Ejemplo n.º 1
0
    def __init__(self, vocab_size=10, rnn_unit='LSTM'):
        embed = embed_id.EmbedID(vocab_size, 10)
        if rnn_unit == 'LSTM':
            rnns = link.ChainList(lstm.LSTM(10, 20), lstm.LSTM(20, 20))
        elif rnn_unit == 'GRU':
            rnns = link.ChainList(gru.StatefulGRU(20, 10),
                                  gru.StatefulGRU(20, 20))
        else:
            raise ValueError('Invalid RNN unit:{}'.format(rnn_unit))

        linears = link.ChainList(linear.Linear(20, 10),
                                 linear.Linear(10, vocab_size))
        super(BigLSTM, self).__init__(embed=embed, rnns=rnns, linears=linears)
Ejemplo n.º 2
0
 def __init__(self, label_dim):
     super(Classifier, self).__init__(
         ASPP=link.ChainList(
             ConvBN(2048, 512, 1, 1, 0, init_weights=None, pool=None),
             ConvBN(2048, 512, 1, 1, 0, init_weights=None, pool=None),
             DilatedConvBN(2048,
                           256,
                           3,
                           1,
                           3,
                           3,
                           init_weights=None,
                           pool=None),
             DilatedConvBN(2048,
                           256,
                           3,
                           1,
                           6,
                           6,
                           init_weights=None,
                           pool=None),
             DilatedConvBN(2048,
                           256,
                           3,
                           1,
                           9,
                           9,
                           init_weights=None,
                           pool=None),
             DilatedConvBN(2048,
                           256,
                           3,
                           1,
                           12,
                           12,
                           init_weights=None,
                           pool=None),
             ConvBN(2048, 1024, 1, 1, 0, init_weights=None, pool=None)),
         classifier=link.ChainList(
             Conv(1024,
                  label_dim,
                  1,
                  1,
                  0,
                  init_weights=None,
                  pool=None,
                  nobias=False)),
     )
Ejemplo n.º 3
0
 def __init__(self, predictor, label_dim, args):
     super(ReIDClassifier, self).__init__(predictor=predictor,
                                          classifiers=link.ChainList(
                                              Conv(2048 * 3,
                                                   label_dim,
                                                   1,
                                                   1,
                                                   0,
                                                   init_weights=None,
                                                   pool=None,
                                                   nobias=False)))
     self.args = args
Ejemplo n.º 4
0
Archivo: Models.py Proyecto: ebsrn/CORE
 def __init__(self, label_dim):
     super(Classifier, self).__init__(
         ASPP=link.ChainList(
             ConvBN(2048, 512, 1, 1, 0, init_weights=None, pool=None),
             ConvBN(2048, 384, 1, 1, 0, init_weights=None, pool=None),
             DilatedConvBN(2048,
                           384,
                           3,
                           1,
                           4,
                           4,
                           init_weights=None,
                           pool=None),
             DilatedConvBN(2048,
                           384,
                           3,
                           1,
                           8,
                           8,
                           init_weights=None,
                           pool=None),
             DilatedConvBN(2048,
                           384,
                           3,
                           1,
                           16,
                           16,
                           init_weights=None,
                           pool=None),
             ConvBN(2048, 2048, 1, 1, 0, init_weights=None, pool=None)),
         classifier=link.ChainList(
             Conv(2048,
                  label_dim,
                  1,
                  1,
                  0,
                  init_weights=None,
                  pool=None,
                  nobias=False)),
     )
Ejemplo n.º 5
0
    def __init__(self, channel_dim=32, hidden_dim=1760, out_dim=29, rnn_unit='Linear', use_cudnn=True):
        c1 = ConvBN(1, channel_dim, (5, 20), 2, use_cudnn=use_cudnn)
        c2 = ConvBN(channel_dim, channel_dim, (5, 10), (1, 2), use_cudnn=use_cudnn)
        convolution = Sequential(c1, c2)

        brnn1 = BRNN(31 * channel_dim, hidden_dim, rnn_unit=rnn_unit)
        brnn2 = BRNN(hidden_dim, hidden_dim, rnn_unit=rnn_unit)
        brnn3 = BRNN(hidden_dim, hidden_dim, rnn_unit=rnn_unit)
        brnn4 = BRNN(hidden_dim, hidden_dim, rnn_unit=rnn_unit)
        brnn5 = BRNN(hidden_dim, hidden_dim, rnn_unit=rnn_unit)
        brnn6 = BRNN(hidden_dim, hidden_dim, rnn_unit=rnn_unit)
        brnn7 = BRNN(hidden_dim, hidden_dim, rnn_unit=rnn_unit)
        recurrent = Sequential(brnn1, brnn2, brnn3, brnn4,
                               brnn5, brnn6, brnn7)

        fc1 = LinearBN(hidden_dim, hidden_dim)
        fc2 = L.Linear(hidden_dim, out_dim)
        linear = link.ChainList(fc1, fc2)
        super(DeepSpeech2, self).__init__(convolution=convolution,
                                          recurrent=recurrent,
                                          linear=linear)
Ejemplo n.º 6
0
Archivo: Models.py Proyecto: ebsrn/CORE
 def __init__(self, predictor, classifiers, args):
     super(InceptionV3Classifier,
           self).__init__(predictor=predictor,
                          classifiers=link.ChainList(*classifiers))
     self.args = args
Ejemplo n.º 7
0
Archivo: Models.py Proyecto: ebsrn/CORE
    def __init__(self, args):

        convolution = link.ChainList(ConvBN(3, 32, 3, 2, 0, 'conv'),
                                     ConvBN(32, 32, 3, 1, 0, 'conv_1'),
                                     ConvBN(32, 64, 3, 1, 1, 'conv_2'),
                                     ConvBN(64, 80, 1, 1, 0, 'conv_3'),
                                     ConvBN(80, 192, 3, 1, 0, 'conv_4'))

        def inception_35(ich, pch, name):
            # 1x1
            s1 = ConvBN(ich, 64, 1, 1, 0, name['1x1'][0])
            # 5x5
            s21 = ConvBN(ich, 48, 1, 1, 0, name['5x5'][0])
            s22 = ConvBN(48, 64, 5, 1, 2, name['5x5'][1])
            s2 = Sequential(s21, s22)
            # double 3x3
            s31 = ConvBN(ich, 64, 1, 1, 0, name['3x3'][0])
            s32 = ConvBN(64, 96, 3, 1, 1, name['3x3'][1])
            s33 = ConvBN(96, 96, 3, 1, 1, name['3x3'][2])
            s3 = Sequential(s31, s32, s33)
            # pool
            s4 = ConvBN(ich,
                        pch,
                        1,
                        1,
                        0,
                        name['pool'][1],
                        pool=A.AveragePooling2D(3, 1, 1))
            return Inception(s1, s2, s3, s4)

        inception35_names = ({
            '1x1': ['mixed_conv'],
            '5x5': ['mixed_tower_conv', 'mixed_tower_conv_1'],
            '3x3': [
                'mixed_tower_1_conv', 'mixed_tower_1_conv_1',
                'mixed_tower_1_conv_2'
            ],
            'pool': ['mixed_tower_2_pool', 'mixed_tower_2_conv']
        }, {
            '1x1': ['mixed_1_conv'],
            '5x5': ['mixed_1_tower_conv', 'mixed_1_tower_conv_1'],
            '3x3': [
                'mixed_1_tower_1_conv', 'mixed_1_tower_1_conv_1',
                'mixed_1_tower_1_conv_2'
            ],
            'pool': ['mixed_1_tower_2_pool', 'mixed_1_tower_2_conv']
        }, {
            '1x1': ['mixed_2_conv'],
            '5x5': ['mixed_2_tower_conv', 'mixed_2_tower_conv_1'],
            '3x3': [
                'mixed_2_tower_1_conv', 'mixed_2_tower_1_conv_1',
                'mixed_2_tower_1_conv_2'
            ],
            'pool': ['mixed_2_tower_2_pool', 'mixed_2_tower_2_conv']
        })

        inception35 = Sequential(*[
            inception_35(ich, pch, name) for ich, pch, name in zip(
                [192, 256, 288], [32, 64, 64], inception35_names)
        ])

        reduction35 = Inception(
            # strided 3x3
            ConvBN(288, 384, 3, 2, 0,
                   'mixed_3_conv'),  # originally stride-pad: 2-0
            # double 3x3
            Sequential(
                ConvBN(288, 64, 1, 1, 0, 'mixed_3_tower_conv'),
                ConvBN(64, 96, 3, 1, 1, 'mixed_3_tower_conv_1'),
                ConvBN(96, 96, 3, 2, 0,
                       'mixed_3_tower_conv_2')  # originally stride-pad: 2-0
            ),
            # pool
            pool=M.MaxPooling2D(3, 2, 0,
                                cover_all=False))  # originally stride-pad: 2-0

        def inception_17(hidden_channel, name):
            # 1x1
            s1 = ConvBN(768, 192, 1, 1, 0, name['1x1'][0])
            # 7x7
            s21 = ConvBN(768, hidden_channel, 1, 1, 0, name['7x7'][0])
            s22 = ConvBN(hidden_channel, hidden_channel, (1, 7), (1, 1),
                         (0, 3), name['7x7'][1])
            s23 = ConvBN(hidden_channel, 192, (7, 1), (1, 1), (3, 0),
                         name['7x7'][2])
            s2 = Sequential(s21, s22, s23)
            # double 7x7
            s31 = ConvBN(768, hidden_channel, 1, 1, 0, name['double7x7'][0])
            s32 = ConvBN(hidden_channel, hidden_channel, (7, 1), (1, 1),
                         (3, 0), name['double7x7'][1])
            s33 = ConvBN(hidden_channel, hidden_channel, (1, 7), (1, 1),
                         (0, 3), name['double7x7'][2])
            s34 = ConvBN(hidden_channel, hidden_channel, (7, 1), (1, 1),
                         (3, 0), name['double7x7'][3])
            s35 = ConvBN(hidden_channel, 192, (1, 7), (1, 1), (0, 3),
                         name['double7x7'][4])
            s3 = Sequential(s31, s32, s33, s34, s35)
            # pool
            s4 = ConvBN(768,
                        192,
                        1,
                        1,
                        0,
                        name['pool'][1],
                        pool=A.AveragePooling2D(3, 1, 1))
            return Inception(s1, s2, s3, s4)

        inception17_names = ({
            '1x1': ['mixed_4_conv'],
            '7x7': [
                'mixed_4_tower_conv', 'mixed_4_tower_conv_1',
                'mixed_4_tower_conv_2'
            ],
            'double7x7': [
                'mixed_4_tower_1_conv', 'mixed_4_tower_1_conv_1',
                'mixed_4_tower_1_conv_2', 'mixed_4_tower_1_conv_3',
                'mixed_4_tower_1_conv_4'
            ],
            'pool': ['mixed_4_tower_2_pool', 'mixed_4_tower_2_conv']
        }, {
            '1x1': ['mixed_5_conv'],
            '7x7': [
                'mixed_5_tower_conv', 'mixed_5_tower_conv_1',
                'mixed_5_tower_conv_2'
            ],
            'double7x7': [
                'mixed_5_tower_1_conv', 'mixed_5_tower_1_conv_1',
                'mixed_5_tower_1_conv_2', 'mixed_5_tower_1_conv_3',
                'mixed_5_tower_1_conv_4'
            ],
            'pool': ['mixed_5_tower_2_pool', 'mixed_5_tower_2_conv']
        }, {
            '1x1': ['mixed_6_conv'],
            '7x7': [
                'mixed_6_tower_conv', 'mixed_6_tower_conv_1',
                'mixed_6_tower_conv_2'
            ],
            'double7x7': [
                'mixed_6_tower_1_conv', 'mixed_6_tower_1_conv_1',
                'mixed_6_tower_1_conv_2', 'mixed_6_tower_1_conv_3',
                'mixed_6_tower_1_conv_4'
            ],
            'pool': ['mixed_6_tower_2_pool', 'mixed_6_tower_2_conv']
        }, {
            '1x1': ['mixed_7_conv'],
            '7x7': [
                'mixed_7_tower_conv', 'mixed_7_tower_conv_1',
                'mixed_7_tower_conv_2'
            ],
            'double7x7': [
                'mixed_7_tower_1_conv', 'mixed_7_tower_1_conv_1',
                'mixed_7_tower_1_conv_2', 'mixed_7_tower_1_conv_3',
                'mixed_7_tower_1_conv_4'
            ],
            'pool': ['mixed_7_tower_2_pool', 'mixed_7_tower_2_conv']
        })

        inception17 = Sequential(*[
            inception_17(c, name)
            for c, name in zip([128, 160, 160, 192], inception17_names)
        ])

        # Reduction 17 to 8
        reduction17 = Inception(
            # strided 3x3
            Sequential(
                ConvBN(768, 192, 1, 1, 0, 'mixed_8_tower_conv'),
                ConvBN(192, 320, 3, 1, 1,
                       'mixed_8_tower_conv_1')),  # originally stride-pad: 2-0
            # 7x7 and 3x3
            Sequential(
                ConvBN(768, 192, 1, 1, 0, 'mixed_8_tower_1_conv'),
                ConvBN(192, 192, (1, 7), (1, 1), (0, 3),
                       'mixed_8_tower_1_conv_1'),
                ConvBN(192, 192, (7, 1), (1, 1), (3, 0),
                       'mixed_8_tower_1_conv_2'),
                ConvBN(
                    192, 192, 3, 1, 1,
                    'mixed_8_tower_1_conv_3')),  # originally stride-pad: 2-0
            # pool
            pool=M.MaxPooling2D(3, 1, 1,
                                cover_all=False))  # originally stride-pad: 2-0

        def inception_8(input_channel, name):
            # 1x1
            s1 = ConvBN(input_channel, 320, 1, 1, 0, name['1x1'][0])
            # 3x3
            s21 = ConvBN(input_channel, 384, 1, 1, 0, name['3x3'][0])
            s22 = Inception(
                ConvBN(384, 384, (1, 3), (1, 1), (0, 1), name['3x3'][1]),
                ConvBN(384, 384, (3, 1), (1, 1), (1, 0), name['3x3'][2]))
            s2 = Sequential(s21, s22)
            # double 3x3
            s31 = ConvBN(input_channel, 448, 1, 1, 0, name['double3x3'][0])
            s32 = ConvBN(448, 384, 3, 1, 1, name['double3x3'][1])
            s331 = ConvBN(384, 384, (1, 3), (1, 1), (0, 1),
                          name['double3x3'][2])
            s332 = ConvBN(384, 384, (3, 1), (1, 1), (1, 0),
                          name['double3x3'][3])
            s33 = Inception(s331, s332)
            s3 = Sequential(s31, s32, s33)
            # pool
            s4 = ConvBN(input_channel,
                        192,
                        1,
                        1,
                        0,
                        name['pool'][1],
                        pool=A.AveragePooling2D(3, 1, 1))
            return Inception(s1, s2, s3, s4)

        inception8_names = ({
            '1x1': ['mixed_9_conv'],
            '3x3': [
                'mixed_9_tower_conv', 'mixed_9_tower_mixed_conv',
                'mixed_9_tower_mixed_conv_1'
            ],
            'double3x3': [
                'mixed_9_tower_1_conv', 'mixed_9_tower_1_conv_1',
                'mixed_9_tower_1_mixed_conv', 'mixed_9_tower_1_mixed_conv_1'
            ],
            'pool': ['mixed_9_tower_2_pool', 'mixed_9_tower_2_conv']
        }, {
            '1x1': ['mixed_10_conv'],
            '3x3': [
                'mixed_10_tower_conv', 'mixed_10_tower_mixed_conv',
                'mixed_10_tower_mixed_conv_1'
            ],
            'double3x3': [
                'mixed_10_tower_1_conv', 'mixed_10_tower_1_conv_1',
                'mixed_10_tower_1_mixed_conv', 'mixed_10_tower_1_mixed_conv_1'
            ],
            'pool': ['mixed_10_tower_2_pool', 'mixed_10_tower_2_conv']
        })

        inception8 = Sequential(*[
            inception_8(input_channel, name)
            for input_channel, name in zip([1280, 2048], inception8_names)
        ])

        super(InceptionV3, self).__init__(
            convolution=convolution,
            inception=link.ChainList(inception35, inception17, inception8),
            grid_reduction=link.ChainList(reduction35, reduction17),
        )
Ejemplo n.º 8
0
    def __init__(self, use_cudnn=True):
        convolution = link.ChainList(
            AuxConv(C.Convolution2D(3, 32, 3, 2, use_cudnn=use_cudnn)),
            AuxConv(C.Convolution2D(32, 32, 3, use_cudnn=use_cudnn)),
            AuxConv(C.Convolution2D(32, 64, 3, 1, 1, use_cudnn=use_cudnn)),
            AuxConv(C.Convolution2D(64, 80, 3, 1, 1, use_cudnn=use_cudnn)),
            AuxConv(C.Convolution2D(80, 192, 3, use_cudnn=use_cudnn)))

        def inception_0(input_channel, pool_channel):
            # 1x1
            s1 = AuxConv(
                C.Convolution2D(input_channel, 64, 1, use_cudnn=use_cudnn))

            # 5x5
            s21 = AuxConv(
                C.Convolution2D(input_channel, 48, 1, use_cudnn=use_cudnn))
            s22 = AuxConv(
                C.Convolution2D(48, 64, 5, pad=2, use_cudnn=use_cudnn))
            s2 = Sequential(s21, s22)

            # double 3x3
            s31 = AuxConv(
                C.Convolution2D(input_channel, 64, 1, use_cudnn=use_cudnn))
            s32 = AuxConv(
                C.Convolution2D(64, 96, 3, pad=1, use_cudnn=use_cudnn))
            s33 = AuxConv(
                C.Convolution2D(96, 96, 3, pad=1, use_cudnn=use_cudnn))
            s3 = Sequential(s31, s32, s33)

            # pool
            s4 = AuxConv(C.Convolution2D(input_channel,
                                         pool_channel,
                                         3,
                                         pad=1,
                                         use_cudnn=use_cudnn),
                         pool=M.MaxPooling2D(3, 1, 1, use_cudnn=use_cudnn))

            return Inception(s1, s2, s3, s4)

        inception0 = Sequential(*[
            inception_0(input_channel, pool_channel) for input_channel,
            pool_channel in zip([192, 256, 288], [32, 64, 64])
        ])

        grid_reduction0 = Inception(
            # strided 3x3
            AuxConv(C.Convolution2D(288, 384, 3, 2, use_cudnn=use_cudnn)),
            # double 3x3
            Sequential(
                AuxConv(C.Convolution2D(288, 64, 1, use_cudnn=use_cudnn)),
                AuxConv(C.Convolution2D(64, 96, 3, pad=1,
                                        use_cudnn=use_cudnn)),
                AuxConv(C.Convolution2D(96, 96, 3, 2, use_cudnn=use_cudnn))),
            # pool
            pool=M.MaxPooling2D(3, 2))

        def inception_1(hidden_channel):
            # 1x1
            s1 = AuxConv(C.Convolution2D(768, 192, 1, use_cudnn=use_cudnn))

            # 7x7
            s21 = AuxConv(
                C.Convolution2D(768, hidden_channel, 1, use_cudnn=use_cudnn))
            s22 = AuxConv(
                C.Convolution2D(hidden_channel,
                                hidden_channel, (1, 7),
                                pad=(0, 3),
                                use_cudnn=use_cudnn))
            s23 = AuxConv(
                C.Convolution2D(hidden_channel,
                                192, (7, 1),
                                pad=(3, 0),
                                use_cudnn=use_cudnn))
            s2 = Sequential(s21, s22, s23)

            # double 7x7
            s31 = AuxConv(
                C.Convolution2D(768, hidden_channel, 1, use_cudnn=use_cudnn))
            s32 = AuxConv(
                C.Convolution2D(hidden_channel,
                                hidden_channel, (1, 7),
                                pad=(0, 3),
                                use_cudnn=use_cudnn))
            s33 = AuxConv(
                C.Convolution2D(hidden_channel,
                                hidden_channel, (7, 1),
                                pad=(3, 0),
                                use_cudnn=use_cudnn))
            s34 = AuxConv(
                C.Convolution2D(hidden_channel,
                                hidden_channel, (1, 7),
                                pad=(0, 3),
                                use_cudnn=use_cudnn))
            s35 = AuxConv(
                C.Convolution2D(hidden_channel,
                                192, (7, 1),
                                pad=(3, 0),
                                use_cudnn=use_cudnn))
            s3 = Sequential(s31, s32, s33, s34, s35)

            # pool
            s4 = AuxConv(C.Convolution2D(768,
                                         192,
                                         3,
                                         pad=1,
                                         use_cudnn=use_cudnn),
                         pool=A.AveragePooling2D(3, 1, 1, use_cudnn=use_cudnn))

            return Inception(s1, s2, s3, s4)

        inception1 = Sequential(
            *[inception_1(c) for c in [128, 160, 160, 192]])

        grid_reduction1 = Inception(
            # strided 3x3
            Sequential(
                AuxConv(C.Convolution2D(768, 192, 1, use_cudnn=use_cudnn)),
                AuxConv(C.Convolution2D(192, 320, 3, 2, use_cudnn=use_cudnn))),
            # 7x7 and 3x3
            Sequential(
                AuxConv(C.Convolution2D(768, 192, 1, use_cudnn=use_cudnn)),
                AuxConv(
                    C.Convolution2D(192,
                                    192, (1, 7),
                                    pad=(0, 3),
                                    use_cudnn=use_cudnn)),
                AuxConv(
                    C.Convolution2D(192,
                                    192, (7, 1),
                                    pad=(3, 0),
                                    use_cudnn=use_cudnn)),
                AuxConv(C.Convolution2D(192, 192, 3, 2, use_cudnn=use_cudnn))),
            # pool
            pool=M.MaxPooling2D(3, 2, use_cudnn=use_cudnn))

        def inception_2(input_channel):
            # 1x1
            s1 = AuxConv(
                C.Convolution2D(input_channel, 320, 1, use_cudnn=use_cudnn))

            # 3x3
            s21 = AuxConv(
                C.Convolution2D(input_channel, 384, 1, use_cudnn=use_cudnn))
            s22 = Inception(
                AuxConv(
                    C.Convolution2D(384,
                                    384, (1, 3),
                                    pad=(0, 1),
                                    use_cudnn=use_cudnn)),
                AuxConv(
                    C.Convolution2D(384,
                                    384, (3, 1),
                                    pad=(1, 0),
                                    use_cudnn=use_cudnn)))
            s2 = Sequential(s21, s22)

            # double 3x3
            s31 = AuxConv(
                C.Convolution2D(input_channel, 448, 1, use_cudnn=use_cudnn))
            s32 = AuxConv(
                C.Convolution2D(448, 384, 3, pad=1, use_cudnn=use_cudnn))
            s331 = AuxConv(
                C.Convolution2D(384,
                                384, (1, 3),
                                pad=(0, 1),
                                use_cudnn=use_cudnn))
            s332 = AuxConv(
                C.Convolution2D(384,
                                384, (3, 1),
                                pad=(1, 0),
                                use_cudnn=use_cudnn))
            s33 = Inception(s331, s332)
            s3 = Sequential(s31, s32, s33)

            # pool
            s4 = AuxConv(C.Convolution2D(input_channel,
                                         192,
                                         3,
                                         pad=1,
                                         use_cudnn=use_cudnn),
                         pool=A.AveragePooling2D(3, 1, 1, use_cudnn=use_cudnn))
            return Inception(s1, s2, s3, s4)

        inception2 = Sequential(
            *[inception_2(input_channel) for input_channel in [1280, 2048]])

        auxiliary_convolution = Sequential(
            AuxConv(C.Convolution2D(768, 128, 1, use_cudnn=use_cudnn),
                    pool=A.AveragePooling2D(5, 3, use_cudnn=use_cudnn)),
            AuxConv(C.Convolution2D(128, 768, 5, use_cudnn=use_cudnn)))

        super(InceptionV3, self).__init__(
            convolution=convolution,
            inception=link.ChainList(inception0, inception1, inception2),
            grid_reduction=link.ChainList(grid_reduction0, grid_reduction1),
            auxiliary_convolution=auxiliary_convolution,
            auxiliary_linear=linear.Linear(768, 1000),
            linear=linear.Linear(2048, 1000))
Ejemplo n.º 9
0
print vars(args)

print 'Initialize Model'
predictor = Models.InceptionV3(args, dilated=False)
model = Models.ReIDClassifier(predictor, args.label_dim[0], args)
with model.init_scope():
    model.segmentation = Models.InceptionV3Classifier(
        Models.InceptionV3(args, dilated=True), [Models.Classifier(20)], args)

if len(args.model_path_for_ft) > 0:
    model = ResumeFromCheckpoint(args.model_path_for_ft, model)
    model.classifiers = link.ChainList(
        Models.Conv(2048 * 3,
                    args.label_dim_ft,
                    1,
                    1,
                    0,
                    init_weights=None,
                    pool=None,
                    nobias=False))

print 'Setup optimizer'
opt = SetupOptimizer(model)

# Use lower learning rate for pretrained parts
for name, param in opt.target.namedparams():
    if name.startswith('/predictor/'):
        param.update_rule.hyperparam.lr = args.optimizer['lr_pretrained']
opt.add_hook(WeightDecay(0.0005))
# opt.add_hook(GradientClipping(2.0))