def evaluate(self):
        iterator = self._iterators['main']
        target = self._targets['main']

        if hasattr(iterator, 'reset'):
            iterator.reset()
            it = iterator
        else:
            it = copy.copy(iterator)

        in_values, out_values, rest_values = apply_to_iterator(
            self.predict_func, it)
        # delete unused iterators explicitly
        del in_values

        pred_labels, pred_scores = out_values
        gt_labels, = rest_values

        result = eval_multi_label_classification(
            pred_labels, pred_scores, gt_labels)

        report = {'map': result['map']}

        if self.label_names is not None:
            for l, label_name in enumerate(self.label_names):
                try:
                    report['ap/{:s}'.format(label_name)] = result['ap'][l]
                except IndexError:
                    report['ap/{:s}'.format(label_name)] = np.nan

        observation = {}
        with reporter.report_scope(observation):
            reporter.report(report, target)
        return observation
Ejemplo n.º 2
0
    def __call__(self, trainer):
        """override method of extensions.Evaluator."""
        # set up a reporter
        reporter = reporter_module.Reporter()
        if hasattr(self, 'name'):
            prefix = self.name + '/'
        else:
            prefix = ''
        for name, target in six.iteritems(self._targets):
            reporter.add_observer(prefix + name, target)
            reporter.add_observers(prefix + name,
                                   target.namedlinks(skipself=True))

        with reporter:
            self.patch_image_dir = os.path.join(trainer.out, self.layer_name)
            if not os.path.exists(self.patch_image_dir):
                os.makedirs(self.patch_image_dir)
            result, locs, bounds = self.evaluate()

            outputdir = os.path.join(trainer.out, 'features')
            if not os.path.exists(outputdir):
                os.makedirs(outputdir)
            #print(bounds)
            #self.savetxt(os.path.join(trainer.out, self.layer_name + '.txt'),
            #                features, delimiter='\t')
            #cupy.savez(os.path.join(trainer.out, self.layer_name + '.npz'),
            #                **{self.layer_name: features})
            if locs:
                self.save_tuple_list(os.path.join(outputdir,
                        'maxloc_' + self.layer_name + '.txt'), locs)
            if bounds:
                self.save_tuple_list(os.path.join(outputdir,
                        'maxbounds_' + self.layer_name + '.txt'), bounds)
        reporter_module.report(result)
        return result
Ejemplo n.º 3
0
    def evaluate(self):
        bt = time.time()
        with chainer.no_backprop_mode():
            references = []
            hypotheses = []
            observation = {}
            with reporter.report_scope(observation):
                for i in range(0, len(self.test_data), self.batch):
                    src, trg = zip(*self.test_data[i:i + self.batch])
                    references.extend([[t.tolist()] for t in trg])

                    src = [chainer.dataset.to_device(self.device, x)
                           for x in src]

                    if self.comm.rank == 0:
                        self.model.translate(src, self.max_length)

                    elif self.comm.rank == 1:
                        ys = [y.tolist()
                              for y in self.model.translate(
                                  src, self.max_length)]
                        hypotheses.extend(ys)

                if self.comm.rank == 1:
                    bleu = bleu_score.corpus_bleu(
                        references, hypotheses, smoothing_function=bleu_score.
                        SmoothingFunction().method1)
                    reporter.report({'bleu': bleu}, self.model)
        et = time.time()

        if self.comm.rank == 1:
            print("BleuEvaluator(single)::evaluate(): "
                  "took {:.3f} [s]".format(et - bt))
            sys.stdout.flush()
        return observation
Ejemplo n.º 4
0
    def __call__(self, trainer=None):
        """Executes the evaluator extension.

        Unlike usual extensions, this extension can be executed without passing
        a trainer object. This extension reports the performance on validation
        dataset using the :func:`~chainer.report` function. Thus, users can use
        this extension independently from any trainer by manutally configuring
        a :class:`~chainer.Reporter` object.

        Args:
            trainer (~chainer.training.Trainer): Trainer object that invokes
                this extension. It can be omitted in case of calling this
                extension manually.

        Returns:
            dict: Result dictionary that contains mean statistics of values
                reported by the evaluation function.

        """
        # set up a reporter
        reporter = reporter_module.Reporter()
        if hasattr(self, 'name'):
            prefix = self.name + '/'
        else:
            prefix = ''
        for name, target in six.iteritems(self._targets):
            reporter.add_observer(prefix + name, target)
            reporter.add_observers(prefix + name,
                                   target.namedlinks(skipself=True))

        with reporter:
            result = self.evaluate()

        reporter_module.report(result)
        return result
Ejemplo n.º 5
0
    def __call__(self, *inputs):
        xs = inputs[:len(inputs) // 2]
        ys = inputs[len(inputs) // 2:]

        xs = [x[::-1] for x in xs]
        batch = len(xs)

        eos = self.xp.zeros(1, self.xp.int32)
        ys_in = [F.concat([eos, y], axis=0) for y in ys]
        ys_out = [F.concat([y, eos], axis=0) for y in ys]

        eys = sequence_embed(self.embed_y, ys_in)

        # Receive hidden states from encoder process and decode.
        _, _, os, _ = self.mn_decoder(eys)

        # It is faster to concatenate data before calculating loss
        # because only one matrix multiplication is called.
        concat_os = F.concat(os, axis=0)
        concat_ys_out = F.concat(ys_out, axis=0)
        loss = F.sum(F.softmax_cross_entropy(
            self.W(concat_os), concat_ys_out, reduce='no')) / batch

        reporter.report({'loss': loss.data}, self)
        n_words = concat_ys_out.shape[0]
        perp = self.xp.exp(loss.data * batch / n_words)
        reporter.report({'perp': perp}, self)
        return loss
Ejemplo n.º 6
0
    def __call__(self, *inputs):
        xs = inputs[:len(inputs) // 2]
        ys = inputs[len(inputs) // 2:]

        xs = [x[::-1] for x in xs]

        eos = self.xp.zeros(1, self.xp.int32)
        ys_in = [F.concat([eos, y], axis=0) for y in ys]
        ys_out = [F.concat([y, eos], axis=0) for y in ys]

        # Both xs and ys_in are lists of arrays.
        exs = sequence_embed(self.embed_x, xs)
        eys = sequence_embed(self.embed_y, ys_in)

        batch = len(xs)
        # None represents a zero vector in an encoder.
        hx, cx, _ = self.encoder(None, None, exs)
        _, _, os = self.decoder(hx, cx, eys)

        # It is faster to concatenate data before calculating loss
        # because only one matrix multiplication is called.
        concat_os = F.concat(os, axis=0)
        concat_ys_out = F.concat(ys_out, axis=0)
        loss = F.sum(F.softmax_cross_entropy(
            self.W(concat_os), concat_ys_out, reduce='no')) / batch

        reporter.report({'loss': loss.data}, self)
        n_words = concat_ys_out.shape[0]
        perp = self.xp.exp(loss.data * batch / n_words)
        reporter.report({'perp': perp}, self)
        return loss
Ejemplo n.º 7
0
 def __call__(self, x, t):
     h1 = F.relu(self.l1(x))
     y = self.l2(h1)
     loss = F.mean_squared_error(y, t)
     reporter.report({'loss': loss}, self)
     pred_list.append(y.data[0])
     return loss
    def evaluate(self):
        iterator = self._iterators['main']
        target = self._targets['main']

        if hasattr(iterator, 'reset'):
            iterator.reset()
            it = iterator
        else:
            it = copy.copy(iterator)

        in_values, out_values, rest_values = apply_to_iterator(
            target.predict, it)
        # delete unused iterators explicitly
        del in_values

        points, labels, scores = out_values
        gt_points, gt_labels = rest_values

        result = eval_projected_3d_bbox_single(
            points, scores, gt_points,
            self.vertex, self.intrinsics, diam=self.diam)
        report = result

        observation = {}
        with reporter.report_scope(observation):
            reporter.report(report, target)
        return observation
Ejemplo n.º 9
0
    def __call__(self, *args):
        """Computes the loss value for an input and label pair.

        It also computes accuracy and stores it to the attribute.

        Args:
            args (list of ~chainer.Variable): Input minibatch.

        The all elements of ``args`` but last one are features and
        the last element corresponds to ground truth labels.
        It feeds features to the predictor and compare the result
        with ground truth labels.

        Returns:
            ~chainer.Variable: Loss value.

        """

        assert len(args) >= 2
        x = args[:-1]
        t = args[-1]
        self.y = None
        self.loss = None
        self.accuracy = None
        self.y = self.predictor(*x)
        self.loss = self.lossfun(self.y, t)
        reporter.report({'loss': self.loss}, self)
        if self.compute_accuracy:
            self.accuracy = self.accfun(self.y, t)
            reporter.report({'accuracy': self.accuracy}, self)
        return self.loss
Ejemplo n.º 10
0
 def __call__(self, x, t):
     y = self.predictor(x)
     loss = self.lossfun(y, t)
     reporter.report({'loss': loss}, self)
     if self.accfun is not None:
         accuracy = self.accfun(y, t)
         reporter.report({'accuracy': accuracy}, self)
     return loss
Ejemplo n.º 11
0
 def __call__(self, x, context):
     e = self.embed(context)
     shape = e.data.shape
     x = F.broadcast_to(x[:, None], (shape[0], shape[1]))
     e = F.reshape(e, (shape[0] * shape[1], shape[2]))
     x = F.reshape(x, (shape[0] * shape[1],))
     loss = self.loss_func(e, x)
     reporter.report({'loss': loss}, self)
     return loss
Ejemplo n.º 12
0
 def __call__(self, *args):
     x, t, ignore = args[:3]
     self.y = None
     self.loss = None
     self.pre_rec = None
     self.y = self.predictor(x)
     self.loss = self.lossfun(self.y, t, ignore)
     reporter.report({'loss': self.loss}, self)
     return self.loss
Ejemplo n.º 13
0
 def __call__(self, x, contexts):
     e = self.embed(contexts)
     batch_size, n_context, n_units = e.shape
     x = F.broadcast_to(x[:, None], (batch_size, n_context))
     e = F.reshape(e, (batch_size * n_context, n_units))
     x = F.reshape(x, (batch_size * n_context,))
     loss = self.loss_func(e, x)
     reporter.report({'loss': loss}, self)
     return loss
Ejemplo n.º 14
0
    def forward(self, xs, ys):
        concat_outputs = self.predict(xs)
        concat_truths = F.concat(ys, axis=0)

        loss = F.softmax_cross_entropy(concat_outputs, concat_truths)
        accuracy = F.accuracy(concat_outputs, concat_truths)
        reporter.report({'loss': loss.data}, self)
        reporter.report({'accuracy': accuracy.data}, self)
        return loss
Ejemplo n.º 15
0
    def forward(self, *args, **kwargs):
        """Computes the loss value for an input and label pair.

        It also computes accuracy and stores it to the attribute.

        Args:
            args (list of ~chainer.Variable): Input minibatch.
            kwargs (dict of ~chainer.Variable): Input minibatch.

        When ``label_key`` is ``int``, the correpoding element in ``args``
        is treated as ground truth labels. And when it is ``str``, the
        element in ``kwargs`` is used.
        The all elements of ``args`` and ``kwargs`` except the ground trush
        labels are features.
        It feeds features to the predictor and compare the result
        with ground truth labels.

        .. note::
            We set ``None`` to the attributes ``y``, ``loss`` and ``accuracy``
            each time before running the predictor, to avoid unnecessary memory
            consumption. Note that the variables set on those attributes hold
            the whole computation graph when they are computed. The graph
            stores interim values on memory required for back-propagation.
            We need to clear the attributes to free those values.

        Returns:
            ~chainer.Variable: Loss value.

        """

        if isinstance(self.label_key, int):
            if not (-len(args) <= self.label_key < len(args)):
                msg = 'Label key %d is out of bounds' % self.label_key
                raise ValueError(msg)
            t = args[self.label_key]
            if self.label_key == -1:
                args = args[:-1]
            else:
                args = args[:self.label_key] + args[self.label_key + 1:]
        elif isinstance(self.label_key, str):
            if self.label_key not in kwargs:
                msg = 'Label key "%s" is not found' % self.label_key
                raise ValueError(msg)
            t = kwargs[self.label_key]
            del kwargs[self.label_key]

        self.y = None
        self.loss = None
        self.accuracy = None

        self.y = self.predictor(*args, **kwargs)
        self.loss = self.lossfun(self.y, t)
        reporter.report({'loss': self.loss}, self)
        if self.compute_accuracy:
            self.accuracy = self.accfun(self.y, t)
            reporter.report({'accuracy': self.accuracy}, self)
        return self.loss
Ejemplo n.º 16
0
 def __call__(self, x, context):
     e = self.embed(context)
     shape = e.shape
     x = F.broadcast_to(x[:, None], (shape[0], shape[1]))
     e = F.reshape(e, (shape[0] * shape[1], shape[2]))
     x = F.reshape(x, (shape[0] * shape[1],))
     loss = self.loss_func(e, x)
     # shouldn't we divide loss by batch size?
     reporter.report({'loss': loss}, self)
     return loss
Ejemplo n.º 17
0
    def __call__(self, x, context):

        x = F.broadcast_to(x[:, None], (context.shape[0], context.shape[1]))
        x = F.reshape(x, (context.shape[0] * context.shape[1],))

        context = context.reshape((context.shape[0] * context.shape[1]))
        e = self.rnn.charRNN(context)

        loss = self.loss_func(e, x)
        reporter.report({'loss': loss}, self)
        return loss
Ejemplo n.º 18
0
    def __call__(self, trainer):
        """Execute the statistics extension.

        Collect statistics for the current state of parameters.

        Note that this method will merely update its statistic summary, unless
        the internal trigger is fired. If the trigger is fired, the summary
        will also be reported and then reset for the next accumulation.

        Args:
            trainer (~chainer.training.Trainer): Associated trainer that
                invoked this extension.
        """
        statistics = {}

        for link in self._links:
            link_name = getattr(link, 'name', 'None')
            for param_name, param in link.namedparams():
                for attr_name in self._attrs:
                    for function_name, function in \
                            six.iteritems(self._statistics):
                        # Get parameters as a flattened one-dimensional array
                        # since the statistics function should make no
                        # assumption about the axes
                        params = getattr(param, attr_name).ravel()
                        if (self._skip_nan_params
                            and (
                                backend.get_array_module(params).isnan(params)
                                .any())):
                            value = numpy.nan
                        else:
                            value = function(params)
                        key = self.report_key_template.format(
                            prefix=self._prefix + '/' if self._prefix else '',
                            link_name=link_name,
                            param_name=param_name,
                            attr_name=attr_name,
                            function_name=function_name
                        )
                        if (isinstance(value, chainer.get_array_types())
                                and value.size > 1):
                            # Append integer indices to the keys if the
                            # statistic function return multiple values
                            statistics.update({'{}/{}'.format(key, i): v for
                                               i, v in enumerate(value)})
                        else:
                            statistics[key] = value

        self._summary.add(statistics)

        if self._trigger(trainer):
            reporter.report(self._summary.compute_mean())
            self._summary = reporter.DictSummary()  # Clear summary
Ejemplo n.º 19
0
    def __call__(self, x, context):
        context_shape = context.shape

        context = context.reshape((context.shape[0] * context.shape[1]))
        e = self.rnn.charRNN(context)

        e = F.reshape(e, (context_shape[0], context_shape[1], e.shape[1]))

        h = F.sum(e, axis=1) * (1. / context_shape[1])

        loss = self.loss_func(h, x)
        reporter.report({'loss': loss}, self)
        return loss
Ejemplo n.º 20
0
    def __call__(self, trainer):
        observation = trainer.observation
        if not (self._numerator_key in observation and
                self._denominator_key in observation):
            return

        self._numerator += observation[self._numerator_key]
        self._denominator += observation[self._denominator_key]

        if self._trigger(trainer):
            result = float(self._numerator) / self._denominator
            self._numerator = 0
            self._denominator = 0
            reporter.report({self._result_key: result})
Ejemplo n.º 21
0
    def predict(self, xs):
        # Encoding
        logits, exs = self._encode(xs)

        # Discretization
        D = F.gumbel_softmax(logits, self.tau, axis=2)
        gumbel_output = D.reshape(-1, self.M * self.K)
        with chainer.no_backprop_mode():
            maxp = F.mean(F.max(D, axis=2))
            reporter.report({'maxp': maxp.data}, self)

        # Decoding
        y_hat = self._decode(gumbel_output)
        return y_hat, exs
Ejemplo n.º 22
0
    def __call__(self, *args, **kwargs):
        """Computes the loss value for an input and label pair.

        It also computes accuracy and stores it to the attribute.

        Args:
            args (list of ~chainer.Variable): Input minibatch.
            kwargs (dict of ~chainer.Variable): Input minibatch.

        When ``label_key`` is ``int``, the correpoding element in ``args``
        is treated as ground truth labels. And when it is ``str``, the
        element in ``kwargs`` is used.
        The all elements of ``args`` and ``kwargs`` except the ground trush
        labels are features.
        It feeds features to the predictor and compare the result
        with ground truth labels.

        Returns:
            ~chainer.Variable: Loss value.

        """

        if isinstance(self.label_key, int):
            if not (-len(args) <= self.label_key < len(args)):
                msg = 'Label key %d is out of bounds' % self.label_key
                raise ValueError(msg)
            t = args[self.label_key]
            if self.label_key == -1:
                args = args[:-1]
            else:
                args = args[:self.label_key] + args[self.label_key + 1:]
        elif isinstance(self.label_key, str):
            if self.label_key not in kwargs:
                msg = 'Label key "%s" is not found' % self.label_key
                raise ValueError(msg)
            t = kwargs[self.label_key]
            del kwargs[self.label_key]

        self.y = None
        self.loss = None
        self.accuracy = None
        self.y = self.predictor(*args, **kwargs)
        self.loss = self.lossfun(self.y, t)
        reporter.report({'loss': self.loss}, self)
        if self.compute_accuracy:
            self.accuracy = self.accfun(self.y, t)
            reporter.report({'accuracy': self.accuracy}, self)
        return self.loss
    def __call__(self, x, context):

        x = F.broadcast_to(x[:, None], (context.shape[0], context.shape[1]))
        x = F.reshape(x, (context.shape[0] * context.shape[1],))

        if args.subword == 'rnn':
            context = context.reshape((context.shape[0] * context.shape[1]))
            e = self.rnn.charRNN(context)

        if args.subword == 'none':
            e = self.embed(context)
            e = F.reshape(e, (e.shape[0] * e.shape[1], e.shape[2]))

        loss = self.loss_func(e, x)
        reporter.report({'loss': loss}, self)
        return loss
Ejemplo n.º 24
0
    def __call__(self, trainer):
        with chainer.no_backprop_mode():
            references = []
            hypotheses = []
            for i in range(0, len(self.test_data), self.batch):
                sources, targets = zip(*self.test_data[i:i + self.batch])
                references.extend([[t.tolist()] for t in targets])

                sources = [
                    chainer.dataset.to_device(self.device, x) for x in sources]
                ys = [y.tolist()
                      for y in self.model.translate(sources, self.max_length)]
                hypotheses.extend(ys)

        bleu = bleu_score.corpus_bleu(
            references, hypotheses,
            smoothing_function=bleu_score.SmoothingFunction().method1)
        reporter.report({self.key: bleu})
Ejemplo n.º 25
0
    def __call__(self, x, t):
        """Computes the loss value for an image and label pair.

        Args:
            x (~chainer.Variable): A variable with a batch of images.
            t (~chainer.Variable): A variable with the ground truth
                image-wise label.

        Returns:
            ~chainer.Variable: Loss value.

        """
        self.y = self.predictor(x)
        self.loss = F.softmax_cross_entropy(
            self.y, t, class_weight=self.class_weight,
            ignore_label=self.ignore_label)

        reporter.report({'loss': self.loss}, self)
        return self.loss
Ejemplo n.º 26
0
    def evaluate(self):
        iterator = self._iterators['main']
        target = self._targets['main']

        if hasattr(iterator, 'reset'):
            iterator.reset()
            it = iterator
        else:
            it = copy.copy(iterator)

        in_values, out_values, rest_values = apply_to_iterator(
            target.predict, it)
        # delete unused iterators explicitly
        del in_values

        pred_bboxes, pred_labels, pred_scores = out_values

        if len(rest_values) == 3:
            gt_bboxes, gt_labels, gt_difficults = rest_values
        elif len(rest_values) == 2:
            gt_bboxes, gt_labels = rest_values
            gt_difficults = None

        result = eval_detection_voc(
            pred_bboxes, pred_labels, pred_scores,
            gt_bboxes, gt_labels, gt_difficults,
            use_07_metric=self.use_07_metric)

        report = {'map': result['map']}

        if self.label_names is not None:
            for l, label_name in enumerate(self.label_names):
                try:
                    report['ap/{:s}'.format(label_name)] = result['ap'][l]
                except IndexError:
                    report['ap/{:s}'.format(label_name)] = np.nan

        observation = {}
        with reporter.report_scope(observation):
            reporter.report(report, target)
        return observation
Ejemplo n.º 27
0
    def __call__(self, xs, ys):
        # Before making a transpose, you need to sort two lists in descending
        # order of length.
        inds = numpy.argsort([-len(x) for x in xs]).astype('i')
        xs = [xs[i] for i in inds]
        ys = [ys[i] for i in inds]

        # Make transposed sequences.
        # Now xs[t] is a batch of words at time t.
        xs = F.transpose_sequence(xs)
        ys = F.transpose_sequence(ys)

        # h[i] is feature vector for each batch of words.
        hs = [self.feature(x) for x in xs]
        loss = self.crf(hs, ys)
        reporter.report({'loss': loss.data}, self)

        # To predict labels, call argmax method.
        _, predict = self.crf.argmax(hs)
        correct = 0
        total = 0
        for y, p in six.moves.zip(ys, predict):
            correct += self.xp.sum(y.data == p)
            total += len(y.data)
        reporter.report({'correct': correct}, self)
        reporter.report({'total': total}, self)

        return loss
Ejemplo n.º 28
0
    def forward(self, imgs, captions):
        """Batch of images to a single loss."""
        imgs = Variable(imgs)
        if self.finetune_feat_extractor:
            img_feats = self.feat_extractor(imgs)
        else:
            # Extract features with the `train` configuration set to `False` in
            # order to basically skip the dropout regularizations. This is how
            # dropout is used during standard inference. Also, since we are not
            # going to optimize the feature extractor, we explicitly set the
            # backpropgation mode to not construct any computational graphs.
            with chainer.using_config('train', False), \
                    chainer.no_backprop_mode():
                img_feats = self.feat_extractor(imgs)

        loss = self.lang_model(img_feats, captions)

        # Report the loss so that it can be printed, logged and plotted by
        # other trainer extensions
        reporter.report({'loss': loss}, self)

        return loss
Ejemplo n.º 29
0
    def __call__(self, trainer):
        """override method of extensions.Evaluator."""
        # set up a reporter
        reporter = reporter_module.Reporter()
        if hasattr(self, 'name'):
            prefix = self.name + '/'
        else:
            prefix = ''
        for name, target in six.iteritems(self._targets):
            reporter.add_observer(prefix + name, target)
            reporter.add_observers(prefix + name,
                                   target.namedlinks(skipself=True))

        with reporter:
            result, predictions, rankings = self.evaluate()
            #print(result)
            #print(predictions)
            self.save_predictions(os.path.join(trainer.out, 'pred.txt'), predictions)
            self.save_predictions(os.path.join(trainer.out, 'ranking.txt'), rankings)

        reporter_module.report(result)
        return result
Ejemplo n.º 30
0
    def __call__(self, trainer):
        """override method of extensions.Evaluator."""
        # set up a reporter
        reporter = reporter_module.Reporter()
        if hasattr(self, 'name'):
            prefix = self.name + '/'
        else:
            prefix = ''
        for name, target in six.iteritems(self._targets):
            reporter.add_observer(prefix + name, target)
            reporter.add_observers(prefix + name,
                                   target.namedlinks(skipself=True))

        with reporter:
            result, features = self.evaluate()
            outputdir = os.path.join(trainer.out, 'features')
            if not os.path.exists(outputdir):
                os.makedirs(outputdir)
            #ioutil.savetxt(os.path.join(trainer.out, self.layer_name + '.txt'),
            #                features, delimiter='\t')
            #cupy.savez(os.path.join(trainer.out, self.layer_name + '.npz'),
            #                **{self.layer_name: features})
            if self.save_features:
                xp = cuda.get_array_module(features)
                xp.save(os.path.join(outputdir, self.layer_name + '.npy'),
                        features)

            if self.top is not None:
                top_N_args = Vutil.get_argmax_N(features, self.top)
                #print(top_N_args)
                ioutil.savetxt(os.path.join(outputdir,
                            'top_' + self.layer_name + '.txt'), top_N_args,
                            fmt='%d', delimiter='\t')
                #np.savez(os.path.join(trainer.out,
                #            'top_' + self.layer_name + '.npz'),
                #            **{self.layer_name: top_N_args})
        reporter_module.report(result)
        return result
Ejemplo n.º 31
0
    def calc_score(self, df_truth, pred):

        target_types = list(set(df_truth['type']))

        diff = df_truth['scalar_coupling_constant'] - pred

        scores = 0
        metrics = {}

        for target_type in target_types:

            target_pair = df_truth['type'] == target_type
            score_exp = np.mean(np.abs(diff[target_pair]))
            scores += np.log(score_exp)
            metrics[target_type] = np.log(score_exp)

        metrics['ALL_LogMAE'] = scores / len(target_types)

        observation = {}
        with reporter.report_scope(observation):
            reporter.report(metrics, self._targets['main'])

        return observation
Ejemplo n.º 32
0
 def forward(self, **indata):
     imgs = indata['image']
     y = self.center_detector(imgs)
     loss, hm_loss, wh_loss, offset_loss, detail_losses = center_detection_loss(
         y,
         indata,
         self.hm_weight,
         self.wh_weight,
         self.offset_weight,
         comm=self.comm)
     hm = y[-1]["hm"]
     hm_mae = F.mean_absolute_error(hm, indata["hm"])
     reporter.report(
         {
             'loss': loss,
             'hm_loss': hm_loss,
             'hm_pos_loss': detail_losses['hm_pos_loss'],
             'hm_neg_loss': detail_losses['hm_neg_loss'],
             'hm_mae': hm_mae,
             'wh_loss': wh_loss,
             'offset_loss': offset_loss
         }, self)
     return loss
Ejemplo n.º 33
0
    def __call__(self, trainer):
        with chainer.no_backprop_mode():
            references = []
            hypotheses = []
            for i in range(0, len(self.test_data[0:100]), self.batch):
                sources, targets = zip(*self.test_data[i:i + self.batch])
                references.extend([[t[0].tolist()] for t in targets])

                sources = [
                    chainer.dataset.to_device(self.device, x) for x in sources
                ]
                ys = self.model.translate(sources, self.max_length)
                ys = [y.tolist() for y in ys]
                hypotheses.extend(ys)

            source, target = zip(*self.test_data[0:100])
            loss = self.model.CalculateValLoss(source, target)
        bleu = bleu_score.corpus_bleu(
            references,
            hypotheses,
            smoothing_function=bleu_score.SmoothingFunction().method1)
        reporter.report({self.key[0]: bleu})
        reporter.report({self.key[1]: loss})
Ejemplo n.º 34
0
    def __call__(self, x, labels):
        x = BatchTransform(self.model.mean)(x)
        x = self.xp.array(x)
        scores = self.model(x)

        B, n_class = scores.shape[:2]
        one_hot_labels = self.xp.zeros((B, n_class), dtype=np.int32)
        for i, label in enumerate(labels):
            one_hot_labels[i, label] = 1
        # sigmoid_cross_entropy normalizes the loss
        # by the size of batch and the number of classes.
        # It works better to remove the normalization factor
        # of the number of classes.
        loss = self.loss_scale * F.sigmoid_cross_entropy(
            scores, one_hot_labels)

        result = calc_prec_and_recall(scores, labels)
        reporter.report({'loss': loss}, self)
        reporter.report({'recall': result['recall']}, self)
        reporter.report({'precision': result['precision']}, self)
        reporter.report({'n_pred': result['n_pred']}, self)
        reporter.report({'n_pos': result['n_pos']}, self)
        return loss
Ejemplo n.º 35
0
    def __call__(self, x):
        chainer.global_config.dtype = numpy.float64
        q_z = self.encoder(x)
        z = q_z.sample(self.k)
        p_x = self.decoder(z, n_batch_axes=2)
        p_z = self.prior()

        reconstr = F.mean(
            p_x.log_prob(F.broadcast_to(x[None, :], (self.k, ) + x.shape)))
        kl_penalty = F.mean(q_z.log_prob(z) - p_z.log_prob(z))
        loss = -(reconstr - self.beta * kl_penalty)
        reporter.report({'loss': loss}, self)
        reporter.report({'reconstr': reconstr}, self)
        reporter.report({'kl_penalty': kl_penalty}, self)
        reporter.report({'beta': self.beta}, self)
        return loss
Ejemplo n.º 36
0
    def forward(self, x, t):
        xp = cuda.get_array_module(x)
        y = self.predictor(x)
        log_softmax = F.log_softmax(y)
        # SelectItem is not supported by onnx-chainer.
        # TODO(hamaji): Support it?
        # log_prob = F.select_item(log_softmax, t)

        batch_size = chainer.Variable(xp.array(t.size, xp.float32),
                                      name='batch_size')
        self.extra_inputs = [batch_size]
        # TODO(hamaji): Currently, F.sum with axis=1 cannot be
        # backpropped properly.
        # log_prob = F.sum(log_softmax * t, axis=1)
        # return -F.sum(log_prob, axis=0) / self.batch_size
        log_prob = F.sum(log_softmax * t, axis=(0, 1))
        loss = -log_prob / batch_size
        reporter.report({'loss': loss}, self)
        if self.compute_accuracy:
            acc = accuracy.accuracy(y, xp.argmax(t, axis=1))
            reporter.report({'accuracy': acc}, self)
        loss.name = 'loss'
        return loss
    def __call__(self, x, t):
        self.y = self.predictor(x)
        if chainer.config.train:
            self.aux_loss = F.softmax_cross_entropy(
                self.y[0],
                t,
                class_weight=self.class_weight,
                ignore_label=self.ignore_label)

            self.loss = F.softmax_cross_entropy(self.y[1],
                                                t,
                                                class_weight=self.class_weight,
                                                ignore_label=self.ignore_label)

            reporter.report({'loss': (self.aux_loss * 0.4) + self.loss}, self)
            return (self.aux_loss * 0.4) + self.loss
        else:
            self.loss = F.softmax_cross_entropy(self.y,
                                                t,
                                                class_weight=self.class_weight,
                                                ignore_label=self.ignore_label)
            reporter.report({'loss': self.loss}, self)
            return self.loss
Ejemplo n.º 38
0
    def __call__(self, x):
        batchsize = x.shape[0]

        logw = self.compute_logw(x)

        # IWAE = log (1/k) sum_i w_i
        logp = F.logsumexp(logw, axis=0) - math.log(self.num_zsamples)
        logp_mean = F.sum(logp) / batchsize
        obj = -logp_mean

        # Variance computation
        obj_c = logp - F.broadcast_to(logp_mean, logp.shape)
        obj_var = F.sum(obj_c * obj_c) / (batchsize - 1)

        obj_elbo = -self.compute_elbo(logw)

        reporter.report({
            'obj': obj,
            'obj_var': obj_var,
            'obj_elbo': obj_elbo
        }, self)

        return obj
Ejemplo n.º 39
0
    def __call__(self, xs, ilens, ys):
        """E2E forward

        :param xs:
        :param ilens:
        :param ys:
        :return:
        """
        # 1. encoder
        hs, ilens = self.enc(xs, ilens)

        # 3. CTC loss
        if self.mtlalpha == 0:
            loss_ctc = None
        else:
            loss_ctc = self.ctc(hs, ys)

        # 4. attention loss
        if self.mtlalpha == 1:
            loss_att = None
            acc = None
        else:
            loss_att, acc = self.dec(hs, ys)

        self.acc = acc
        alpha = self.mtlalpha
        if alpha == 0:
            self.loss = loss_att
        elif alpha == 1:
            self.loss = loss_ctc
        else:
            self.loss = alpha * loss_ctc + (1 - alpha) * loss_att

        if self.loss.data < CTC_LOSS_THRESHOLD and not math.isnan(
                self.loss.data):
            reporter.report({'loss_ctc': loss_ctc}, self)
            reporter.report({'loss_att': loss_att}, self)
            reporter.report({'acc': acc}, self)

            logging.info('mtl loss:' + str(self.loss.data))
            reporter.report({'loss': self.loss}, self)
        else:
            logging.warning('loss (=%f) is not correct', self.loss.data)
        if self.flag_return:
            return self.loss, loss_ctc, loss_att, acc
        else:
            return self.loss
    def forward(self, *inputs):
        batch = len(inputs) // 6
        lefts = inputs[0:batch]
        rights = inputs[batch:batch * 2]
        dests = inputs[batch * 2:batch * 3]
        labels = inputs[batch * 3:batch * 4]
        sequences = inputs[batch * 4:batch * 5]
        leaf_labels = inputs[batch * 5:batch * 6]

        inds = numpy.argsort([-len(l) for l in lefts])
        # Sort all arrays in descending order and transpose them
        lefts = F.transpose_sequence([lefts[i] for i in inds])
        rights = F.transpose_sequence([rights[i] for i in inds])
        dests = F.transpose_sequence([dests[i] for i in inds])
        labels = F.transpose_sequence([labels[i] for i in inds])
        sequences = F.transpose_sequence([sequences[i] for i in inds])
        leaf_labels = F.transpose_sequence([leaf_labels[i] for i in inds])

        batch = len(inds)
        maxlen = len(sequences)

        loss = 0
        count = 0
        correct = 0

        stack = self.xp.zeros((batch, maxlen * 2, self.n_units),
                              self.xp.float32)
        for i, (word, label) in enumerate(zip(sequences, leaf_labels)):
            batch = word.shape[0]
            es = self.leaf(word)
            ds = self.xp.full((batch, ), i, self.xp.int32)
            y = self.label(es)
            loss += F.softmax_cross_entropy(y, label, normalize=False) * batch
            count += batch
            predict = self.xp.argmax(y.array, axis=1)
            correct += (predict == label.array).sum()

            stack = thin_stack.thin_stack_set(stack, ds, es)

        for left, right, dest, label in zip(lefts, rights, dests, labels):
            l, stack = thin_stack.thin_stack_get(stack, left)
            r, stack = thin_stack.thin_stack_get(stack, right)
            o = self.node(l, r)
            y = self.label(o)
            batch = l.shape[0]
            loss += F.softmax_cross_entropy(y, label, normalize=False) * batch
            count += batch
            predict = self.xp.argmax(y.array, axis=1)
            correct += (predict == label.array).sum()

            stack = thin_stack.thin_stack_set(stack, dest, o)

        loss /= count
        reporter.report({'loss': loss}, self)
        reporter.report({'total': count}, self)
        reporter.report({'correct': correct}, self)
        return loss
Ejemplo n.º 41
0
    def forward(self, *args, **kwargs):
        if isinstance(self.label_key, int):
            if not (-len(args) <= self.label_key < len(args)):
                msg = 'Label key %d is out of bounds' % self.label_key
                raise ValueError(msg)
            t = args[self.label_key]
            if self.label_key == -1:
                args = args[:-1]
            else:
                args = args[:self.label_key] + args[self.label_key + 1:]
        elif isinstance(self.label_key, str):
            if self.label_key not in kwargs:
                msg = 'Label key "%s" is not found' % self.label_key
                raise ValueError(msg)
            t = kwargs[self.label_key]
            del kwargs[self.label_key]
        else:
            raise ValueError("Invalid type: label_key")

        # y_t = args[1]
        with chainer.using_config('train', False), \
                chainer.using_config('enable_backprop', False):
            _, g_t = self.teacher(args[0])
        y_s, g_s = self.predictor(args[0], **kwargs)
        attention_pair = [('res2', 'fire3'), ('res3', 'fire5'),
                          ('res4', 'fire9')]
        loss_at = [
            at_loss(g_t[t_layer], g_s[s_layer])
            for t_layer, s_layer in attention_pair
        ]
        self.loss = self.lossfun_hard(y_s, t) + self.beta / 2 * sum(loss_at)
        self.y = y_s
        reporter.report({'loss': self.loss}, self)
        if self.compute_accuracy:
            self.accuracy = self.accfun(self.y, t)
            reporter.report({'accuracy': self.accuracy}, self)
        return self.loss
Ejemplo n.º 42
0
    def update_core(self):
        batch = self._iterators['main'].next()
        in_arrays = self.converter(batch, self.device)
        x_data = in_arrays

        batchsize = x_data.shape[0]
        z = Variable(
            cuda.cupy.random.normal(size=(batchsize, self.z_dim, 1, 1),
                                    dtype=np.float32))
        global x_gen
        x_gen = self.gen(z)

        # concatしないままdisに通すと、bnが悪さをする
        x = F.concat((x_gen, x_data), 0)
        y = self.dis(x)
        y_gen, y_data = F.split_axis(y, 2, 0)

        # sigmoid_cross_entropy(x, 0) == softplus(x)
        # sigmoid_cross_entropy(x, 1) == softplus(-x)
        loss_gen = F.sum(F.softplus(-y_gen))
        loss_data = F.sum(F.softplus(y_data))
        loss = (loss_gen + loss_data) / batchsize

        for optimizer in self._optimizers.values():
            optimizer.target.cleargrads()

        # compute gradients all at once
        loss.backward()

        for optimizer in self._optimizers.values():
            optimizer.update()

        reporter.report({
            'loss': loss,
            'loss_gen': loss_gen / batchsize,
            'loss_data': loss_data / batchsize
        })
Ejemplo n.º 43
0
    def evaluate(self):
        bt = time.time()
        with chainer.no_backprop_mode():
            references = []
            hypotheses = []
            observation = {}
            with reporter.report_scope(observation):
                for i in range(0, len(self.test_data), self.batch):
                    src, trg = zip(*self.test_data[i:i + self.batch])
                    references.extend([[t.tolist()] for t in trg])

                    src = [chainer.dataset.to_device(self.device, x)
                           for x in src]
                    ys = [y.tolist()
                          for y in self.model.translate(src, self.max_length)]
                    hypotheses.extend(ys)

                bleu = bleu_score.corpus_bleu(
                    references, hypotheses,
                    smoothing_function=bleu_score.SmoothingFunction().method1)
                reporter.report({'bleu': bleu}, self.model)
        et = time.time()

        if self.comm is not None:
            # This evaluator is called via chainermn.MultiNodeEvaluator
            for i in range(0, self.comm.mpi_comm.size):
                print("BleuEvaluator::evaluate(): "
                      "took {:.3f} [s]".format(et - bt))
                sys.stdout.flush()
                self.comm.mpi_comm.Barrier()
        else:
            # This evaluator is called from a conventional
            # Chainer exntension
            print("BleuEvaluator(single)::evaluate(): "
                  "took {:.3f} [s]".format(et - bt))
            sys.stdout.flush()
        return observation
Ejemplo n.º 44
0
    def __call__(self, x, t):
        # 学習対象のモデルでまず推論を行う
        y = self.predictor(x)

        t = cuda.to_cpu(t)

        for idx, pix_val in enumerate(num_labels):
            t = np.where(t == pix_val, int(idx), t)

        #t = to_categorical(t)

        # 5クラス分類の誤差を計算
        # t = t.transpose(2, 0, 1)
        t = np.array(t, dtype='int32')
        #print('t:', t.shape)
        t = cuda.to_gpu(t)
        #print("y:", y.shape)

        # chainerではsoftmax_cross_entorpyのtとして正解ラベルのint型インデックス番号を与えている
        loss = F.softmax_cross_entropy(y, t)

        # 予測結果(0~1の連続値を持つグレースケール画像)を二値化し,
        # ChainerCVのeval_semantic_segmentation関数に正解ラベルと
        # 共に渡して各種スコアを計算
        #y, t = cuda.to_cpu(F.sigmoid(y).data), cuda.to_cpu(t)
        #y = np.asarray(y > 0.5, dtype=np.int32)
        #y, t = y[:, :, ...], t[:, :, ...]
        #evals = evaluations.eval_semantic_segmentation(y, t)

        # 学習中のログに出力
        reporter.report(
            {'loss': loss},
            #                'miou': evals['miou'],
            #                'pa': evals['pixel_accuracy']},
            self)
        return loss
Ejemplo n.º 45
0
    def __call__(self, x, t):
        h, t1 = self.calc(x)
        cls_loss = F.softmax_cross_entropy(h, t)
        reporter.report({'cls_loss': cls_loss}, self)

        loss = cls_loss
        # Enforce the transformation as orthogonal matrix
        trans_loss1 = self.trans_lam1 * calc_trans_loss(t1)
        reporter.report({'trans_loss': trans_loss1}, self)
        loss = loss + trans_loss1

        reporter.report({'loss': loss}, self)

        if self.compute_accuracy:
            acc = F.accuracy(h, t)
            reporter.report({'accuracy': acc}, self)
        return loss
Ejemplo n.º 46
0
    def __call__(self, x, t):
        h, t1, t2 = self.calc(x)
        loss = functions.mean_squared_error(h, t)
        reporter.report({'loss': loss}, self)

        # Enforce the transformation as orthogonal matrix
        if self.trans and self.trans_lam1 >= 0:
            trans_loss1 = self.trans_lam1 * calc_trans_loss(t1)
            reporter.report({'trans_loss1': trans_loss1}, self)
            loss = loss + trans_loss1
        if self.trans and self.trans_lam2 >= 0:
            trans_loss2 = self.trans_lam2 * calc_trans_loss(t2)
            reporter.report({'trans_loss2': trans_loss2}, self)
            loss = loss + trans_loss2
        reporter.report({'loss': loss}, self)

        return loss
Ejemplo n.º 47
0
    def __call__(self, trainer):
        """override method of extensions.Evaluator."""
        # set up a reporter
        reporter = reporter_module.Reporter()
        if hasattr(self, 'name'):
            prefix = self.name + '/'
        else:
            prefix = ''
        for name, target in six.iteritems(self._targets):
            reporter.add_observer(prefix + name, target)
            reporter.add_observers(prefix + name,
                                   target.namedlinks(skipself=True))

        with reporter:
            result, predictions, rankings = self.evaluate()
            #print(result)
            #print(predictions)
            self.save_predictions(os.path.join(trainer.out, 'pred.txt'),
                                  predictions)
            self.save_predictions(os.path.join(trainer.out, 'ranking.txt'),
                                  rankings)

        reporter_module.report(result)
        return result
Ejemplo n.º 48
0
    def report_scores(self, y, t):
        with chainer.no_backprop_mode():
            if self.nested_label:
                dice = mean_dice_coefficient(dice_coefficient(y[:, 0:2, ...], t[:, 0, ...]))
                for i in range(1, t.shape[1]):
                    dices = dice_coefficient(y[:, 2 * i:2 * (i + 1), ...], t[:, i, ...])
                    dice = F.concat((dice, mean_dice_coefficient(dices)), axis=0)
            else:
                dice = dice_coefficient(y, t)
            mean_dice = mean_dice_coefficient(dice)
            if self.nested_label:
                b, c, h, w, d = t.shape
                y = F.reshape(y, (b, 2, h * c, w, d))
                t = F.reshape(t, (b, h * c, w, d))
            accuracy = F.accuracy(y, t)

        reporter.report({
            'acc': accuracy,
            'mean_dc': mean_dice
        })
        xp = cuda.get_array_module(y)
        for i in range(len(dice)):
            if not xp.isnan(dice.data[i]):
                reporter.report({'dc_{}'.format(i): dice[i]})
Ejemplo n.º 49
0
    def hidden_layer(self, word_embed, section, tags, index):
        """
        + xs: word embeddings of sentences
        + ts: gold labels
        + section: sentence boundry
        + index: index of each word
        """
        xs = F.split_axis(word_embed, section, axis=0)
        _, __, ys = self.bi_word(None, None, xs)

        ysl = self.l(F.concat(ys, axis=0))
        ysl = F.split_axis(ysl, section, 0)

        inds = xp.argsort(xp.array([-x.shape[0] for x in ysl]).astype('i'))
        ysdes = permutate_list(ysl, inds, inv=False)

        batch_ts = tags[index[:, 0]]
        ts = F.split_axis(batch_ts, section, 0)

        tsdes = permutate_list(ts, inds, inv=False)
        ysdes = F.transpose_sequence(ysdes)
        tsdes = F.transpose_sequence(tsdes)

        loss = self.crf(ysdes, tsdes)
        reporter.report({'loss': loss}, self)

        _, predicts = self.crf.argmax(ysdes)
        predicts = F.transpose_sequence(predicts)
        predicts = permutate_list(predicts, inds, inv=True)
        concat_predicts = F.concat(predicts, axis=0)

        correct = self.xp.sum(batch_ts == concat_predicts.data)
        accuracy = correct * 1.0 / batch_ts.shape[0]
        reporter.report({'accuracy': accuracy}, self)

        return accuracy, loss, concat_predicts, ys
Ejemplo n.º 50
0
    def __call__(self, *args, **kwargs):

        if isinstance(self.label_key, int):
            if not (-len(args) <= self.label_key < len(args)):
                msg = 'Label key %d is out of bounds' % self.label_key
                raise ValueError(msg)
            t = args[self.label_key]
            if self.label_key == -1:
                args = args[:-1]
            else:
                args = args[:self.label_key] + args[self.label_key + 1:]
        elif isinstance(self.label_key, str):
            if self.label_key not in kwargs:
                msg = 'Label key "%s" is not found' % self.label_key
                raise ValueError(msg)
            t = kwargs[self.label_key]
            del kwargs[self.label_key]

        self.ah = None
        self.y = None
        self.attention = None
        self.loss = None
        self.accuracy = None
        self.ah, self.y, self.attention = self.predictor(*args, **kwargs)
        if not chainer.config.train:
            self.loss = self.lossfun(self.y, t)
        else:
            att_loss = self.lossfun(self.ah, t)
            per_loss = self.lossfun(self.y, t)
            self.loss = att_loss + per_loss

        reporter.report({'loss': self.loss}, self)
        if self.compute_accuracy:
            self.accuracy = self.accfun(self.y, t)
            reporter.report({'accuracy': self.accuracy}, self)
        return self.loss
Ejemplo n.º 51
0
    def __call__(self, loc, val, y, train=True):
        bs = val.data.shape[0]
        ret = self.forward(loc, val, y, train=train)
        pred, kld0, kld1, kldg, kldi, hypg, hypi = ret

        # Compute MSE loss
        mse = F.mean_squared_error(pred, y)
        rmse = F.sqrt(mse)  # Only used for reporting

        # Now compute the total KLD loss
        kldt = kld0 * self.lambda0 + kld1 * self.lambda1
        kldt += kldg + kldi + hypg + hypi

        # Total loss is MSE plus regularization losses
        loss = mse + kldt * (1.0 / self.total_nobs)

        # Log the errors
        logs = {'loss': loss, 'rmse': rmse, 'kld0': kld0, 'kld1': kld1,
                'kldg': kldg, 'kldi': kldi, 'hypg': hypg, 'hypi': hypi,
                'hypglv': F.sum(self.hyper_feat_lv_vec.b),
                'hypilv': F.sum(self.hyper_feat_delta_lv.b),
                'kldt': kldt, 'bias': F.sum(self.bias_mu.b)}
        reporter.report(logs, self)
        return loss
Ejemplo n.º 52
0
    def forward(self, xs1, xs2, xs3, ys, train=True):
        with chainer.using_config('debug', self.debug):
            # initialization
            batch_size = len(ys)
            direction = F.reshape(F.concat(ys, axis=0), (batch_size, 1))
            label = F.concat(self.xp.array(self.xp.array(ys, self.xp.int32) < 0., self.xp.int32),  axis=0)

            # calculate ranking score each pair
            f1 = self.encoder(xs1, xs2)
            f2 = self.encoder(xs1, xs3)

            # reflect direction of higher or lower ranking
            ps = (f1 - f2) * direction
            x = F.concat([f1, f2, ps], axis=1)

            loss = F.sum(F.relu(1 - ps), axis=0)[0]
            accuracy = F.accuracy(F.concat([f1, f2], axis=1), label)

            if train:
                reporter.report({'loss': loss}, self)
                reporter.report({'accuracy': accuracy}, self)
                return loss
            else:
                return loss, accuracy
Ejemplo n.º 53
0
    def __call__(self, x_STF, y_STF):
        """
        # Param
        - X_STF (Variable: (S, T, F))
        - y_STF (Variable: (S, T, F))
        S: samples
        T: time_steps
        F: features

        # Return
        - loss (Variable: (1, ))
        """
        seq_len = x_STF.shape[0]

        # add losses
        loss = 0
        for t in range(seq_len):
            pred = self.predictor(x_STF[t].reshape(1, -1, 1))
            obs = y_STF[t]
            loss += self.lossfun(pred, obs)
        loss /= seq_len
        reporter.report({'loss': loss}, self)

        return loss
Ejemplo n.º 54
0
    def __call__(self, trainer=None):
        """Executes the evaluator extension.

        Unlike usual extensions, this extension can be executed without passing
        a trainer object. This extension reports the performance on validation
        dataset using the :func:`~chainer.report` function. Thus, users can use
        this extension independently from any trainer by manually configuring
        a :class:`~chainer.Reporter` object.

        Args:
            trainer (~chainer.training.Trainer): Trainer object that invokes
                this extension. It can be omitted in case of calling this
                extension manually.

        Returns:
            dict: Result dictionary that contains mean statistics of values
            reported by the evaluation function.

        """
        # set up a reporter
        reporter = reporter_module.Reporter()
        if self.name is not None:
            prefix = self.name + '/'
        else:
            prefix = ''
        for name, target in six.iteritems(self._targets):
            reporter.add_observer(prefix + name, target)
            reporter.add_observers(prefix + name,
                                   target.namedlinks(skipself=True))

        with reporter:
            with configuration.using_config('train', False):
                result = self.evaluate()

        reporter_module.report(result)
        return result
    def update_core(self):
        batch = self._iterators['main'].next()
        in_arrays = self.converter(batch, self.device)
        x_data = in_arrays

        batchsize = x_data.shape[0]
        z = x_data

        y_gen, x_gen = self.gen.sub(z)

        loss_gen = F.mean_squared_error(x_gen, y_gen)
        loss = loss_gen / batchsize

        for optimizer in self._optimizers.values():
            optimizer.target.cleargrads()

        # compute gradients all at once
        loss.backward()

        for optimizer in self._optimizers.values():
            optimizer.update()

        # loss will be summaried and compute_mean() per epoch
        reporter.report({'loss': loss})
Ejemplo n.º 56
0
    def update_core(self):
        batch = self.get_iterator("main").next()
        batchsize = len(batch)

        # Train the discriminator
        x_real = self.discriminator.wrap_array(batch)
        y_real = self.discriminator(x_real, self.stage, self.alpha)
        gradient = grad([y_real], [x_real], enable_double_backprop=True)[0]
        gradient_norm = sum(batch_l2_norm_squared(gradient)) / batchsize
        loss_grad = self.gamma * gradient_norm / 2
        z = self.generator.generate_latent(batchsize)
        mix_z = self.generator.generate_latent(
            batchsize) if self.mixing > random() else None
        x_fake = self.generator(z, self.stage, self.alpha, mix_z)
        y_fake = self.discriminator(x_fake, self.stage, self.alpha)
        loss_dis = (
            (sum((y_real - 1)**2) + sum(y_fake**2)) / 2 if self.lsgan else
            (sum(softplus(-y_real)) + sum(softplus(y_fake)))) / batchsize
        loss_dis += loss_grad
        x_fake.unchain_backward()
        self.discriminator.cleargrads()
        loss_dis.backward()
        self.discriminator_optimizer.update()

        # Train the generator
        z = self.generator.generate_latent(batchsize)
        mix_z = self.generator.generate_latent(
            batchsize) if self.mixing > random() else None
        x_fake = self.generator(z, self.stage, self.alpha, mix_z)
        y_fake = self.discriminator(x_fake, self.stage, self.alpha)
        loss_gen = (sum((y_fake - 1)**2) /
                    2 if self.lsgan else sum(softplus(-y_fake))) / batchsize
        self.generator.cleargrads()
        loss_gen.backward()
        self.mapper_optimizer.update()
        self.generator_optimizer.update()
        for raw, averaged in zip(self.generator.params(),
                                 self.averaged_generator.params()):
            averaged.copydata((1 - self.decay) * raw + self.decay * averaged)

        report({"alpha": self.alpha})
        report({"loss (gen)": loss_gen})
        report({"loss (dis)": loss_dis})
        report({"loss (grad)": loss_grad})
        self.alpha = min(1.0, self.alpha + self.delta)
Ejemplo n.º 57
0
    def __call__(self, x, x_length, ns, ns_length, label):
        """

        Args:
            x (numpy.ndarray or cupy.ndarray): sequences of vocabulary indices
                in shape (batchsize, tokens)
            x_length (numpy.ndarray or cupy.ndarray): number of tokens in each
                batch index of ``x``
            ns (numpy.ndarray or cupy.ndarray): Negative samples.
                sequences of vocabulary indices in shape (batchsize,
                n_negative_samples, tokens)
            ns_length (numpy.ndarray or cupy.ndarray): number of tokens in each
                negative sample in shape ``(batchsize, n_negative_samples)``
            label: Ignored

        Returns:
            chainer.Variable:

        """
        z = self.sent_emb(x, x_length)
        p = self.pred_topic(z)
        # reconstructed sentence embedding r: (batchsize, feature size)
        r = F.matmul(p, self.T)

        # Embed negative sampling
        bs, n_ns, _ = ns.shape
        ns = ns.reshape(bs * n_ns, -1)
        ns_length = ns_length.astype(np.float32).reshape(-1, 1)
        n = F.sum(self.sent_emb.embed(ns), axis=1) / ns_length
        if self.sent_emb.fix_embedding:
            n.unchain_backward()
        n = F.reshape(n, (bs, n_ns, -1))

        # Calculate contrasive max-margin loss
        # neg: (batchsize, n_ns)
        neg = F.sum(F.broadcast_to(F.reshape(r, (bs, 1, -1)), n.shape) * n,
                    axis=-1)
        pos = F.sum(r * z, axis=-1)
        pos = F.broadcast_to(F.reshape(pos, (bs, 1)), neg.shape)
        mask = chainer.Variable(self.xp.zeros(neg.shape, dtype=p.dtype))
        loss_pred = F.sum(F.maximum(1. - pos + neg, mask))
        reporter.report({'loss_pred': loss_pred}, self)

        t_norm = F.normalize(self.T, axis=1)
        loss_reg = self._orthogonality_penalty * F.sqrt(
            F.sum(
                F.squared_difference(
                    F.matmul(t_norm, t_norm, transb=True),
                    self.xp.eye(self.T.shape[0], dtype=np.float32))))
        reporter.report({'orthogonality_penalty': loss_reg}, self)
        loss = loss_pred + loss_reg
        reporter.report({'loss': loss}, self)
        return loss
Ejemplo n.º 58
0
    def forward(self, x):
        q_anchor = self.encoder(x[..., 0])
        q_target = self.encoder(x[..., 1])
        q_negative = self.encoder(x[..., 2])
        z = q_anchor.sample(self.k)

        logq_anchor = q_anchor.log_prob(z)
        kl_target = logq_anchor - q_target.log_prob(z)
        kl_negative = logq_anchor - q_negative.log_prob(z)

        energy = F.mean(F.relu(self.bound + kl_target - kl_negative))
        loss = energy

        reporter.report({'loss': loss}, self)
        reporter.report({'kl_target': F.mean(kl_target)}, self)
        reporter.report({'kl_negative': F.mean(kl_negative)}, self)
        reporter.report({'bound': self.bound}, self)

        return loss
Ejemplo n.º 59
0
    def forward(self, x):
        accum_loss = 0.0
        result = collections.defaultdict(lambda: 0)
        # calculate each tree in batch ``x`` because we cannot process as batch
        for tree in x:
            loss, _ = self.traverse(tree, evaluate=result)
            accum_loss += loss

        reporter.report({'loss': accum_loss}, self)
        reporter.report({'total': result['total_node']}, self)
        reporter.report({'correct': result['correct_node']}, self)
        return accum_loss
Ejemplo n.º 60
0
    def update_core(self):
        batch = self._iterators['main'].next()
        #print(self._n)
        in_arrays_list = []
        for i in range(self._subdivisions):
            in_arrays_list.append(
                self.converter(batch[i::self._subdivisions], self.device))
            #in_arrays_list.append(self.converter(batch, self.device))
        optimizer = self._optimizers['main']
        loss_func = self.loss_func or optimizer.target
        loss_func.cleargrads()

        losses = []

        for i, in_arrays in enumerate(in_arrays_list):
            if isinstance(in_arrays, tuple):
                in_vars = list(variable.Variable(x) for x in in_arrays)
                loss = loss_func(*in_vars)
            elif isinstance(in_arrays, dict):
                in_vars = {
                    key: variable.Variable(x)
                    for key, x in six.iteritems(in_arrays)
                }
                loss = loss_func(in_vars)
            else:
                print(type(in_arrays))
            loss.backward()
            #loss = {k: cuda.to_cpu(v.data) for k, v in loss.items()} # for logging
            loss = cuda.to_cpu(loss.data)
            losses.append(loss)

        optimizer.update()
        # minibatch average
        if isinstance(loss, dict):
            avg_loss = {k: 0. for k in losses[0].keys()}
            for loss in losses:
                for k, v in loss.items():
                    avg_loss[k] += v
            #avg_loss = {k: v / float(self._batchsize) for k, v in avg_loss.items()}
            avg_loss = {k: v / float(len(losses)) for k, v in avg_loss.items()}
            #avg_loss = {k: v for k, v in avg_loss.items()}

            # report all the loss values
            for k, v in avg_loss.items():
                reporter.report({k: v}, loss_func)
            reporter.report({'loss': sum(list(avg_loss.values()))}, loss_func)
        else:
            avg_loss = 0.
            for loss in losses:
                avg_loss += loss
            #avg_loss /= float(self._batchsize)
            reporter.report({'loss': avg_loss}, loss_func)