Ejemplo n.º 1
0
    def __call__(self, s):  # sは入力文章の単語id配列
        accum_loss = None
        # 入力単語をword2vecで縮約
        v, k = self.embed.W.data.shape
        h = Variable(np.zeros((1, k), dtype=np.float32))  # 履歴入力
        c = Variable(np.zeros((1, k), dtype=np.float32))  # 入力

        # 注目単語の次の単語を訓練データとして学習
        for i in range(len(s)):
            next_w_id = eos_is if (i == len(s) - 1) else s[i + 1]
            # 訓練データ
            tx = Variable(np.array([next_w_id], dtype=np.int32))
            # 入力文のうちの単語[i]
            x_k = self.embed(Variable(np.array([s[i]], dtype=np.int32)))

            # RNN層の計算
            z0 = self.Wz(x_k) + self.Rz(h)
            z1 = F.tan(z0)
            # Input層の計算
            i0 = self.Wi(x_k) + self.Ri(F.dropout(h))
            i1 = F.sigmoid(i0)
            # Forget層の計算
            f0 = self.Wf(x_k) + slef.Rf(F.dropout(h))
            f1 = F.sigmoid(f0)
            # MemoryCellに渡す値の計算
            c = i1 * z1 + f1 * c
            # LSTM出力層の計算
            o0 = slef.Wo(x, k) + self.Ro(h)
            o1 = F.sigmoid(o0)
            # 次の時刻に渡す履歴計算
            h = o1 * F.tanh(c)
            loss = F.softmax_cross_entropy(self.W(h), tx)
            accum_loss = loss if accum_loss is None else accum_loss + loss
        return accum_loss
Ejemplo n.º 2
0
def perspective(vertices, angle=None):
    assert (vertices.ndim == 3)
    if angle is None:
        xp = chainer.cuda.get_array_module(vertices)
        angle = xp.array([xp.radians(60)] * vertices.shape[0], 'float32')

    width = cf.tan(angle / 2)
    width = cf.broadcast_to(width[:, None], vertices.shape[:2])
    z = vertices[:, :, 2]
    x = vertices[:, :, 0] / z / width
    y = vertices[:, :, 1] / z / width
    vertices = cf.concat((x[:, :, None], y[:, :, None], z[:, :, None]), axis=2)
    return vertices
Ejemplo n.º 3
0
    def get_sample(self, mu, sigma, number_samples):
        """
        One line description

        Parameters
        ----------

        Returns
        -------
        """
        mu, sigma = broadcast_and_squeeze(mu, sigma)
        sample = mu + sigma*F.tan(np.pi*np.random.uniform(0,1,size=mu.shape).astype(np.float32))
        return sample
Ejemplo n.º 4
0
def perspective(vertices, angle=30.):
    assert (vertices.ndim == 3)
    xp = chainer.cuda.get_array_module(vertices)
    if isinstance(angle, float) or isinstance(angle, int):
        angle = chainer.Variable(xp.array(angle, 'float32'))
    angle = angle / 180. * 3.1416
    angle = cf.broadcast_to(angle[None], (vertices.shape[0],))

    width = cf.tan(angle)
    width = cf.broadcast_to(width[:, None], vertices.shape[:2])
    z = vertices[:, :, 2]
    x = vertices[:, :, 0] / z / width
    y = vertices[:, :, 1] / z / width
    vertices = cf.concat((x[:, :, None], y[:, :, None], z[:, :, None]), axis=2)
    return vertices
Ejemplo n.º 5
0
def perspective(vertices, angle=30.):
    assert (vertices.ndim == 3)
    xp = chainer.cuda.get_array_module(vertices)
    if isinstance(angle, float) or isinstance(angle, int):
        angle = chainer.Variable(xp.array(angle, 'float32'))
    angle = angle / 180. * 3.1416
    angle = cf.broadcast_to(angle[None], (vertices.shape[0], ))

    width = cf.tan(angle)
    width = cf.broadcast_to(width[:, None], vertices.shape[:2])
    z = vertices[:, :, 2]
    x = vertices[:, :, 0] / z / width
    y = vertices[:, :, 1] / z / width
    vertices = cf.concat((x[:, :, None], y[:, :, None], z[:, :, None]), axis=2)
    return vertices
Ejemplo n.º 6
0
    def __call__(self, x):
        xTan = self.dilatedConvTan(x)
        xTan = self.batchNormTan(x)
        xTan = F.tan(xTan)
        xSig = self.dilatedConvSig(x)
        xSig = self.batchNormSig(x)
        xSig = F.sigmoid(xSig)
        h = xTan * xSig
        skip = self.conv(h)
        skip = self.batchNormCnn(h)

        s = x.shape
        xp = chainer.cuda.cupy if self.useGPU else np
        zero = xp.zeros((s[0], s[1], s[2], s[3] - skip.shape[3]), dtype='f')
        skip = F.concat((skip, zero), axis=3)
        next = skip + x
        return next, skip
Ejemplo n.º 7
0
    def shoot(self):
        W = self.width
        H = self.height
        origin = self.origin
        xaxis = self.xaxis
        zaxis = self.zaxis
        yaxis = self.yaxis
        angle = self.fov
        t0 = self.t0
        t1 = self.t1

        xp = chainer.backend.get_array_module(origin)

        #zaxis = zaxis.reshape((1, 3, 1, 1))
        #yaxis = yaxis.reshape((1, 3, 1, 1))
        #xaxis = vnorm(vcross(yaxis, zaxis))
        #yaxis = vnorm(vcross(zaxis, xaxis))

        xaxis = vnorm(xaxis.reshape((1, 3, 1, 1))).reshape((1, 1, 3))
        yaxis = vnorm(yaxis.reshape((1, 3, 1, 1))).reshape((1, 1, 3))
        zaxis = vnorm(zaxis.reshape((1, 3, 1, 1))).reshape((1, 1, 3))
        
        #print(angle.shape)
        angle = (angle / 2) * math.pi / 180.0
        HH = F.tan(angle)
        ro = origin
        ro = F.tile(ro, (H, W, 1))
        ro = F.transpose(ro, (2, 0, 1))
        
        yy = xp.tile(xp.arange(H, dtype=np.float32).reshape((H, 1, 1)), (1, W, 1))  #(H, W, 1)
        xx = xp.tile(xp.arange(W, dtype=np.float32).reshape((1, W, 1)), (H, 1, 1))  #(H, W, 1)
        yy = (1 - 2 * (yy + 0.5) / H) * HH
        xx = (2 * (xx + 0.5) / W - 1) * HH
        rd = xx * xaxis + yy * yaxis + F.broadcast_to(zaxis, (H, W, 3))
        rd = F.transpose(rd, (2, 0, 1))
        rd = rd.reshape((1, 3, H, W))
        rd = vnorm(rd)
        rd = rd.reshape((3, H, W))

        t0 = F.broadcast_to(t0.reshape((1, 1, 1)), (1, H, W))
        t1 = F.broadcast_to(t1.reshape((1, 1, 1)), (1, H, W))
 
        #print(ro.shape, ro.dtype)
        #print(rd.shape, rd.dtype)
        return ro, rd, t0, t1
Ejemplo n.º 8
0
 def tan(self, x):
     return F.tan(x)
Ejemplo n.º 9
0
 def forward(self, x):
     y1 = F.tan(x)
     return y1