        cfdm.write(tas, tempfile)
Ejemplo n.º 7
0
 def test_DSG_create_contiguous(self):
     if self.test_only and inspect.stack()[0][3] not in self.test_only:
         return
     
     # Define the ragged array values
     ragged_array = numpy.array([1, 3, 4, 3, 6], dtype='float32')
     # Define the count array values
     count_array = [2, 3]
     
     # Initialise the count variable
     count_variable = cfdm.Count(data=cfdm.Data(count_array))
     count_variable.set_property('long_name', 'number of obs for this timeseries')
     
     # Initialise the contiguous ragged array object
     array = cfdm.RaggedContiguousArray(
         compressed_array=cfdm.NumpyArray(ragged_array),
         shape=(2, 3), size=6, ndim=2,
         count_variable=count_variable)
     
     # Initialize the auxiliary coordinate construct with the ragged
     # array and set some properties
     z = cfdm.AuxiliaryCoordinate(
         data=cfdm.Data(array),
         properties={'standard_name': 'height',
                     'units': 'km',
                     'positive': 'up'})
     
     self.assertTrue((z.data.array == numpy.ma.masked_array(
         data=[[1.0, 3.0, 99],
               [4.0, 3.0, 6.0]],
         mask=[[False, False,  True],
               [False, False, False]],
         fill_value=1e+20,
         dtype='float32')).all())
     
     self.assertTrue(z.data.get_compression_type() == 'ragged contiguous')
     
     self.assertTrue((z.data.compressed_array == numpy.array(
         [1., 3., 4., 3., 6.], dtype='float32')).all())
     
     self.assertTrue((z.data.get_count().data.array == numpy.array(
         [2, 3])).all())
Ejemplo n.º 8
0
    def test_DSG_contiguous(self):
        """TODO DOCS."""
        f = self.c.copy()

        self.assertEqual(len(f), 2)

        # Select the specific humidity field
        q = [
            g for g in f
            if g.get_property("standard_name") == "specific_humidity"
        ][0]

        self.assertTrue(q._equals(self.a, q.data.array))

        cfdm.write(f, tempfile)
        g = cfdm.read(tempfile)

        self.assertEqual(len(g), len(f))

        for i in range(len(f)):
            self.assertTrue(g[i].equals(f[i], verbose=3))

        # ------------------------------------------------------------
        # Test creation
        # ------------------------------------------------------------
        # Define the ragged array values
        ragged_array = numpy.array([280, 282.5, 281, 279, 278, 279.5],
                                   dtype="float32")

        # Define the count array values
        count_array = [2, 4]

        # Create the count variable
        count_variable = cfdm.Count(data=cfdm.Data(count_array))
        count_variable.set_property("long_name",
                                    "number of obs for this timeseries")

        # Create the contiguous ragged array object
        array = cfdm.RaggedContiguousArray(
            compressed_array=cfdm.NumpyArray(ragged_array),
            shape=(2, 4),
            size=8,
            ndim=2,
            count_variable=count_variable,
        )

        # Create the field construct with the domain axes and the ragged
        # array
        tas = cfdm.Field()
        tas.set_properties({
            "standard_name": "air_temperature",
            "units": "K",
            "featureType": "timeSeries",
        })

        # Create the domain axis constructs for the uncompressed array
        X = tas.set_construct(cfdm.DomainAxis(4))
        Y = tas.set_construct(cfdm.DomainAxis(2))

        # Set the data for the field
        tas.set_data(cfdm.Data(array), axes=[Y, X])

        cfdm.write(tas, tempfile)