Ejemplo n.º 1
0
def check_collective_communication(param, use_gpu):
    communicator = create_communicator(param, use_gpu)
    mpi_comm.barrier()

    model = ExampleModel(param.model_dtype)
    if use_gpu:
        model.to_gpu()
    check_bcast_data(communicator, model)
    check_allreduce_grad(communicator, model)
    check_allreduce_grad_empty(communicator, model)

    # Check allreduce debug mode
    model = ExampleModel()
    if use_gpu:
        model.to_gpu()

    # The example model includes some nan parameters so the debug mode
    # must detect it.
    chainer.set_debug(True)
    with pytest.raises(ValueError, match=r'.* diverged .*'):
        check_allreduce_grad(communicator, model)
    chainer.set_debug(False)

    # barrier() requires before destructor of PureNcclCommunicator
    # because communication may not be finished.
    mpi_comm.barrier()
    destroy_communicator(communicator)
def main(args):
    chainer.set_debug(True)
    # Initialize the model to train
    model = models.archs[args.arch]()
    if args.finetune and hasattr(model, 'finetuned_model_path'):
        utils.finetuning.load_param(model.finetuned_model_path, model)
    if args.initmodel:
        print('Load model from', args.initmodel)
        chainer.serializers.load_npz(args.initmodel, model)

    outputdir = os.path.join('.', args.out, args.arch)
    if args.initmodel:
        outputdir = os.path.dirname(args.initmodel)
    if not os.path.exists(outputdir):
        os.makedirs(outputdir)

    for layer in args.layer:
        outputpath = os.path.join(
            outputdir, "{0}_distance_{1}.npy".format(layer, args.dis))
        similar_path = os.path.join(
            outputdir, "{0}_similar_{1}.tsv".format(layer, args.dis))
        best_path = os.path.join(
            outputdir, "{0}_best{1}_{2}.tsv".format(layer, args.best,
                                                    args.dis))

        W, b = model[layer].W.data, model[layer].b.data
        if args.withbias:
            params = np.hstack((W.reshape(
                (W.shape[0], -1)), b.reshape((b.shape[0], -1))))
        else:
            params = W.reshape((W.shape[0], -1))

        print("{0}\tW: {1}\tb: {2}".format(layer, W.shape, b.shape))

        N = params.shape[0]
        #d = np.zeros(N**2).reshape((N, N))
        '''for i, p in enumerate(tqdm(itertools.product(params, repeat=2))):
            w1, w2 = p
            if args.dis == 'cos':
                d[i] = dis.cosine(w1, w2)
            elif args.dis == 'euclidean':
                d[i] = dis.euclidean(w1, w2)'''
        if args.dis == 'cos':
            d = cos_distance_matrix(params)
        elif args.dis == 'euclidean':
            d = euclidean_distance_matrix(params)

        #d = d.reshape((N, N))
        np.savetxt(outputpath, d, delimiter=",")

        d_list = [(int(x[0]), int(x[1]), d[x[0], x[1]])
                  for x in itertools.combinations(six.moves.range(N), 2)]

        if args.threshold:
            similar_list = filter((lambda x: x[2] < args.threshold), d_list)
            save_list(similar_path, similar_list)

        if args.best:
            order_by_disance_ascending = sorted(d_list, key=lambda x: x[2])
            save_list(best_path, order_by_disance_ascending[0:args.best])
Ejemplo n.º 3
0
 def setUp(self):
     self.original_debug = chainer.is_debug()
     chainer.set_debug(True)
     self.one = numpy.array(1, numpy.float32)
     self.f = chainer.FunctionNode()
     self.return_value = tuple(None if x is None else chainer.Variable(x)
                               for x in self.return_data)
Ejemplo n.º 4
0
 def setUp(self):
     self.original_debug = chainer.is_debug()
     chainer.set_debug(True)
     self.one = numpy.array(1, numpy.float32)
     self.f = chainer.FunctionNode()
     self.return_value = tuple(None if x is None else chainer.Variable(x)
                               for x in self.return_data)
Ejemplo n.º 5
0
def check_collective_communication(param, use_gpu):
    communicator = create_communicator(param, use_gpu)
    mpi_comm.barrier()

    model = ExampleModel(param.model_dtype)
    if use_gpu:
        model.to_gpu()
    check_bcast_data(communicator, model)
    check_allreduce_grad(communicator, model)
    check_allreduce_grad_empty(communicator, model)

    # Check allreduce debug mode
    model = ExampleModel()
    if use_gpu:
        model.to_gpu()

    # The example model includes some nan parameters so the debug mode
    # must detect it.
    chainer.set_debug(True)
    with pytest.raises(ValueError, match=r'.* diverged .*'):
        check_allreduce_grad(communicator, model)
    chainer.set_debug(False)

    # barrier() requires before destructor of PureNcclCommunicator
    # because communication may not be finished.
    mpi_comm.barrier()
    destroy_communicator(communicator)
 def setUp(self):
     chainer.set_debug(True)
     np.random.seed(0)
     dataset = VOC('train')
     img, im_info, bbox = dataset[1]
     self.x = Variable(img[None, ...])
     self.im_info = Variable(im_info[None, ...])
     self.gt_boxes = Variable(bbox[None, ...])
 def setUp(self):
     chainer.set_debug(True)
     np.random.seed(0)
     dataset = VOC('train')
     img, im_info, bbox = dataset[1]
     self.x = Variable(img[None, ...])
     self.im_info = Variable(im_info[None, ...])
     self.gt_boxes = Variable(bbox[None, ...])
def main(args):
    chainer.set_debug(True)
    # Initialize the model to train
    model = models.archs[args.arch]()
    if args.finetune and hasattr(model, 'finetuned_model_path'):
        utils.finetuning.load_param(model.finetuned_model_path, model)
    if args.initmodel:
        print('Load model from', args.initmodel)
        chainer.serializers.load_npz(args.initmodel, model)

    outputdir = os.path.join('.', args.out, args.arch)
    if args.initmodel:
        outputdir = os.path.dirname(args.initmodel)
    if not os.path.exists(outputdir):
        os.makedirs(outputdir)

    for layer in args.layer:
        outputpath = os.path.join(outputdir,
            "{0}_distance_{1}.npy".format(layer, args.dis))
        similar_path = os.path.join(outputdir,
            "{0}_similar_{1}.tsv".format(layer, args.dis))
        best_path = os.path.join(outputdir,
            "{0}_best{1}_{2}.tsv".format(layer, args.best, args.dis))

        W, b = model[layer].W.data, model[layer].b.data
        if args.withbias:
            params = np.hstack((W.reshape((W.shape[0], -1)), b.reshape((b.shape[0], -1))))
        else:
            params = W.reshape((W.shape[0], -1))

        print("{0}\tW: {1}\tb: {2}".format(layer, W.shape, b.shape))

        N = params.shape[0]
        #d = np.zeros(N**2).reshape((N, N))
        '''for i, p in enumerate(tqdm(itertools.product(params, repeat=2))):
            w1, w2 = p
            if args.dis == 'cos':
                d[i] = dis.cosine(w1, w2)
            elif args.dis == 'euclidean':
                d[i] = dis.euclidean(w1, w2)'''
        if args.dis == 'cos':
            d = cos_distance_matrix(params)
        elif args.dis == 'euclidean':
            d = euclidean_distance_matrix(params)

        #d = d.reshape((N, N))
        np.savetxt(outputpath, d, delimiter=",")

        d_list = [(int(x[0]), int(x[1]), d[x[0],x[1]]) for x in
            itertools.combinations(six.moves.range(N), 2)]

        if args.threshold:
            similar_list = filter((lambda x: x[2] < args.threshold), d_list)
            save_list(similar_path, similar_list)

        if args.best:
            order_by_disance_ascending = sorted(d_list, key=lambda x: x[2])
            save_list(best_path, order_by_disance_ascending[0:args.best])
Ejemplo n.º 9
0
 def setUp(self):
     chainer.set_debug(True)
     np.random.seed(0)
     x = np.random.randint(0, 255, size=(224, 224, 3)).astype(np.float)
     x -= np.array([[[102.9801, 115.9465, 122.7717]]])
     self.x = np.expand_dims(x, 0).transpose(0, 3, 1, 2).astype(np.float32)
     self.im_info = np.array([[224, 224, 1.6]])
     self.gt_boxes = np.array([[10, 10, 60, 200, 0], [50, 100, 210, 210, 1],
                               [160, 40, 200, 70, 2]])
Ejemplo n.º 10
0
def main(args):
    chainer.set_debug(True)
    # Initialize the model to train
    model = models.archs[args.arch]()
    if hasattr(model, 'finetuned_model_path'):
        finetuning.load_param(model.finetuned_model_path, model)
    if args.initmodel:
        print('Load model from', args.initmodel)
        chainer.serializers.load_npz(args.initmodel, model)

    layer = model[args.layer]

    outputdir = os.path.join('.', args.out, args.arch)
    outputpath = os.path.join(outputdir, args.layer + '_distance.npy')
    similar_path = os.path.join(outputdir, args.layer + '_similar.tsv')
    best_path = os.path.join(outputdir, args.layer + '_best.tsv')
    if not os.path.exists(outputdir):
        os.makedirs(outputdir)

    W = layer.W.data
    b = layer.b.data

    if args.withbias:
        params = np.hstack((W.reshape(
            (W.shape[0], -1)), b.reshape((b.shape[0], -1))))
    else:
        params = W.reshape((W.shape[0], -1))

    print('W', W.shape)
    print('b', b.shape)

    N = params.shape[0]
    d = np.zeros(N**2)
    for i, p in enumerate(itertools.product(params, repeat=2)):
        w1, w2 = p
        if args.dis == 'cos':
            d[i] = dis.cosine(w1, w2)
        elif args.dis == 'euclidean':
            d[i] = dis.euclidean(w1, w2)

    d = d.reshape((N, N))
    np.savetxt(outputpath, d, delimiter=",")

    d_list = [(int(x[0]), int(x[1]), d[x[0], x[1]])
              for x in itertools.combinations_with_replacement(
                  six.moves.range(N), 2)]
    d_list = filter((lambda x: x[0] != x[1]), d_list)

    if args.threshold:
        similar_list = filter((lambda x: x[2] < args.threshold), d_list)
        save_list(similar_path, similar_list)

    if args.best:
        order_by_disance_ascending = sorted(d_list, key=lambda x: x[2])
        save_list(best_path, order_by_disance_ascending[0:args.best])

    return d
Ejemplo n.º 11
0
def main():
    parser = argparse.ArgumentParser(description='Dynamic SGM Net')
    parser.add_argument('--gpu', '-g', type=int, default=-1, help='GPU ID (negative value indicates CPU)')
    parser.add_argument('--out', '-o', default='output', help='Directory to output the result')
    parser.add_argument('--vol', '-v', type=str2bool, default=False, help='Save cost volume data')
    args = parser.parse_args()
    outdir = args.out

    print('cuda:' + str(chainer.cuda.available))
    print('cudnn:' + str(chainer.cuda.cudnn_enabled))
    print('GPU: {}'.format(args.gpu))
    print('outdir: ', outdir)
    print('')

    chainer.config.train = False
    chainer.set_debug(False)
    chainer.using_config('use_cudnn', 'auto')

    # Load MC-CNN pre-trained models from
    # kitti_fast, kitti_slow, kitti2015_fast, kitti2015_slow, mb_fast, mb_slow
    model_kitti = mcnet.MCCNN_pretrained('mccnn/kitti_fast')
    model_mb = mcnet.MCCNN_pretrained('mccnn/mb_slow')

    if args.gpu >= 0:
        # Make a specified GPU current
        chainer.cuda.get_device_from_id(args.gpu).use()
        model_kitti.to_gpu()  # Copy the model to the GPU
        model_mb.to_gpu()  # Copy the model to the GPU

    samples = []
    sattellite_flag = 9999
    #samples.append((model_mb, 'mb2014', 145))
    #samples.append((model_kitti, 'kitti', 70))
    samples.append((model_mb, 'satellite', sattellite_flag))

    for sample in samples:
        model, target, ndisp = sample
        print('Processing ' + target)
        im0 = load_image(os.path.join('input', target, 'im0.png')).astype(np.float32)
        im1 = load_image(os.path.join('input', target, 'im1.png')).astype(np.float32)
        inputs = (im0, im1, np.array([ndisp]))

        batch = chainer.dataset.concat_examples([inputs], args.gpu)
        with chainer.no_backprop_mode():

            vol = model(*batch)[0].array
            if target == 'satellite':
                dmin, dmax = load_ndisp(os.path.join('input', target, 'ndisp.txt'))
                ndisp = dmax-dmin
            disp = vol.argmin(0).astype(np.float32) * (255 / ndisp)

            os.makedirs(os.path.join(args.out, target), exist_ok=True)
            cv2.imwrite(os.path.join(args.out, target, 'disp0.png'), chainer.cuda.to_cpu(disp))

            if args.vol:
                vol.tofile(os.path.join(args.out, target, 'im0.bin'))
Ejemplo n.º 12
0
 def setUp(self):
     chainer.set_debug(True)
     np.random.seed(0)
     x = np.random.randint(0, 255, size=(224, 224, 3)).astype(np.float)
     x -= np.array([[[102.9801, 115.9465, 122.7717]]])
     self.x = np.expand_dims(x, 0).transpose(0, 3, 1, 2).astype(np.float32)
     self.im_info = np.array([[224, 224, 1.6]])
     self.gt_boxes = np.array([
         [10, 10, 60, 200, 0],
         [50, 100, 210, 210, 1],
         [160, 40, 200, 70, 2]
     ])
Ejemplo n.º 13
0
def main():

    chainer.set_debug(True)
    parser = get_parser()
    args = parser.parse_args()

    reset_seed(args.seed)

    #load vocabulary
    source0_ids = load_vocabulary(args.SOURCE_VOCAB0)
    source1_ids = load_vocabulary(args.SOURCE_VOCAB1)
    target_ids = load_vocabulary(args.TARGET_VOCAB)

    corpus = make_data_tuple(source0=(source0_ids, args.SOURCE0),
                             source1=(source1_ids, args.SOURCE1),
                             target=(target_ids, args.TARGET))

    source0_words = {i: w for w, i in source0_ids.items()}
    source1_words = {i: w for w, i in source1_ids.items()}
    target_words = {i: w for w, i in target_ids.items()}

    # Setup model
    model = Seq2seq(args.layer, len(source0_ids), len(source1_ids),
                    len(target_ids), args.unit)
    if args.resume:
        # Resume from a snapshot
        print("Load Model")
        chainer.serializers.load_npz(args.resume, model)

    if args.gpu >= 0:
        chainer.backends.cuda.get_device(args.gpu).use()
        model.to_gpu(args.gpu)

    for i in range(len(corpus)):
        source0, source1, target = corpus[i]
        result = model.translate([model.xp.array(source0)],
                                 [model.xp.array(source1)])[0]
        source0_sentence = ' '.join([source0_words[x] for x in source0])
        source1_sentence = ' '.join([source1_words[x] for x in source1])
        target_sentence = ' '.join([target_words[y] for y in target])
        result_sentence = ' '.join([target_words[y] for y in result])
        print('# source0 : ' + source0_sentence)
        print('# source1 : ' + source1_sentence)
        print('# result : ' + result_sentence)
        print('# expect : ' + target_sentence)
        print("")
Ejemplo n.º 14
0
def check_collective_communication(param, use_gpu, use_chx):
    communicator = create_communicator(param, use_gpu, use_chx)
    mpi_comm.barrier()

    model = ExampleModel(param.model_dtype)
    if use_gpu:
        device = chainermn.testing.get_device(communicator.intra_rank, use_chx)
    else:
        device = chainermn.testing.get_device(use_chainerx=use_chx)

    model.to_device(device)
    check_bcast_data(communicator, model)

    model = ExampleModel(param.model_dtype)
    model.to_device(device)
    check_multi_node_mean_grad(communicator, model)

    model = ExampleModel(param.model_dtype)
    model.to_device(device)
    check_multi_node_mean_grad_empty(communicator, model)

    model = ExampleModel(param.model_dtype)
    model.to_device(device)
    check_multi_node_mean_grad_empty_half(communicator, model)

    # Check allreduce debug mode
    model = ExampleModel()
    model.to_device(device)
    # The example model includes some nan parameters so the debug mode
    # must detect it.
    chainer.set_debug(True)
    with pytest.raises(ValueError, match=r'.* diverged .*'):
        check_multi_node_mean_grad(communicator, model)
    chainer.set_debug(False)

    # barrier() requires before destructor of PureNcclCommunicator
    # because communication may not be finished.
    mpi_comm.barrier()
    communicator.finalize()
Ejemplo n.º 15
0
 def setUp(self):
     self.original_debug = chainer.is_debug()
     chainer.set_debug(True)
     self.one = numpy.array([1], numpy.float32)
     self.f = chainer.Function()
Ejemplo n.º 16
0
    def setUp(self):
        self.default_debug = chainer.is_debug()
        chainer.set_debug(True)

        self.a_data = numpy.random.uniform(-1, 1, (4, 3, 2))
        self.b_data = numpy.random.uniform(-1, 1, (2, 2))
Ejemplo n.º 17
0
 def tearDown(self):
     chainer.set_debug(False)
Ejemplo n.º 18
0
 def tearDown(self):
     chainer.set_debug(False)
def main(args):
    chainer.set_debug(True)
    # Initialize the model to train
    model = models.archs[args.arch]()
    if args.finetune and hasattr(model, 'finetuned_model_path'):
        utils.finetuning.load_param(model.finetuned_model_path, model, args.ignore)
    if args.initmodel:
        print('Load model from', args.initmodel)
        chainer.serializers.load_npz(args.initmodel, model)
    if args.gpu >= 0:
        chainer.cuda.get_device(args.gpu).use()  # Make the GPU current
        #cuda.cudnn_enabled = False
        model.to_gpu()

    nowt = datetime.datetime.today()
    outputdir = os.path.join(args.out, args.arch, 'extract')
    if args.initmodel is not None:
        outputdir = os.path.dirname(args.initmodel)
    # Load the datasets and mean file
    mean = None
    if hasattr(model, 'mean_value'):
        mean = makeMeanImage(model.mean_value)
    else:
        mean = np.load(args.mean)
    assert mean is not None

    val = ppds.PreprocessedDataset(args.val, args.root, mean, model.insize, False)
    val_iter = chainer.iterators.SerialIterator(
            val, args.val_batchsize, repeat=False, shuffle=False)

    # Set up an optimizer
    optimizer = chainer.optimizers.MomentumSGD()
    optimizer.setup(model)

    # Set up a trainer
    updater = training.StandardUpdater(val_iter, optimizer, device=args.gpu)
    trainer = training.Trainer(updater, (1, 'epoch'), outputdir)

    #val_interval = (10 if args.test else int(len(train) / args.batchsize)), 'iteration'
    val_interval = (1, 'iteration')
    #snapshot_interval = (10, 'iteration') if args.test else (2, 'epoch')
    #log_interval = (10, 'iteration')

    # Copy the chain with shared parameters to flip 'train' flag only in test
    eval_model = model.copy()
    eval_model.train = False
    val_extractor = utils.Extractor(val_iter, eval_model, device=args.gpu)
    val_extractor.layer_rank = eval_model.layer_rank[args.layer]
    val_extractor.layer_name = args.layer
    val_extractor.operation = args.operation
    val_extractor.save_features = args.savefeatures
    val_extractor.top = args.top
    if 'googlenet' in args.arch:
        val_extractor.lastname = 'validation/main/loss3'
    trainer.extend(val_extractor, trigger=val_interval)
    #trainer.extend(extensions.PrintReport([
    #    'epoch', 'iteration', 'main/loss', 'validation/main/loss',
    #    'main/accuracy', 'validation/main/accuracy',
    #]), trigger=log_interval)
    #trainer.extend(extensions.ProgressBar(update_interval=10))

    if args.resume:
        chainer.serializers.load_npz(args.resume, trainer)

    results = val_extractor(trainer)
    results['outputdir'] = outputdir

    return results
def main(args):
    chainer.set_debug(True)
    # Initialize the model to train
    model = models.archs[args.arch]()
    if args.finetune and hasattr(model, 'finetuned_model_path'):
        utils.finetuning.load_param(model.finetuned_model_path, model, args.ignore)
    if args.initmodel:
        print('Load model from', args.initmodel)
        chainer.serializers.load_npz(args.initmodel, model)
    if args.gpu >= 0:
        chainer.cuda.get_device(args.gpu).use()  # Make the GPU current
        #if args.test:
        #cuda.cudnn_enabled = False
        model.to_gpu()

    nowt = datetime.datetime.today()
    outputdir = os.path.join(args.out, args.arch, 'extract')
    if args.initmodel is not None:
        outputdir = os.path.dirname(args.initmodel)
        #if args.indices is None:
        #    args.indices = os.path.join(outputdir, 'features', 'top_' + args.layer + '.txt')
    # Load the datasets and mean file
    mean = None
    if hasattr(model, 'mean_value'):
        mean = makeMeanImage(model.mean_value)
    else:
        mean = np.load(args.mean)
    assert mean is not None

    #if args.indices is None:
    #    args.indices = os.path.join(args.out, args.arch, 'extract', 'top_' + args.layer + '.txt')

    #top_path = os.path.join(args.out, args.arch, 'extract', 'top_' + args.layer + '.txt')
    #train = ppds.PreprocessedDataset(args.train, args.root, mean, model.insize)
    val = ppds.PreprocessedDataset(args.val, args.root, mean, model.insize, False)
    # These iterators load the images with subprocesses running in parallel to
    # the training/validation.
    #train_iter = chainer.iterators.MultiprocessIterator(
    #    train, args.batchsize, shuffle=False, n_processes=args.loaderjob)
    #val_iter = chainer.iterators.MultiprocessIterator(
    #    val, args.val_batchsize, repeat=False, shuffle=False, n_processes=args.loaderjob)
    val_iter = chainer.iterators.SerialIterator(
            val, args.val_batchsize, repeat=False, shuffle=False)

    # Set up an optimizer
    optimizer = chainer.optimizers.MomentumSGD()
    optimizer.setup(model)

    # Set up a trainer
    updater = training.StandardUpdater(val_iter, optimizer, device=args.gpu)
    trainer = training.Trainer(updater, (1, 'epoch'), outputdir)

    #val_interval = (10 if args.test else int(len(train) / args.batchsize)), 'iteration'
    val_interval = (1, 'iteration')
    #snapshot_interval = (10, 'iteration') if args.test else (2, 'epoch')
    log_interval = (10, 'iteration')

    # Copy the chain with shared parameters to flip 'train' flag only in test
    eval_model = model.copy()
    eval_model.train = False
    val_acquirer = utils.SaliencyMapAcquirer(val_iter, eval_model, device=args.gpu)
    val_acquirer.mean = mean
    val_acquirer.layer_rank = eval_model.layer_rank[args.layer]
    val_acquirer.layer_name = args.layer
    val_acquirer.operation = args.operation
    val_acquirer.fixed_RMS = args.rms
    #val_acquirer.top = args.top
    val_acquirer.target = args.target
    val_acquirer.n_features = model.labelsize
    if 'googlenet' in args.arch:
        val_acquirer.lastname = 'validation/main/loss3'
    trainer.extend(val_acquirer, trigger=val_interval)
    #trainer.extend(extensions.dump_graph('main/loss'))
    #trainer.extend(extensions.snapshot(), trigger=snapshot_interval)
    #trainer.extend(extensions.snapshot_object(
    #    model, 'model_iter_{.updater.iteration}'), trigger=snapshot_interval)
    # Be careful to pass the interval directly to LogReport
    # (it determines when to emit log rather than when to read observations)
    #trainer.extend(extensions.LogReport(trigger=log_interval))
    trainer.extend(extensions.PrintReport([
        'epoch', 'iteration', 'main/loss', 'validation/main/loss',
        'main/accuracy', 'validation/main/accuracy',
    ]), trigger=log_interval)
    trainer.extend(extensions.ProgressBar(update_interval=10))
    #trainer.extend(extensions.ExponentialShift('lr', args.gamma),
    #    trigger=(1, 'epoch'))

    if args.resume:
        chainer.serializers.load_npz(args.resume, trainer)

    #if not args.test:
    #    trainer.run()
    #    chainer.serializers.save_npz(outputdir + '/model', model)

    results = val_acquirer(trainer)
    results['outputdir'] = outputdir

    #if eval_model.layer_rank[args.layer] == 1:
    #    save_first_conv_filter(os.path.join(outputdir, args.layer),
    #    model[args.layer].W.data, cols = args.cols, pad = args.pad,
    #    scale = args.scale, gamma = args.gamma)

    #if args.test:
    #print(val_acquirer.confmat)
    #categories = utils.io.load_categories(args.categories)
    #confmat_csv_name = args.initmodel + '.csv'
    #confmat_fig_name = args.initmodel + '.eps'
    #utils.io.save_confmat_csv(confmat_csv_name, val_acquirer.confmat, categories)
    #utils.io.save_confmat_fig(confmat_fig_name, val_acquirer.confmat, categories,
    #                        mode="rate", saveFormat="eps")
    return results
Ejemplo n.º 21
0
def main(args):
    chainer.set_debug(True)
    # Initialize the model to train
    model = models.archs[args.arch]()
    if args.finetune and hasattr(model, 'finetuned_model_path'):
        finetuning.load_param(model.finetuned_model_path, model, args.ignore)
    if args.initmodel:
        print('Load model from', args.initmodel)
        chainer.serializers.load_npz(args.initmodel, model)
    if args.gpu >= 0:
        chainer.cuda.get_device(args.gpu).use()  # Make the GPU current
        #if args.test:
        #cuda.cudnn_enabled = False
        model.to_gpu()

    nowt = datetime.datetime.today()
    outputdir = args.out + '/' + args.arch + '/' + nowt.strftime(
        "%Y%m%d-%H%M") + '_bs' + str(args.batchsize)
    if args.test and args.initmodel is not None:
        outputdir = os.path.dirname(args.initmodel)
    # Load the datasets and mean file
    mean = None
    if hasattr(model, 'mean_value'):
        mean = makeMeanImage(model.mean_value)
    else:
        mean = np.load(args.mean)
    assert mean is not None

    train = ppds.PreprocessedDataset(args.train, args.root, mean, model.insize)
    val = ppds.PreprocessedDataset(args.val, args.root, mean, model.insize,
                                   False)
    # These iterators load the images with subprocesses running in parallel to
    # the training/validation.
    train_iter = chainer.iterators.MultiprocessIterator(
        train, args.batchsize, shuffle=False, n_processes=args.loaderjob)
    #val_iter = chainer.iterators.MultiprocessIterator(
    #    val, args.val_batchsize, repeat=False, shuffle=False, n_processes=args.loaderjob)
    val_iter = chainer.iterators.SerialIterator(val,
                                                args.val_batchsize,
                                                repeat=False,
                                                shuffle=False)

    # Set up an optimizer
    optimizer = chainer.optimizers.MomentumSGD(lr=args.baselr, momentum=0.9)
    optimizer.setup(model)

    # Set up a trainer
    updater = training.StandardUpdater(train_iter, optimizer, device=args.gpu)
    trainer = training.Trainer(updater, (args.epoch, 'epoch'), outputdir)

    #val_interval = (10 if args.test else int(len(train) / args.batchsize)), 'iteration'
    val_interval = (10, 'iteration') if args.test else (1, 'epoch')
    snapshot_interval = (10, 'iteration') if args.test else (2, 'epoch')
    log_interval = (10 if args.test else 200), 'iteration'

    # Copy the chain with shared parameters to flip 'train' flag only in test
    eval_model = model.copy()
    eval_model.train = False
    if not args.test:
        val_evaluator = extensions.Evaluator(val_iter,
                                             eval_model,
                                             device=args.gpu)
    else:
        val_evaluator = evaluator_plus.EvaluatorPlus(val_iter,
                                                     eval_model,
                                                     device=args.gpu)
        if 'googlenet' in args.arch:
            val_evaluator.lastname = 'validation/main/loss3'
    trainer.extend(val_evaluator, trigger=val_interval)
    trainer.extend(extensions.dump_graph('main/loss'))
    trainer.extend(extensions.snapshot(), trigger=snapshot_interval)
    trainer.extend(extensions.snapshot_object(
        model, 'model_iter_{.updater.iteration}'),
                   trigger=snapshot_interval)
    # Be careful to pass the interval directly to LogReport
    # (it determines when to emit log rather than when to read observations)
    trainer.extend(extensions.LogReport(trigger=log_interval))
    trainer.extend(extensions.PrintReport([
        'epoch',
        'iteration',
        'main/loss',
        'validation/main/loss',
        'main/accuracy',
        'validation/main/accuracy',
    ]),
                   trigger=log_interval)
    trainer.extend(extensions.ProgressBar(update_interval=10))
    trainer.extend(extensions.ExponentialShift('lr', args.gamma),
                   trigger=(1, 'epoch'))

    if args.resume:
        chainer.serializers.load_npz(args.resume, trainer)

    if not args.test:
        trainer.run()
        chainer.serializers.save_npz(outputdir + '/model', model)

    results = val_evaluator(trainer)
    results['outputdir'] = outputdir

    if args.test:
        print(val_evaluator.confmat)
        categories = dataio.load_categories(args.categories)
        confmat_csv_name = args.initmodel + '.csv'
        confmat_fig_name = args.initmodel + '.eps'
        dataio.save_confmat_csv(confmat_csv_name, val_evaluator.confmat,
                                categories)
        dataio.save_confmat_fig(confmat_fig_name,
                                val_evaluator.confmat,
                                categories,
                                mode="rate",
                                saveFormat="eps")
    return results
Ejemplo n.º 22
0
    def setUp(self):
        self.default_debug = chainer.is_debug()
        chainer.set_debug(True)

        self.x_data = numpy.random.uniform(-1, 1, (4, 3, 2))
Ejemplo n.º 23
0
 def setUp(self):
     self.x = numpy.arange(10).reshape((2, 5)).astype('f')
     self.ind = numpy.array(self.indices, 'i')
     self.debug = chainer.is_debug()
     chainer.set_debug(True)
Ejemplo n.º 24
0
from multi_task.multi_task_300 import Multi_task_300
from multi_task.multi_task_512 import Multi_task_512
from datasets.multi_task_dataset_voc import Multi_task_VOC

from config.datasets import voc_experiments

from datasets.transforms import Transform
import chainer.functions as F

from multi_task.evaluator.multi_task_evaluator import MultitaskEvaluator

import numpy as np

from multi_task.segmentation.loss.losses import MultiLoss

chainer.set_debug(False)


class MultiboxTrainChain(chainer.Chain):
    def __init__(self,
                 model,
                 gpu=False,
                 alpha=1,
                 k=3,
                 use_multi_task_loss=False,
                 use_dynamic_loss=False,
                 loss_split=0.5):
        super(MultiboxTrainChain, self).__init__()
        self.gpu = gpu

        with self.init_scope():
Ejemplo n.º 25
0
 def setUp(self):
     self.default_debug = chainer.is_debug()
     chainer.set_debug(True)
Ejemplo n.º 26
0
# training parameter
parser.add_argument('--batchsize', '-b', type=int, default=128)
parser.add_argument('--epoch',
                    '-e',
                    type=int,
                    default=10,
                    help='The number of training epoch')
# model parameter
parser.add_argument('--unit-num',
                    '-u',
                    type=int,
                    default=512,
                    help='The unit size of each layer in MLP')
args = parser.parse_args()

chainer.set_debug(True)

train, val = kaggle.get_kaggle()
train_iter = I.SerialIterator(train, args.batchsize)
val_iter = I.SerialIterator(val, args.batchsize, repeat=False, shuffle=False)

C = len(kaggle.task_names)
predictor = mlp.MLP(args.unit_num, C)
classifier = classifier.Classifier(predictor=predictor)

if args.gpu >= 0:
    cuda.get_device(args.gpu).use()
    classifier.to_gpu()

optimizer = O.SGD()
optimizer.setup(classifier)
Ejemplo n.º 27
0
def main():

    chainer.set_debug(True)
    parser = get_parser()
    args = parser.parse_args()

    reset_seed(args.seed)

    #load vocabulary
    source0_ids = load_vocabulary(args.SOURCE_VOCAB0)
    source1_ids = load_vocabulary(args.SOURCE_VOCAB1)
    target_ids = load_vocabulary(args.TARGET_VOCAB)
    print('Source vocabulary size: %d' % len(source0_ids))
    print('Source vocabulary size: %d' % len(source1_ids))
    print('Target vocabulary size: %d' % len(target_ids))

    train_data = make_data_tuple(source0=(source0_ids, args.SOURCE0),
                                 source1=(source1_ids, args.SOURCE1),
                                 target=(target_ids, args.TARGET))

    source0_words = {i: w for w, i in source0_ids.items()}
    source1_words = {i: w for w, i in source1_ids.items()}
    target_words = {i: w for w, i in target_ids.items()}

    # Setup model
    model = Seq2seq(args.layer, len(source0_ids), len(source1_ids),
                    len(target_ids), args.unit)
    if args.gpu >= 0:
        chainer.backends.cuda.get_device(args.gpu).use()
        model.to_gpu(args.gpu)

    # Setup optimizer
    optimizer = chainer.optimizers.Adam()
    optimizer.setup(model)
    optimizer.add_hook(chainer.optimizer.WeightDecay(args.l2))

    # Setup iterator
    train_iter = chainer.iterators.SerialIterator(train_data, args.batchsize)

    # Setup updater and trainer
    updater = training.updaters.StandardUpdater(train_iter,
                                                optimizer,
                                                converter=convert,
                                                device=args.gpu)
    trainer = training.Trainer(updater, (args.epoch, 'epoch'), out=args.out)
    trainer.extend(
        extensions.LogReport(trigger=(args.log_interval, 'iteration')))
    trainer.extend(extensions.PrintReport([
        'epoch', 'iteration', 'main/loss', 'validation/main/loss', 'main/perp',
        'validation/main/perp', 'validation/main/bleu', 'test/main/bleu',
        'elapsed_time'
    ]),
                   trigger=(args.log_interval, 'iteration'))

    if args.validation_source0 and args.validation_source1 and args.validation_target:
        valid_data = make_data_tuple(
            source0=(source0_ids, args.validation_source0),
            source1=(source1_ids, args.validation_source1),
            target=(target_ids, args.validation_target))

        @chainer.training.make_extension()
        def translate(trainer):
            source0, source1, target = valid_data[numpy.random.choice(
                len(valid_data))]
            result = model.translate([model.xp.array(source0)],
                                     [model.xp.array(source1)])[0]

            source0_sentence = ' '.join([source0_words[x] for x in source0])
            source1_sentence = ' '.join([source1_words[x] for x in source1])
            target_sentence = ' '.join([target_words[y] for y in target])
            result_sentence = ' '.join([target_words[y] for y in result])
            print('# source0 : ' + source0_sentence)
            print('# source1 : ' + source1_sentence)
            print('# result : ' + result_sentence)
            print('# expect : ' + target_sentence)

        trainer.extend(translate,
                       trigger=(args.validation_interval, 'iteration'))
        trainer.extend(CalculateBleu(model,
                                     valid_data,
                                     'validation/main/bleu',
                                     device=args.gpu),
                       trigger=(args.validation_interval, 'iteration'))

        dev_iter = chainer.iterators.SerialIterator(valid_data,
                                                    args.batchsize,
                                                    repeat=False,
                                                    shuffle=False)
        dev_eval = extensions.Evaluator(dev_iter,
                                        model,
                                        device=args.gpu,
                                        converter=convert)
        dev_eval.name = 'valid'
        trainer.extend(dev_eval,
                       trigger=(args.validation_interval, 'iteration'))

    if args.test_source0 and args.test_source1 and args.test_target:
        test_data = make_data_tuple(source0=(source0_ids, args.test_source0),
                                    source1=(source1_ids, args.test_source1),
                                    target=(target_ids, args.test_target))
        trainer.extend(CalculateBleu(model,
                                     test_data,
                                     'test/main/bleu',
                                     device=args.gpu),
                       trigger=(args.test_interval, 'iteration'))

    print('start training')
    if args.resume:
        # Resume from a snapshot
        chainer.serializers.load_npz(args.resume, trainer)
    save_args(args, args.out)

    trainer.run()

    if args.save:
        # Save a snapshot
        chainer.serializers.save_npz(args.out + "/trainer.npz", trainer)
        chainer.serializers.save_npz(args.out + "/model.npz", model)
Ejemplo n.º 28
0
def main():

    parser = argparse.ArgumentParser()
    parser.add_argument('--outdir',
                        type=str,
                        default='results',
                        help='Directory path to save output files.'
                        ' If it does not exist, it will be created.')
    parser.add_argument(
        '--env',
        type=str,
        choices=[
            'Pendulum-v0', 'AntBulletEnv-v0', 'HalfCheetahBulletEnv-v0',
            'HumanoidBulletEnv-v0', 'HopperBulletEnv-v0',
            'Walker2DBulletEnv-v0'
        ],
        help=
        'OpenAI Gym env and Pybullet (roboschool) env to perform algorithm on.'
    )
    parser.add_argument('--num-envs',
                        type=int,
                        default=1,
                        help='Number of envs run in parallel.')
    parser.add_argument('--seed',
                        type=int,
                        default=0,
                        help='Random seed [0, 2 ** 32)')
    parser.add_argument('--gpu',
                        type=int,
                        default=0,
                        help='GPU to use, set to -1 if no GPU.')
    parser.add_argument('--load',
                        type=str,
                        default='',
                        help='Directory to load agent from.')
    parser.add_argument('--load-demo',
                        type=str,
                        default='',
                        help='Directory to load replay buffer of demo from.')
    parser.add_argument(
        '--expert-num-episode',
        type=int,
        default=0,
        help='the number of expert trajectory, if 0, no create demo mode.')
    parser.add_argument('--absorb',
                        action='store_true',
                        help='Add absorb state or do not.')
    parser.add_argument('--lamda',
                        type=float,
                        default=1,
                        help='reguralized lambda')
    parser.add_argument('--reward-func',
                        action='store_true',
                        help='Add absorb state or do not.')
    parser.add_argument('--steps',
                        type=int,
                        default=10**6,
                        help='Total number of timesteps to train the agent.')
    parser.add_argument('--eval-n-runs',
                        type=int,
                        default=10,
                        help='Number of episodes run for each evaluation.')
    parser.add_argument('--eval-interval',
                        type=int,
                        default=5000,
                        help='Interval in timesteps between evaluations.')
    parser.add_argument('--replay-start-size',
                        type=int,
                        default=10000,
                        help='Minimum replay buffer size before ' +
                        'performing gradient updates.')
    parser.add_argument('--batch-size',
                        type=int,
                        default=100,
                        help='Minibatch size')
    parser.add_argument('--learning-rate',
                        type=float,
                        default=1e-3,
                        help='Learning rate of optimizers')
    parser.add_argument('--render',
                        action='store_true',
                        help='Render env states in a GUI window.')
    parser.add_argument('--demo',
                        action='store_true',
                        help='Just run evaluation, not training.')
    parser.add_argument('--pretrain',
                        type=int,
                        default=0,
                        help='The number of pretrain iterations')
    parser.add_argument('--monitor',
                        action='store_true',
                        help='Wrap env with gym.wrappers.Monitor.')
    parser.add_argument('--log-interval',
                        type=int,
                        default=1000,
                        help='Interval in timesteps between outputting log'
                        ' messages during training')
    parser.add_argument('--logger-level',
                        type=int,
                        default=logging.INFO,
                        help='Level of the root logger.')
    parser.add_argument('--policy-output-scale',
                        type=float,
                        default=1.,
                        help='Weight initialization scale of polity output.')
    parser.add_argument('--debug', action='store_true', help='Debug mode.')
    args = parser.parse_args()
    if args.expert_num_episode > 0:
        args.absorb = True

    logging.basicConfig(level=args.logger_level)

    if args.debug:
        chainer.set_debug(True)

    dir_name = f'{args.env}_{args.seed}'
    dir_name += '_demo' if args.demo else ''
    dir_name += '_absorb' if args.absorb else ''
    dir_name += '_reward' if args.reward_func else ''
    #     dir_name += f'_{args.lamda}'

    args.outdir = experiments.prepare_output_dir(args,
                                                 args.outdir,
                                                 argv=sys.argv,
                                                 time_format=dir_name)
    print('Output files are saved in {}'.format(args.outdir))

    # Set a random seed used in ChainerRL
    misc.set_random_seed(args.seed, gpus=(args.gpu, ))

    # Set different random seeds for different subprocesses.
    # If seed=0 and processes=4, subprocess seeds are [0, 1, 2, 3].
    # If seed=1 and processes=4, subprocess seeds are [4, 5, 6, 7].
    process_seeds = np.arange(args.num_envs) + args.seed * args.num_envs
    assert process_seeds.max() < 2**32

    def make_env(process_idx, test):
        env = gym.make(args.env)
        # Unwrap TimiLimit wrapper
        assert isinstance(env, gym.wrappers.TimeLimit)
        env = env.env
        # Use different random seeds for train and test envs
        process_seed = int(process_seeds[process_idx])
        env_seed = 2**32 - 1 - process_seed if test else process_seed
        env.seed(env_seed)
        if isinstance(env.observation_space, Box):
            # Cast observations to float32 because our model uses float32
            env = chainerrl.wrappers.CastObservationToFloat32(env)
        else:
            env = atari_wrappers.wrap_deepmind(atari_wrappers.make_atari(
                args.env, max_frames=None),
                                               episode_life=not test,
                                               clip_rewards=not test)
        # if args.absorb:
        #     if isinstance(env.observation_space, Box):
        #         env = wrappers.AbsorbingWrapper(env)
        #     else:
        #         raise NotImplementedError('Currently, my AbsorobingWrapper is not available for Discrete observation.')
        if isinstance(env.action_space, Box):
            # Normalize action space to [-1, 1]^n
            env = wrappers.NormalizeActionSpace(env)
        if args.monitor:
            env = gym.wrappers.Monitor(env, args.outdir)
        if args.render:
            env = chainerrl.wrappers.Render(env)
        return env

    def make_batch_env(test):
        return chainerrl.envs.MultiprocessVectorEnv([
            functools.partial(make_env, idx, test)
            for idx, env in enumerate(range(args.num_envs))
        ])

    sample_env = make_env(process_idx=0, test=False)
    timestep_limit = sample_env.spec.tags.get(
        'wrapper_config.TimeLimit.max_episode_steps')
    obs_space = sample_env.observation_space
    action_space = sample_env.action_space
    print('Observation space:', obs_space)
    print('Action space:', action_space)

    if isinstance(obs_space, Box):
        head = network_sqil.FCHead()
        phi = lambda x: x
    else:
        head = network_sqil.CNNHead(n_input_channels=4)
        phi = lambda x: np.asarray(x, dtype=np.float32) / 255

    if isinstance(action_space, Box):
        action_size = action_space.low.size
        policy = network_sqil.GaussianPolicy(copy.deepcopy(head), action_size)
        q_func1 = network_sqil.QSAFunction(copy.deepcopy(head), action_size)
        q_func2 = network_sqil.QSAFunction(copy.deepcopy(head), action_size)

        def burnin_action_func():
            """Select random actions until model is updated one or more times."""
            return np.random.uniform(action_space.low,
                                     action_space.high).astype(np.float32)

    else:
        action_size = action_space.n

        policy = network_sqil.SoftmaxPolicy(copy.deepcopy(head), action_size)
        q_func1 = network_sqil.QSFunction(copy.deepcopy(head), action_size)
        q_func2 = network_sqil.QSFunction(copy.deepcopy(head), action_size)

        def burnin_action_func():
            return np.random.randint(0, action_size)

    policy_optimizer = optimizers.Adam(args.learning_rate).setup(policy)
    policy_optimizer.add_hook(GradientClipping(40))
    q_func1_optimizer = optimizers.Adam(args.learning_rate).setup(q_func1)
    q_func2_optimizer = optimizers.Adam(args.learning_rate).setup(q_func2)

    if args.reward_func:
        reward_func = network_sqil.FCRewardFunction(action_size)
        reward_func_optimizer = optimizers.Adam(
            args.learning_rate).setup(reward_func)
    else:
        reward_func = None
        reward_func_optimizer = None
    # Draw the computational graph and save it in the output directory.
    fake_obs = chainer.Variable(policy.xp.zeros_like(obs_space.low,
                                                     dtype=np.float32)[None],
                                name='observation')
    fake_action = chainer.Variable(policy.xp.zeros_like(
        action_space.low, dtype=np.float32)[None],
                                   name='action')
    fake_absorb = chainer.Variable(policy.xp.zeros_like(
        [1], dtype=np.float32)[None],
                                   name='absorb')
    chainerrl.misc.draw_computational_graph(
        [policy(fake_obs, fake_absorb).sample()],
        os.path.join(args.outdir, 'policy'))
    chainerrl.misc.draw_computational_graph(
        [q_func1(fake_obs, fake_absorb, fake_action)],
        os.path.join(args.outdir, 'q_func1'))
    chainerrl.misc.draw_computational_graph(
        [q_func2(fake_obs, fake_absorb, fake_action)],
        os.path.join(args.outdir, 'q_func2'))

    if args.absorb:
        absorb_state = sample_env.observation_space.sample() * 0
        absorb_action = sample_env.action_space.sample() * 0
        rbuf = AbsorbReplayBuffer(5 * 10**5, absorb_state, absorb_action)
    else:
        rbuf = replay_buffer.ReplayBuffer(5 * 10**5)
    rbuf_demo = replay_buffer.ReplayBuffer(5 * 10**5)

    if len(args.load_demo) > 0:
        rbuf_demo.load(os.path.join(args.load_demo, 'replay'))
        if args.absorb:
            from convert_to_absorb_replay import convert
            rbuf_demo = convert(rbuf_demo)
            assert isinstance(rbuf_demo, AbsorbReplayBuffer)
        else:
            assert isinstance(rbuf_demo, replay_buffer.ReplayBuffer)

    # Hyperparameters in http://arxiv.org/abs/1802.09477
    agent = sqil.SQIL(policy,
                      q_func1,
                      q_func2,
                      reward_func,
                      policy_optimizer,
                      q_func1_optimizer,
                      q_func2_optimizer,
                      reward_func_optimizer,
                      rbuf,
                      rbuf_demo,
                      gamma=0.99,
                      is_discrete=isinstance(action_space, Discrete),
                      replay_start_size=args.replay_start_size,
                      gpu=args.gpu,
                      minibatch_size=args.batch_size,
                      phi=phi,
                      burnin_action_func=burnin_action_func,
                      entropy_target=-action_size if isinstance(
                          action_space, Box) else -np.log(
                              (1.0 / action_size)) * 0.98,
                      temperature_optimizer=chainer.optimizers.Adam(3e-4),
                      lamda=args.lamda)

    if args.load:
        agent.load(args.load, args.expert_num_episode == 0)

    if args.demo:
        eval_stats = experiments.eval_performance(
            env=make_env(process_idx=0, test=True),
            agent=agent,
            n_steps=None,
            n_episodes=args.eval_n_runs,
            max_episode_len=timestep_limit,
        )
        print('n_runs: {} mean: {} median: {} stdev {}'.format(
            args.eval_n_runs, eval_stats['mean'], eval_stats['median'],
            eval_stats['stdev']))
    else:
        experiments.train_agent_with_evaluation(
            agent=agent,
            env=make_env(process_idx=0, test=False),
            eval_env=make_env(process_idx=0, test=True),
            outdir=args.outdir,
            steps=args.steps,
            eval_n_steps=None,
            eval_n_episodes=args.eval_n_runs,
            eval_interval=args.eval_interval,
            # log_interval=args.log_interval,
            train_max_episode_len=timestep_limit,
            eval_max_episode_len=timestep_limit,
        )
Ejemplo n.º 29
0
 def tearDown(self):
     chainer.set_debug(self.default_debug)
Ejemplo n.º 30
0
def main():

    logging.basicConfig(
        format='%(asctime)s : %(threadName)s : %(levelname)s : %(message)s',
        level=logging.INFO)

    import argparse
    parser = argparse.ArgumentParser()
    parser.add_argument('--gpu', '-g', default=-1, type=int,
                        help='GPU ID (negative value indicates CPU)')
    parser.add_argument('--batchsize', dest='batchsize', type=int,
                        default=32, help='learning minibatch size')
    parser.add_argument('--batchsize_semi', dest='batchsize_semi', type=int,
                        default=64, help='learning minibatch size')
    parser.add_argument('--n_epoch', dest='n_epoch', type=int, default=30,
                        help='n_epoch')
    parser.add_argument('--pretrained_model', dest='pretrained_model',
                        type=str, default='', help='pretrained_model')
    parser.add_argument('--use_unlabled_to_vocab', dest='use_unlabled_to_vocab',
                        type=int, default=1, help='use_unlabled_to_vocab')
    parser.add_argument('--use_rational', dest='use_rational',
                        type=int, default=0, help='use_rational')
    parser.add_argument('--save_name', dest='save_name', type=str,
                        default='sentiment_model', help='save_name')
    parser.add_argument('--n_layers', dest='n_layers', type=int,
                        default=1, help='n_layers')
    parser.add_argument('--alpha', dest='alpha',
                        type=float, default=0.001, help='alpha')
    parser.add_argument('--alpha_decay', dest='alpha_decay',
                        type=float, default=0.0, help='alpha_decay')
    parser.add_argument('--clip', dest='clip',
                        type=float, default=5.0, help='clip')
    parser.add_argument('--debug_mode', dest='debug_mode',
                        type=int, default=0, help='debug_mode')
    parser.add_argument('--use_exp_decay', dest='use_exp_decay',
                        type=int, default=1, help='use_exp_decay')
    parser.add_argument('--load_trained_lstm', dest='load_trained_lstm',
                        type=str, default='', help='load_trained_lstm')
    parser.add_argument('--freeze_word_emb', dest='freeze_word_emb',
                        type=int, default=0, help='freeze_word_emb')
    parser.add_argument('--dropout', dest='dropout',
                        type=float, default=0.50, help='dropout')
    parser.add_argument('--use_adv', dest='use_adv',
                        type=int, default=0, help='use_adv')
    parser.add_argument('--xi_var', dest='xi_var',
                        type=float, default=1.0, help='xi_var')
    parser.add_argument('--xi_var_first', dest='xi_var_first',
                        type=float, default=1.0, help='xi_var_first')
    parser.add_argument('--lower', dest='lower',
                        type=int, default=1, help='lower')
    parser.add_argument('--nl_factor', dest='nl_factor', type=float,
                        default=1.0, help='nl_factor')
    parser.add_argument('--min_count', dest='min_count', type=int,
                        default=1, help='min_count')
    parser.add_argument('--ignore_unk', dest='ignore_unk', type=int,
                        default=0, help='ignore_unk')
    parser.add_argument('--use_semi_data', dest='use_semi_data',
                        type=int, default=0, help='use_semi_data')
    parser.add_argument('--add_labeld_to_unlabel', dest='add_labeld_to_unlabel',
                        type=int, default=1, help='add_labeld_to_unlabel')
    parser.add_argument('--norm_sentence_level', dest='norm_sentence_level',
                        type=int, default=1, help='norm_sentence_level')
    parser.add_argument('--dataset', default='imdb',
                        choices=['imdb', 'elec', 'rotten', 'dbpedia', 'rcv1'])
    parser.add_argument('--eval', dest='eval', type=int, default=0, help='eval')
    parser.add_argument('--emb_dim', dest='emb_dim', type=int,
                        default=256, help='emb_dim')
    parser.add_argument('--hidden_dim', dest='hidden_dim', type=int,
                        default=1024, help='hidden_dim')
    parser.add_argument('--hidden_cls_dim', dest='hidden_cls_dim', type=int,
                        default=30, help='hidden_cls_dim')
    parser.add_argument('--adaptive_softmax', dest='adaptive_softmax',
                        type=int, default=1, help='adaptive_softmax')
    parser.add_argument('--random_seed', dest='random_seed', type=int,
                        default=1234, help='random_seed')
    parser.add_argument('--n_class', dest='n_class', type=int,
                        default=2, help='n_class')
    parser.add_argument('--word_only', dest='word_only', type=int,
                        default=0, help='word_only')


    args = parser.parse_args()
    batchsize = args.batchsize
    batchsize_semi = args.batchsize_semi
    print(args)

    random.seed(args.random_seed)
    np.random.seed(args.random_seed)
    os.environ["CHAINER_SEED"] = str(args.random_seed)
    os.makedirs("models", exist_ok=True)

    if args.debug_mode:
        chainer.set_debug(True)

    use_unlabled_to_vocab = args.use_unlabled_to_vocab
    lower = args.lower == 1
    n_char_vocab = 1
    n_class = 2
    if args.dataset == 'imdb':
        vocab_obj, dataset, lm_data, t_vocab = utils.load_dataset_imdb(
            include_pretrain=use_unlabled_to_vocab, lower=lower,
            min_count=args.min_count, ignore_unk=args.ignore_unk,
            use_semi_data=args.use_semi_data,
            add_labeld_to_unlabel=args.add_labeld_to_unlabel)
        (train_x, train_x_len, train_y,
         dev_x, dev_x_len, dev_y,
         test_x, test_x_len, test_y) = dataset
        vocab, vocab_count = vocab_obj
        n_class = 2

    if args.use_semi_data:
        semi_train_x, semi_train_x_len = lm_data

    print('train_vocab_size:', t_vocab)

    vocab_inv = dict([(widx, w) for w, widx in vocab.items()])
    print('vocab_inv:', len(vocab_inv))

    xp = cuda.cupy if args.gpu >= 0 else np
    if args.gpu >= 0:
        cuda.get_device(args.gpu).use()
        xp.random.seed(args.random_seed)

    n_vocab = len(vocab)
    model = net.uniLSTM_VAT(n_vocab=n_vocab, emb_dim=args.emb_dim,
                            hidden_dim=args.hidden_dim,
                            use_dropout=args.dropout, n_layers=args.n_layers,
                            hidden_classifier=args.hidden_cls_dim,
                            use_adv=args.use_adv, xi_var=args.xi_var,
                            n_class=n_class, args=args)

    if args.pretrained_model != '':
        # load pretrained LM model
        pretrain_model = lm_nets.RNNForLM(n_vocab, 1024, args.n_layers, 0.50,
                                          share_embedding=False,
                                          adaptive_softmax=args.adaptive_softmax)
        serializers.load_npz(args.pretrained_model, pretrain_model)
        pretrain_model.lstm = pretrain_model.rnn
        model.set_pretrained_lstm(pretrain_model, word_only=args.word_only)

    if args.load_trained_lstm != '':
        serializers.load_hdf5(args.load_trained_lstm, model)

    if args.gpu >= 0:
        model.to_gpu()

    def evaluate(x_set, x_length_set, y_set):
        chainer.config.train = False
        chainer.config.enable_backprop = False
        iteration_list = range(0, len(x_set), batchsize)
        correct_cnt = 0
        total_cnt = 0.0
        predicted_np = []

        for i_index, index in enumerate(iteration_list):
            x = [to_gpu(_x) for _x in x_set[index:index + batchsize]]
            x_length = x_length_set[index:index + batchsize]
            y = to_gpu(y_set[index:index + batchsize])
            output = model(x, x_length)

            predict = xp.argmax(output.data, axis=1)
            correct_cnt += xp.sum(predict == y)
            total_cnt += len(y)

        accuracy = (correct_cnt / total_cnt) * 100.0
        chainer.config.enable_backprop = True
        return accuracy

    def get_unlabled(perm_semi, i_index):
        index = i_index * batchsize_semi
        sample_idx = perm_semi[index:index + batchsize_semi]
        x = [to_gpu(semi_train_x[_i]) for _i in sample_idx]
        x_length = [semi_train_x_len[_i] for _i in sample_idx]
        return x, x_length

    base_alpha = args.alpha
    opt = optimizers.Adam(alpha=base_alpha)
    opt.setup(model)
    opt.add_hook(chainer.optimizer.GradientClipping(args.clip))

    if args.freeze_word_emb:
        model.freeze_word_emb()

    prev_dev_accuracy = 0.0
    global_step = 0.0
    adv_rep_num_statics = {}
    adv_rep_pos_statics = {}

    if args.eval:
        dev_accuracy = evaluate(dev_x, dev_x_len, dev_y)
        log_str = ' [dev] accuracy:{}, length:{}'.format(str(dev_accuracy))
        logging.info(log_str)

        # test
        test_accuracy = evaluate(test_x, test_x_len, test_y)
        log_str = ' [test] accuracy:{}, length:{}'.format(str(test_accuracy))
        logging.info(log_str)


    for epoch in range(args.n_epoch):
        logging.info('epoch:' + str(epoch))
        # train
        model.cleargrads()
        chainer.config.train = True
        iteration_list = range(0, len(train_x), batchsize)

        # iteration_list_semi = range(0, len(semi_train_x), batchsize)
        perm = np.random.permutation(len(train_x))
        if args.use_semi_data:
            perm_semi = [np.random.permutation(len(semi_train_x)) for _ in range(2)]
            perm_semi = np.concatenate(perm_semi, axis=0)
            # print 'perm_semi:', perm_semi.shape
        def idx_func(shape):
            return xp.arange(shape).astype(xp.int32)

        sum_loss = 0.0
        sum_loss_z = 0.0
        sum_loss_z_sparse = 0.0
        sum_loss_label = 0.0
        avg_rate = 0.0
        avg_rate_num = 0.0
        correct_cnt = 0
        total_cnt = 0.0
        N = len(iteration_list)
        is_adv_example_list = []
        is_adv_example_disc_list = []
        is_adv_example_disc_craft_list = []
        y_np = []
        predicted_np = []
        save_items = []
        for i_index, index in enumerate(iteration_list):
            global_step += 1.0
            model.set_train(True)
            sample_idx = perm[index:index + batchsize]
            x = [to_gpu(train_x[_i]) for _i in sample_idx]
            x_length = [train_x_len[_i] for _i in sample_idx]

            y = to_gpu(train_y[sample_idx])

            d = None

            # Classification loss
            output = model(x, x_length)
            output_original = output
            loss = F.softmax_cross_entropy(output, y, normalize=True)
            if args.use_adv or args.use_semi_data:
                # Adversarial Training
                if args.use_adv:
                    output = model(x, x_length, first_step=True, d=None)
                    # Adversarial loss (First step)
                    loss_adv_first = F.softmax_cross_entropy(output, y, normalize=True)
                    model.cleargrads()
                    loss_adv_first.backward()

                    if args.use_adv:
                        d = model.d_var.grad
                        d_data = d.data if isinstance(d, chainer.Variable) else d
                    output = model(x, x_length, d=d)
                    # Adversarial loss
                    loss_adv = F.softmax_cross_entropy(output, y, normalize=True)
                    loss += loss_adv * args.nl_factor

                # Virtual Adversarial Training
                if args.use_semi_data:
                    x, length = get_unlabled(perm_semi, i_index)
                    output_original = model(x, length)
                    output_vat = model(x, length, first_step=True, d=None)
                    loss_vat_first = net.kl_loss(xp, output_original.data, output_vat)
                    model.cleargrads()
                    loss_vat_first.backward()
                    d_vat = model.d_var.grad

                    output_vat = model(x, length, d=d_vat)
                    loss_vat = net.kl_loss(xp, output_original.data, output_vat)
                    loss += loss_vat

            predict = xp.argmax(output.data, axis=1)
            correct_cnt += xp.sum(predict == y)
            total_cnt += len(y)

            # update
            model.cleargrads()
            loss.backward()
            opt.update()

            if args.alpha_decay > 0.0:
                if args.use_exp_decay:
                    opt.hyperparam.alpha = (base_alpha) * (args.alpha_decay**global_step)
                else:
                    opt.hyperparam.alpha *= args.alpha_decay  # 0.9999

            sum_loss += loss.data

        accuracy = (correct_cnt / total_cnt) * 100.0

        logging.info(' [train] sum_loss: {}'.format(sum_loss / N))
        logging.info(' [train] apha:{}, global_step:{}'.format(opt.hyperparam.alpha, global_step))
        logging.info(' [train] accuracy:{}'.format(accuracy))


        model.set_train(False)
        # dev
        dev_accuracy = evaluate(dev_x, dev_x_len, dev_y)
        log_str = ' [dev] accuracy:{}'.format(str(dev_accuracy))
        logging.info(log_str)

        # test
        test_accuracy = evaluate(test_x, test_x_len, test_y)
        log_str = ' [test] accuracy:{}'.format(str(test_accuracy))
        logging.info(log_str)

        last_epoch_flag = args.n_epoch - 1 == epoch
        if prev_dev_accuracy < dev_accuracy:

            logging.info(' => '.join([str(prev_dev_accuracy), str(dev_accuracy)]))
            result_str = 'dev_acc_' + str(dev_accuracy)
            result_str += '_test_acc_' + str(test_accuracy)
            model_filename = './models/' + '_'.join([args.save_name,
                                                     str(epoch), result_str])
            serializers.save_hdf5(model_filename + '.model', model)

            prev_dev_accuracy = dev_accuracy
Ejemplo n.º 31
0
 def setUp(self):
     self.link = links.EmbedID(2, 2)
     self.t = numpy.array([self.t_value], dtype=numpy.int32)
     self.original_debug = chainer.is_debug()
     chainer.set_debug(True)
Ejemplo n.º 32
0
 def setUp(self):
     self.default_debug = chainer.is_debug()
     chainer.set_debug(True)
Ejemplo n.º 33
0
def main():
    parser = argparse.ArgumentParser(
        description='Condtitional WGAN in Chainer')
    parser.add_argument('--batchsize',
                        '-b',
                        type=int,
                        default=64,
                        help='Integer of images in each mini-batch')
    parser.add_argument('--epoch',
                        '-e',
                        type=int,
                        default=1,
                        help='Integer of Epochs')
    parser.add_argument('--out',
                        '-o',
                        default='result',
                        help='Directory of output result')
    parser.add_argument('--gpu', '-g', type=int, default=-1, help='Gpu number')
    parser.add_argument('--resume',
                        '-r',
                        default='',
                        help='start training from snapshot')
    parser.add_argument('--seed',
                        type=int,
                        default=0,
                        help='Random seed of z at visualization stage')
    parser.add_argument('--imagedir',
                        '-dir',
                        default=None,
                        help="Directory of image dir")
    parser.add_argument('--ncritic', '-nc', default=5, help='n_critic')
    parser.add_argument('--clamp',
                        default=0.01,
                        help='bound of weight clipping in critic')
    parser.add_argument('--debug', default=False, help='chainer debug mode')
    parser.add_argument('--distribution',
                        '-dist',
                        default='uniform',
                        help='noise z sampling distribution')
    args = parser.parse_args()

    if args.debug:
        chainer.set_debug(True)

    # model setup
    generator = Generator(n_hidden=110,
                          label_num=10,
                          distribution=args.distribution)
    critic = Critic(batch_num=args.batchsize, label_num=10)

    if args.gpu >= 0:
        chainer.cuda.get_device_from_id(args.gpu).use()
        generator.to_gpu()
        critic.to_gpu()

    # optimizer setup
    # optimizer is need quite tough decision.
    def make_optimizer(model, alpha=0.0002, beta1=0.5):
        optimizer = optimizers.Adam(alpha=alpha, beta1=beta1)
        optimizer.setup(model)
        optimizer.add_hook(chainer.optimizer.WeightDecay(0.0001), 'hook_dec')
        return optimizer

    def make_optimizer_SGD(model, lr=0.01):
        optimizer = optimizers.SGD(lr)
        optimizer.setup(model)

        return optimizer

    def make_optimizer_RMS(model, lr=0.0002):
        optimizer = optimizers.RMSprop(lr)
        optimizer.setup(model)

        return optimizer

    opt_gen = make_optimizer_RMS(generator)
    opt_critic = make_optimizer_RMS(critic)

    # dataset setup
    if args.imagedir is None:
        # if imagedir not given, use cifar-10
        train, _ = chainer.datasets.get_cifar10(withlabel=True, scale=255.)
    else:
        #  TODO: change from ImageDataset to Labeled Dataset.
        p = Path(args.imagedir)
        img_tuple = {}
        label_num = 0
        datapathstore = {}

        labeldirs = [x for x in p.iterdir() if x.is_dir()]
        for label in labeldirs:
            img_tuple[label.name] = label_num
            datapathstore[label.name] = map(
                lambda x: (x, label_num),
                [str for str in label.iterdir() if str.is_file()])

        datalist = []
        for str in datapathstore.items():
            datalist = datalist + str

        train = chainer.datasets.ImageDataset(datalist)
        # train *= 1. / 255.

    # *er setup
    train_iter = chainer.iterators.SerialIterator(train, args.batchsize)

    updater = Updater(models=(generator, critic),
                      iterator=train_iter,
                      optimizer={
                          'gen': opt_gen,
                          'critic': opt_critic
                      },
                      n_critic=args.ncritic,
                      device=args.gpu)
    trainer = training.Trainer(updater, (args.epoch, 'epoch'), out=args.out)

    # extentions
    snapshot_interval = (1000, 'iteration')
    display_interval = (100, 'iteration')

    trainer.extend(
        extensions.snapshot(filename='snapshot_iter_{.updater.iteration}.npz'),
        trigger=snapshot_interval)
    trainer.extend(extensions.snapshot_object(
        generator, 'gen_iter_{.updater.iteration}.npz'),
                   trigger=snapshot_interval)
    trainer.extend(extensions.snapshot_object(
        critic, 'critic_iter_{.updater.iteration}.npz'),
                   trigger=snapshot_interval)
    trainer.extend(extensions.LogReport(trigger=display_interval))
    trainer.extend(extensions.PrintReport(
        ['epoch', 'iteration', 'gen_loss', 'critic_loss']),
                   trigger=display_interval)
    trainer.extend(extensions.ProgressBar(update_interval=20))
    trainer.extend(out_generated_random_image(generator,
                                              critic,
                                              10,
                                              10,
                                              10,
                                              dst='uniform'),
                   trigger=snapshot_interval)
    # trainer.extend(
    #     extensions.PlotReport(['gen/loss', 'critic/loss', 'classifier/loss'],
    #                           'epoch', file_name='plot_{.updater.epoch}.png', grid=True)
    # )

    # FLY TO THE FUTURE!
    if args.resume:
        chainer.serializers.load_npz(args.resume, trainer)

    trainer.run()
Ejemplo n.º 34
0
def main():
    logging.basicConfig(
        format='%(asctime)s : %(threadName)s : %(levelname)s : %(message)s',
        level=logging.INFO)

    import argparse
    parser = argparse.ArgumentParser()
    parser.add_argument('--gpu',
                        '-g',
                        default=-1,
                        type=int,
                        help='GPU ID (negative value indicates CPU)')
    parser.add_argument('--batchsize',
                        dest='batchsize',
                        type=int,
                        default=32,
                        help='learning minibatch size')
    parser.add_argument('--batchsize_semi',
                        dest='batchsize_semi',
                        type=int,
                        default=64,
                        help='learning minibatch size')
    parser.add_argument('--n_epoch',
                        dest='n_epoch',
                        type=int,
                        default=30,
                        help='n_epoch')
    parser.add_argument('--pretrained_model',
                        dest='pretrained_model',
                        type=str,
                        default='',
                        help='pretrained_model')
    parser.add_argument('--use_unlabled_to_vocab',
                        dest='use_unlabled_to_vocab',
                        type=int,
                        default=1,
                        help='use_unlabled_to_vocab')
    parser.add_argument('--use_rational',
                        dest='use_rational',
                        type=int,
                        default=0,
                        help='use_rational')
    parser.add_argument('--save_name',
                        dest='save_name',
                        type=str,
                        default='sentiment_model',
                        help='save_name')
    parser.add_argument('--n_layers',
                        dest='n_layers',
                        type=int,
                        default=1,
                        help='n_layers')
    parser.add_argument('--alpha',
                        dest='alpha',
                        type=float,
                        default=0.001,
                        help='alpha')
    parser.add_argument('--alpha_decay',
                        dest='alpha_decay',
                        type=float,
                        default=0.0,
                        help='alpha_decay')
    parser.add_argument('--clip',
                        dest='clip',
                        type=float,
                        default=5.0,
                        help='clip')
    parser.add_argument('--debug_mode',
                        dest='debug_mode',
                        type=int,
                        default=0,
                        help='debug_mode')
    parser.add_argument('--use_exp_decay',
                        dest='use_exp_decay',
                        type=int,
                        default=1,
                        help='use_exp_decay')
    parser.add_argument('--load_trained_lstm',
                        dest='load_trained_lstm',
                        type=str,
                        default='',
                        help='load_trained_lstm')
    parser.add_argument('--freeze_word_emb',
                        dest='freeze_word_emb',
                        type=int,
                        default=0,
                        help='freeze_word_emb')
    parser.add_argument('--dropout',
                        dest='dropout',
                        type=float,
                        default=0.50,
                        help='dropout')
    parser.add_argument('--use_adv',
                        dest='use_adv',
                        type=int,
                        default=0,
                        help='use_adv')
    parser.add_argument('--xi_var',
                        dest='xi_var',
                        type=float,
                        default=1.0,
                        help='xi_var')
    parser.add_argument('--xi_var_first',
                        dest='xi_var_first',
                        type=float,
                        default=1.0,
                        help='xi_var_first')
    parser.add_argument('--lower',
                        dest='lower',
                        type=int,
                        default=1,
                        help='lower')
    parser.add_argument('--nl_factor',
                        dest='nl_factor',
                        type=float,
                        default=1.0,
                        help='nl_factor')
    parser.add_argument('--min_count',
                        dest='min_count',
                        type=int,
                        default=1,
                        help='min_count')
    parser.add_argument('--ignore_unk',
                        dest='ignore_unk',
                        type=int,
                        default=0,
                        help='ignore_unk')
    parser.add_argument('--use_semi_data',
                        dest='use_semi_data',
                        type=int,
                        default=0,
                        help='use_semi_data')
    parser.add_argument('--add_labeld_to_unlabel',
                        dest='add_labeld_to_unlabel',
                        type=int,
                        default=1,
                        help='add_labeld_to_unlabel')
    parser.add_argument('--norm_sentence_level',
                        dest='norm_sentence_level',
                        type=int,
                        default=1,
                        help='norm_sentence_level')
    parser.add_argument('--dataset',
                        default='imdb',
                        choices=['imdb', 'elec', 'rotten', 'dbpedia', 'rcv1'])
    parser.add_argument('--eval',
                        dest='eval',
                        type=int,
                        default=0,
                        help='eval')
    parser.add_argument('--emb_dim',
                        dest='emb_dim',
                        type=int,
                        default=256,
                        help='emb_dim')
    parser.add_argument('--hidden_dim',
                        dest='hidden_dim',
                        type=int,
                        default=1024,
                        help='hidden_dim')
    parser.add_argument('--hidden_cls_dim',
                        dest='hidden_cls_dim',
                        type=int,
                        default=30,
                        help='hidden_cls_dim')
    parser.add_argument('--adaptive_softmax',
                        dest='adaptive_softmax',
                        type=int,
                        default=1,
                        help='adaptive_softmax')
    parser.add_argument('--random_seed',
                        dest='random_seed',
                        type=int,
                        default=1234,
                        help='random_seed')
    parser.add_argument('--n_class',
                        dest='n_class',
                        type=int,
                        default=2,
                        help='n_class')
    parser.add_argument('--word_only',
                        dest='word_only',
                        type=int,
                        default=0,
                        help='word_only')

    args = parser.parse_args()
    batchsize = args.batchsize
    batchsize_semi = args.batchsize_semi
    print(args)

    random.seed(args.random_seed)
    np.random.seed(args.random_seed)
    os.environ["CHAINER_SEED"] = str(args.random_seed)
    os.makedirs("models", exist_ok=True)

    if args.debug_mode:
        chainer.set_debug(True)

    use_unlabled_to_vocab = args.use_unlabled_to_vocab
    lower = args.lower == 1
    n_char_vocab = 1
    n_class = 2
    if args.dataset == 'imdb':
        vocab_obj, dataset, lm_data, t_vocab = utils.load_dataset_imdb(
            include_pretrain=use_unlabled_to_vocab,
            lower=lower,
            min_count=args.min_count,
            ignore_unk=args.ignore_unk,
            use_semi_data=args.use_semi_data,
            add_labeld_to_unlabel=args.add_labeld_to_unlabel)
        (train_x, train_x_len, train_y, dev_x, dev_x_len, dev_y, test_x,
         test_x_len, test_y) = dataset
        vocab, vocab_count = vocab_obj
        n_class = 2

    if args.use_semi_data:
        semi_train_x, semi_train_x_len = lm_data

    print('train_vocab_size:', t_vocab)

    vocab_inv = dict([(widx, w) for w, widx in vocab.items()])
    print('vocab_inv:', len(vocab_inv))

    xp = cuda.cupy if args.gpu >= 0 else np
    if args.gpu >= 0:
        cuda.get_device(args.gpu).use()
        xp.random.seed(args.random_seed)

    n_vocab = len(vocab)
    model = net.uniLSTM_VAT(n_vocab=n_vocab,
                            emb_dim=args.emb_dim,
                            hidden_dim=args.hidden_dim,
                            use_dropout=args.dropout,
                            n_layers=args.n_layers,
                            hidden_classifier=args.hidden_cls_dim,
                            use_adv=args.use_adv,
                            xi_var=args.xi_var,
                            n_class=n_class,
                            args=args)

    if args.pretrained_model != '':
        # load pretrained LM model
        pretrain_model = lm_nets.RNNForLM(
            n_vocab,
            1024,
            args.n_layers,
            0.50,
            share_embedding=False,
            adaptive_softmax=args.adaptive_softmax)
        serializers.load_npz(args.pretrained_model, pretrain_model)
        pretrain_model.lstm = pretrain_model.rnn
        model.set_pretrained_lstm(pretrain_model, word_only=args.word_only)

    if args.load_trained_lstm != '':
        serializers.load_hdf5(args.load_trained_lstm, model)

    if args.gpu >= 0:
        model.to_gpu()

    def evaluate(x_set, x_length_set, y_set):
        chainer.config.train = False
        chainer.config.enable_backprop = False
        iteration_list = range(0, len(x_set), batchsize)
        correct_cnt = 0
        total_cnt = 0.0
        predicted_np = []

        for i_index, index in enumerate(iteration_list):
            x = [to_gpu(_x) for _x in x_set[index:index + batchsize]]
            x_length = x_length_set[index:index + batchsize]
            y = to_gpu(y_set[index:index + batchsize])
            output = model(x, x_length)

            predict = xp.argmax(output.data, axis=1)
            correct_cnt += xp.sum(predict == y)
            total_cnt += len(y)

        accuracy = (correct_cnt / total_cnt) * 100.0
        chainer.config.enable_backprop = True
        return accuracy

    def get_unlabled(perm_semi, i_index):
        index = i_index * batchsize_semi
        sample_idx = perm_semi[index:index + batchsize_semi]
        x = [to_gpu(semi_train_x[_i]) for _i in sample_idx]
        x_length = [semi_train_x_len[_i] for _i in sample_idx]
        return x, x_length

    base_alpha = args.alpha
    opt = optimizers.Adam(alpha=base_alpha)
    opt.setup(model)
    opt.add_hook(chainer.optimizer.GradientClipping(args.clip))

    if args.freeze_word_emb:
        model.freeze_word_emb()

    prev_dev_accuracy = 0.0
    global_step = 0.0
    adv_rep_num_statics = {}
    adv_rep_pos_statics = {}

    if args.eval:
        dev_accuracy = evaluate(dev_x, dev_x_len, dev_y)
        log_str = ' [dev] accuracy:{}, length:{}'.format(str(dev_accuracy))
        logging.info(log_str)

        # test
        test_accuracy = evaluate(test_x, test_x_len, test_y)
        log_str = ' [test] accuracy:{}, length:{}'.format(str(test_accuracy))
        logging.info(log_str)

    for epoch in range(args.n_epoch):
        logging.info('epoch:' + str(epoch))
        # train
        model.cleargrads()
        chainer.config.train = True
        iteration_list = range(0, len(train_x), batchsize)

        # iteration_list_semi = range(0, len(semi_train_x), batchsize)
        perm = np.random.permutation(len(train_x))
        if args.use_semi_data:
            perm_semi = [
                np.random.permutation(len(semi_train_x)) for _ in range(2)
            ]
            perm_semi = np.concatenate(perm_semi, axis=0)
            # print 'perm_semi:', perm_semi.shape

        def idx_func(shape):
            return xp.arange(shape).astype(xp.int32)

        sum_loss = 0.0
        sum_loss_z = 0.0
        sum_loss_z_sparse = 0.0
        sum_loss_label = 0.0
        avg_rate = 0.0
        avg_rate_num = 0.0
        correct_cnt = 0
        total_cnt = 0.0
        N = len(iteration_list)
        is_adv_example_list = []
        is_adv_example_disc_list = []
        is_adv_example_disc_craft_list = []
        y_np = []
        predicted_np = []
        save_items = []
        for i_index, index in enumerate(iteration_list):
            global_step += 1.0
            model.set_train(True)
            sample_idx = perm[index:index + batchsize]
            x = [to_gpu(train_x[_i]) for _i in sample_idx]
            x_length = [train_x_len[_i] for _i in sample_idx]

            y = to_gpu(train_y[sample_idx])

            d = None

            # Classification loss
            output = model(x, x_length)
            output_original = output
            loss = F.softmax_cross_entropy(output, y, normalize=True)
            if args.use_adv or args.use_semi_data:
                # Adversarial Training
                if args.use_adv:
                    output = model(x, x_length, first_step=True, d=None)
                    # Adversarial loss (First step)
                    loss_adv_first = F.softmax_cross_entropy(output,
                                                             y,
                                                             normalize=True)
                    model.cleargrads()
                    loss_adv_first.backward()

                    if args.use_adv:
                        d = model.d_var.grad
                        d_data = d.data if isinstance(d,
                                                      chainer.Variable) else d
                    output = model(x, x_length, d=d)
                    # Adversarial loss
                    loss_adv = F.softmax_cross_entropy(output,
                                                       y,
                                                       normalize=True)
                    loss += loss_adv * args.nl_factor

                # Virtual Adversarial Training
                if args.use_semi_data:
                    x, length = get_unlabled(perm_semi, i_index)
                    output_original = model(x, length)
                    output_vat = model(x, length, first_step=True, d=None)
                    loss_vat_first = net.kl_loss(xp, output_original.data,
                                                 output_vat)
                    model.cleargrads()
                    loss_vat_first.backward()
                    d_vat = model.d_var.grad

                    output_vat = model(x, length, d=d_vat)
                    loss_vat = net.kl_loss(xp, output_original.data,
                                           output_vat)
                    loss += loss_vat

            predict = xp.argmax(output.data, axis=1)
            correct_cnt += xp.sum(predict == y)
            total_cnt += len(y)

            # update
            model.cleargrads()
            loss.backward()
            opt.update()

            if args.alpha_decay > 0.0:
                if args.use_exp_decay:
                    opt.hyperparam.alpha = (base_alpha) * (args.alpha_decay**
                                                           global_step)
                else:
                    opt.hyperparam.alpha *= args.alpha_decay  # 0.9999

            sum_loss += loss.data

        accuracy = (correct_cnt / total_cnt) * 100.0

        logging.info(' [train] sum_loss: {}'.format(sum_loss / N))
        logging.info(' [train] apha:{}, global_step:{}'.format(
            opt.hyperparam.alpha, global_step))
        logging.info(' [train] accuracy:{}'.format(accuracy))

        model.set_train(False)
        # dev
        dev_accuracy = evaluate(dev_x, dev_x_len, dev_y)
        log_str = ' [dev] accuracy:{}'.format(str(dev_accuracy))
        logging.info(log_str)

        # test
        test_accuracy = evaluate(test_x, test_x_len, test_y)
        log_str = ' [test] accuracy:{}'.format(str(test_accuracy))
        logging.info(log_str)

        last_epoch_flag = args.n_epoch - 1 == epoch
        if prev_dev_accuracy < dev_accuracy:
            logging.info(' => '.join(
                [str(prev_dev_accuracy),
                 str(dev_accuracy)]))
            result_str = 'dev_acc_' + str(dev_accuracy)
            result_str += '_test_acc_' + str(test_accuracy)
            model_filename = './models/' + '_'.join(
                [args.save_name, str(epoch), result_str])
            serializers.save_hdf5(model_filename + '.model', model)

            prev_dev_accuracy = dev_accuracy
Ejemplo n.º 35
0
 def setUp(self):
     self.x = numpy.random.uniform(-1, 1, (1, 2)).astype(numpy.float32)
     self.t = numpy.array([self.t_value], dtype=numpy.int32)
     self.original_debug = chainer.is_debug()
     chainer.set_debug(True)
Ejemplo n.º 36
0
 def tearDown(self):
     chainer.set_debug(self.original_debug)
Ejemplo n.º 37
0
parser.add_argument('--seed', default=0, type=int, help='random seed')
parser.add_argument('--batchsize', default=128, type=int, help='batchsize')
parser.add_argument('--iteration', default=100000, type=int, help='iteration')
parser.add_argument('--a-dim', default=100, type=int)
parser.add_argument('--z-dim', default=100, type=int)
parser.add_argument('--h-dim', default=500, type=int)
parser.add_argument('--beta', default=1, type=float)
parser.add_argument('--alpha', default=3e-4, type=float)
parser.add_argument('--debug', action='store_true')
parser.add_argument('--verbose', action='store_true')
parser.add_argument('--binarize', action='store_true')
parser.add_argument('--pruning', action='store_true')
args = parser.parse_args()

if args.debug:
    chainer.set_debug(True)


np.random.seed(args.seed)
if args.gpu >= 0:
    cuda.cupy.random.seed(args.seed)


(x_labeled, y_labeled, x_test, y_test,
 x_unlabeled, D, T) = data.load_mnist(pruning=args.pruning)
labeled_data = feeder.DataFeeder((x_labeled, y_labeled))
test_data = feeder.DataFeeder((x_test, y_test))
unlabeled_data = feeder.DataFeeder(x_unlabeled)
N_labeled = len(labeled_data)
N_unlabeled = len(unlabeled_data)
Ejemplo n.º 38
0
 def setUp(self):
     self.x = np.array([1], np.float32)
     chainer.set_debug(True)
Ejemplo n.º 39
0
def main():

    parser = argparse.ArgumentParser()
    parser.add_argument('--outdir',
                        type=str,
                        default='results',
                        help='Directory path to save output files.'
                        ' If it does not exist, it will be created.')
    parser.add_argument(
        '--env',
        type=str,
        choices=[
            'Pendulum-v0', 'AntBulletEnv-v0', 'HalfCheetahBulletEnv-v0',
            'HumanoidBulletEnv-v0', 'HopperBulletEnv-v0',
            'Walker2DBulletEnv-v0'
        ],
        help=
        'OpenAI Gym env and Pybullet (roboschool) env to perform algorithm on.'
    )
    parser.add_argument('--num-envs',
                        type=int,
                        default=1,
                        help='Number of envs run in parallel.')
    parser.add_argument('--seed',
                        type=int,
                        default=0,
                        help='Random seed [0, 2 ** 32)')
    parser.add_argument('--gpu',
                        type=int,
                        default=0,
                        help='GPU to use, set to -1 if no GPU.')
    parser.add_argument('--load',
                        type=str,
                        default='',
                        help='Directory to load agent from.')
    parser.add_argument(
        '--expert-num-episode',
        type=int,
        default=0,
        help='the number of expert trajectory, if 0, no create demo mode.')
    parser.add_argument('--steps',
                        type=int,
                        default=10**6,
                        help='Total number of timesteps to train the agent.')
    parser.add_argument('--eval-n-runs',
                        type=int,
                        default=10,
                        help='Number of episodes run for each evaluation.')
    parser.add_argument('--eval-interval',
                        type=int,
                        default=5000,
                        help='Interval in timesteps between evaluations.')
    parser.add_argument('--replay-start-size',
                        type=int,
                        default=10000,
                        help='Minimum replay buffer size before ' +
                        'performing gradient updates.')
    parser.add_argument('--batch-size',
                        type=int,
                        default=256,
                        help='Minibatch size')
    parser.add_argument('--render',
                        action='store_true',
                        help='Render env states in a GUI window.')
    parser.add_argument('--demo',
                        action='store_true',
                        help='Just run evaluation, not training.')
    parser.add_argument('--monitor',
                        action='store_true',
                        help='Wrap env with gym.wrappers.Monitor.')
    parser.add_argument('--log-interval',
                        type=int,
                        default=1000,
                        help='Interval in timesteps between outputting log'
                        ' messages during training')
    parser.add_argument('--logger-level',
                        type=int,
                        default=logging.INFO,
                        help='Level of the root logger.')
    parser.add_argument('--policy-output-scale',
                        type=float,
                        default=1.,
                        help='Weight initialization scale of polity output.')
    parser.add_argument('--debug', action='store_true', help='Debug mode.')
    args = parser.parse_args()

    logging.basicConfig(level=args.logger_level)

    if args.debug:
        chainer.set_debug(True)
    if args.expert_num_episode == 0:
        args.outdir = experiments.prepare_output_dir(
            args,
            args.outdir,
            argv=sys.argv,
            time_format=f'{args.env}_{args.seed}')
    else:
        args.outdir = experiments.prepare_output_dir(
            args,
            args.outdir,
            argv=sys.argv,
            time_format=f'{args.env}_{args.expert_num_episode}expert')
        args.replay_start_size = 1e8
    print('Output files are saved in {}'.format(args.outdir))

    # Set a random seed used in ChainerRL
    misc.set_random_seed(args.seed, gpus=(args.gpu, ))

    # Set different random seeds for different subprocesses.
    # If seed=0 and processes=4, subprocess seeds are [0, 1, 2, 3].
    # If seed=1 and processes=4, subprocess seeds are [4, 5, 6, 7].
    process_seeds = np.arange(args.num_envs) + args.seed * args.num_envs
    assert process_seeds.max() < 2**32

    def make_env(process_idx, test):
        env = gym.make(args.env)
        # Unwrap TimiLimit wrapper
        assert isinstance(env, gym.wrappers.TimeLimit)
        env = env.env
        # Use different random seeds for train and test envs
        process_seed = int(process_seeds[process_idx])
        env_seed = 2**32 - 1 - process_seed if test else process_seed
        env.seed(env_seed)

        if isinstance(env.observation_space, Box):
            # Cast observations to float32 because our model uses float32
            env = chainerrl.wrappers.CastObservationToFloat32(env)
        else:
            env = atari_wrappers.wrap_deepmind(atari_wrappers.make_atari(
                args.env, max_frames=None),
                                               episode_life=not test,
                                               clip_rewards=not test)

        if isinstance(env.action_space, Box):
            # Normalize action space to [-1, 1]^n
            env = wrappers.NormalizeActionSpace(env)
        if args.monitor:
            env = gym.wrappers.Monitor(env, args.outdir)
        if args.render:
            env = chainerrl.wrappers.Render(env)
        return env

    def make_batch_env(test):
        return chainerrl.envs.MultiprocessVectorEnv([
            functools.partial(make_env, idx, test)
            for idx, env in enumerate(range(args.num_envs))
        ])

    sample_env = make_env(process_idx=0, test=False)
    timestep_limit = sample_env.spec.tags.get(
        'wrapper_config.TimeLimit.max_episode_steps')
    obs_space = sample_env.observation_space
    action_space = sample_env.action_space
    print('Observation space:', obs_space)
    print('Action space:', action_space)

    if isinstance(obs_space, Box):
        head = network.FCHead()
        phi = lambda x: x

    else:
        head = network.CNNHead(n_input_channels=4)
        phi = lambda x: np.asarray(x, dtype=np.float32) / 255

    if isinstance(action_space, Box):
        action_size = action_space.low.size
        policy = network.GaussianPolicy(copy.deepcopy(head), action_size)
        q_func1 = network.QSAFunction(copy.deepcopy(head), action_size)
        q_func2 = network.QSAFunction(copy.deepcopy(head), action_size)

        def burnin_action_func():
            """Select random actions until model is updated one or more times."""
            return np.random.uniform(action_space.low,
                                     action_space.high).astype(np.float32)

    else:
        action_size = action_space.n

        policy = network.SoftmaxPolicy(copy.deepcopy(head), action_size)
        q_func1 = network.QSFunction(copy.deepcopy(head), action_size)
        q_func2 = network.QSFunction(copy.deepcopy(head), action_size)

        def burnin_action_func():
            return np.random.randint(0, action_size)

    policy_optimizer = optimizers.Adam(3e-4).setup(policy)
    q_func1_optimizer = optimizers.Adam(3e-4).setup(q_func1)
    q_func2_optimizer = optimizers.Adam(3e-4).setup(q_func2)

    # Draw the computational graph and save it in the output directory.
    # fake_obs = chainer.Variable(
    #     policy.xp.zeros_like(obs_space.low, dtype=np.float32)[None],
    #     name='observation')
    # fake_action = chainer.Variable(
    #     policy.xp.zeros_like(action_space.low, dtype=np.float32)[None],
    #     name='action')
    # chainerrl.misc.draw_computational_graph(
    #     [policy(fake_obs)], os.path.join(args.outdir, 'policy'))
    # chainerrl.misc.draw_computational_graph(
    #     [q_func1(fake_obs, fake_action)], os.path.join(args.outdir, 'q_func1'))
    # chainerrl.misc.draw_computational_graph(
    #     [q_func2(fake_obs, fake_action)], os.path.join(args.outdir, 'q_func2'))

    rbuf = replay_buffer.ReplayBuffer(10**6)

    # Hyperparameters in http://arxiv.org/abs/1802.09477
    agent = sac.SoftActorCritic(
        policy,
        q_func1,
        q_func2,
        policy_optimizer,
        q_func1_optimizer,
        q_func2_optimizer,
        rbuf,
        gamma=0.99,
        is_discrete=isinstance(action_space, Discrete),
        replay_start_size=args.replay_start_size,
        gpu=args.gpu,
        minibatch_size=args.batch_size,
        phi=phi,
        burnin_action_func=burnin_action_func,
        entropy_target=-action_size if isinstance(action_space, Box) else
        -np.log((1.0 / action_size)) * 0.98,
        temperature_optimizer=chainer.optimizers.Adam(3e-4),
    )

    if len(args.load) > 0:
        agent.load(args.load, args.expert_num_episode == 0)

    if args.demo:
        eval_stats = experiments.eval_performance(
            env=make_env(process_idx=0, test=True),
            agent=agent,
            n_steps=None,
            n_episodes=args.eval_n_runs,
            max_episode_len=timestep_limit,
        )
        print('n_runs: {} mean: {} median: {} stdev {}'.format(
            args.eval_n_runs, eval_stats['mean'], eval_stats['median'],
            eval_stats['stdev']))
    elif args.expert_num_episode > 0:
        episode_r = 0
        env = sample_env
        episode_len = 0
        t = 0
        logger = logging.getLogger(__name__)
        episode_results = []
        try:
            for ep in range(args.expert_num_episode):
                obs = env.reset()
                r = 0
                while True:
                    # a_t
                    action = agent.act_and_train(obs, r)
                    # o_{t+1}, r_{t+1}
                    obs, r, done, info = env.step(action)
                    t += 1
                    episode_r += r
                    episode_len += 1
                    reset = (episode_len == timestep_limit
                             or info.get('needs_reset', False))
                    if done or reset:
                        agent.stop_episode_and_train(obs, r, done=done)
                        logger.info('outdir:%s step:%s episode:%s R:%s',
                                    args.outdir, t, ep, episode_r)
                        episode_results.append(episode_r)
                        episode_r = 0
                        episode_len = 0
                        break
            logger.info('mean: %s',
                        sum(episode_results) / len(episode_results))
        except (Exception, KeyboardInterrupt):
            raise

        # Save
        save_name = os.path.join(
            os.path.join('demos', f'{args.expert_num_episode}_episode'),
            args.env)
        makedirs(save_name, exist_ok=True)
        agent.replay_buffer.save(os.path.join(save_name, 'replay'))
    else:
        experiments.train_agent_with_evaluation(
            agent=agent,
            env=make_env(process_idx=0, test=False),
            eval_env=make_env(process_idx=0, test=True),
            outdir=args.outdir,
            steps=args.steps,
            eval_n_steps=None,
            eval_n_episodes=args.eval_n_runs,
            eval_interval=args.eval_interval,
            # log_interval=args.log_interval,
            train_max_episode_len=timestep_limit,
            eval_max_episode_len=timestep_limit,
        )
Ejemplo n.º 40
0
 def setUp(self):
     self.x = np.array([1], np.float32)
     chainer.set_debug(True)
Ejemplo n.º 41
0
 def setUp(self):
     self.x = numpy.random.uniform(-1, 1, (2, 2)).astype(numpy.float32)
     # `0` is required to avoid NaN
     self.t = numpy.array([self.t_value, 0], dtype=numpy.int32)
     self.original_debug = chainer.is_debug()
     chainer.set_debug(True)
 def setUp(self):
     self.x = numpy.random.uniform(-1, 1, (2, 2)).astype(numpy.float32)
     # `0` is required to avoid NaN
     self.t = numpy.array([self.t_value, 0], dtype=numpy.int32)
     self.original_debug = chainer.is_debug()
     chainer.set_debug(True)
Ejemplo n.º 43
0
def main(args):
    chainer.set_debug(True)
    # Initialize the model to train
    model = models.archs[args.arch]()
    if args.finetune and hasattr(model, 'finetuned_model_path'):
        utils.finetuning.load_param(model.finetuned_model_path, model,
                                    args.ignore)
    if args.initmodel:
        print('Load model from', args.initmodel)
        chainer.serializers.load_npz(args.initmodel, model)
    if args.gpu >= 0:
        chainer.cuda.get_device(args.gpu).use()  # Make the GPU current
        #if args.test:
        #cuda.cudnn_enabled = False
        model.to_gpu()

    nowt = datetime.datetime.today()
    outputdir = os.path.join(args.out, args.arch, 'extract')
    if args.initmodel is not None:
        outputdir = os.path.dirname(args.initmodel)
        if args.indices is None:
            args.indices = os.path.join(outputdir, 'features',
                                        'top_' + args.layer + '.txt')
    # Load the datasets and mean file
    mean = None
    if hasattr(model, 'mean_value'):
        mean = makeMeanImage(model.mean_value)
    else:
        mean = np.load(args.mean)
    assert mean is not None

    if args.indices is None:
        args.indices = os.path.join(args.out, args.arch, 'extract',
                                    'top_' + args.layer + '.txt')

    #top_path = os.path.join(args.out, args.arch, 'extract', 'top_' + args.layer + '.txt')
    #train = ppds.PreprocessedDataset(args.train, args.root, mean, model.insize)
    val = ppds.PreprocessedDataset(args.val, args.root, mean, model.insize,
                                   False, args.indices)
    # These iterators load the images with subprocesses running in parallel to
    # the training/validation.
    #train_iter = chainer.iterators.MultiprocessIterator(
    #    train, args.batchsize, shuffle=False, n_processes=args.loaderjob)
    #val_iter = chainer.iterators.MultiprocessIterator(
    #    val, args.val_batchsize, repeat=False, shuffle=False, n_processes=args.loaderjob)
    val_iter = chainer.iterators.SerialIterator(val,
                                                args.val_batchsize,
                                                repeat=False,
                                                shuffle=False)

    # Set up an optimizer
    optimizer = chainer.optimizers.MomentumSGD()
    optimizer.setup(model)

    # Set up a trainer
    updater = training.StandardUpdater(val_iter, optimizer, device=args.gpu)
    trainer = training.Trainer(updater, (1, 'epoch'), outputdir)

    #val_interval = (10 if args.test else int(len(train) / args.batchsize)), 'iteration'
    val_interval = (1, 'iteration')
    #snapshot_interval = (10, 'iteration') if args.test else (2, 'epoch')
    log_interval = (10, 'iteration')

    # Copy the chain with shared parameters to flip 'train' flag only in test
    eval_model = model.copy()
    eval_model.train = False
    val_acquirer = utils.DeconvAcquirer(val_iter, eval_model, device=args.gpu)
    val_acquirer.mean = mean
    val_acquirer.layer_rank = eval_model.layer_rank[args.layer]
    val_acquirer.layer_name = args.layer
    val_acquirer.operation = args.operation
    val_acquirer.fixed_RMS = args.rms
    val_acquirer.top = args.top
    val_acquirer.n_features = val.cols
    if 'googlenet' in args.arch:
        val_acquirer.lastname = 'validation/main/loss3'
    trainer.extend(val_acquirer, trigger=val_interval)
    #trainer.extend(extensions.dump_graph('main/loss'))
    #trainer.extend(extensions.snapshot(), trigger=snapshot_interval)
    #trainer.extend(extensions.snapshot_object(
    #    model, 'model_iter_{.updater.iteration}'), trigger=snapshot_interval)
    # Be careful to pass the interval directly to LogReport
    # (it determines when to emit log rather than when to read observations)
    #trainer.extend(extensions.LogReport(trigger=log_interval))
    trainer.extend(extensions.PrintReport([
        'epoch',
        'iteration',
        'main/loss',
        'validation/main/loss',
        'main/accuracy',
        'validation/main/accuracy',
    ]),
                   trigger=log_interval)
    trainer.extend(extensions.ProgressBar(update_interval=10))
    #trainer.extend(extensions.ExponentialShift('lr', args.gamma),
    #    trigger=(1, 'epoch'))

    if args.resume:
        chainer.serializers.load_npz(args.resume, trainer)

    #if not args.test:
    #    trainer.run()
    #    chainer.serializers.save_npz(outputdir + '/model', model)

    results = val_acquirer(trainer)
    results['outputdir'] = outputdir

    #if eval_model.layer_rank[args.layer] == 1:
    #    save_first_conv_filter(os.path.join(outputdir, args.layer),
    #    model[args.layer].W.data, cols = args.cols, pad = args.pad,
    #    scale = args.scale, gamma = args.gamma)

    #if args.test:
    #print(val_acquirer.confmat)
    #categories = utils.io.load_categories(args.categories)
    #confmat_csv_name = args.initmodel + '.csv'
    #confmat_fig_name = args.initmodel + '.eps'
    #utils.io.save_confmat_csv(confmat_csv_name, val_acquirer.confmat, categories)
    #utils.io.save_confmat_fig(confmat_fig_name, val_acquirer.confmat, categories,
    #                        mode="rate", saveFormat="eps")
    return results
Ejemplo n.º 44
0
 def tearDown(self):
     chainer.set_debug(self.default_debug)
Ejemplo n.º 45
0
 def setUp(self):
     self.x = numpy.random.uniform(-1, 1, (1, 2)).astype(numpy.float32)
     self.t = numpy.array([self.t_value], dtype=numpy.int32)
     self.original_debug = chainer.is_debug()
     chainer.set_debug(True)
Ejemplo n.º 46
0
 def setUp(self):
     self.original_debug = chainer.is_debug()
     chainer.set_debug(True)
     self.one = numpy.array([1], numpy.float32)
     self.f = chainer.Function()
Ejemplo n.º 47
0
 def setUp(self):
     self.x = numpy.arange(10).reshape((2, 5)).astype('f')
     self.ind = numpy.array(self.indices, 'i')
     self.debug = chainer.is_debug()
     chainer.set_debug(True)
Ejemplo n.º 48
0
 def tearDown(self):
     chainer.set_debug(self.original_debug)
Ejemplo n.º 49
0
def main():
    args = parse_args()
    if args.debug:
        logging.basicConfig(level=logging.DEBUG)
    else:
        logging.basicConfig(level=logging.INFO)
    config = configparser.ConfigParser()

    logger.info("read {}".format(args.config_path))
    config.read(args.config_path, "UTF-8")
    logger.info("setup devices")
    if chainer.backends.cuda.available:
        devices = setup_devices(config["training_param"]["gpus"])
    else:
        # cpu run
        devices = {"main": -1}
    seed = config.getint("training_param", "seed")
    logger.info("set random seed {}".format(seed))
    set_random_seed(devices, seed)

    result = os.path.expanduser(config["result"]["dir"])
    destination = os.path.join(result, "pose")
    logger.info("> copy code to {}".format(os.path.join(result, "src")))
    save_files(result)
    logger.info("> copy config file to {}".format(destination))
    if not os.path.exists(destination):
        os.makedirs(destination)
    shutil.copy(args.config_path, os.path.join(destination, "config.ini"))

    logger.info("{} chainer debug".format("enable" if args.debug else "disable"))
    chainer.set_debug(args.debug)
    chainer.global_config.autotune = True
    chainer.cuda.set_max_workspace_size(11388608)
    chainer.config.cudnn_fast_batch_normalization = True

    logger.info("> get dataset")
    train_set, val_set, hand_param = select_dataset(config, return_data=["train_set", "val_set", "hand_param"])
    model = select_model(config, hand_param)

    logger.info("> transform dataset")
    train_set = TransformDataset(train_set, model.encode)
    val_set = TransformDataset(val_set, model.encode)
    logger.info("> size of train_set is {}".format(len(train_set)))
    logger.info("> size of val_set is {}".format(len(val_set)))
    logger.info("> create iterators")
    batch_size = config.getint("training_param", "batch_size")
    n_processes = config.getint("training_param", "n_processes")

    train_iter = chainer.iterators.MultiprocessIterator(
        train_set, batch_size,
        n_processes=n_processes
    )
    test_iter = chainer.iterators.MultiprocessIterator(
        val_set, batch_size,
        repeat=False, shuffle=False,
        n_processes=n_processes,
    )

    logger.info("> setup optimizer")
    optimizer = chainer.optimizers.MomentumSGD()
    optimizer.setup(model)
    optimizer.add_hook(chainer.optimizer.WeightDecay(0.0005))

    logger.info("> setup parallel updater devices={}".format(devices))
    updater = training.updaters.ParallelUpdater(train_iter, optimizer, devices=devices)

    logger.info("> setup trainer")
    trainer = training.Trainer(
        updater,
        (config.getint("training_param", "train_iter"), "iteration"),
        destination,
    )

    logger.info("> setup extensions")
    trainer.extend(
        extensions.LinearShift("lr",
                               value_range=(config.getfloat("training_param", "learning_rate"), 0),
                               time_range=(0, config.getint("training_param", "train_iter"))
                               ),
        trigger=(1, "iteration")
    )

    trainer.extend(extensions.Evaluator(test_iter, model, device=devices["main"]))
    if extensions.PlotReport.available():
        trainer.extend(extensions.PlotReport([
            "main/loss", "validation/main/loss",
        ], "epoch", file_name="loss.png"))
    trainer.extend(extensions.LogReport())
    trainer.extend(extensions.observe_lr())
    trainer.extend(extensions.PrintReport([
        "epoch", "elapsed_time", "lr",
        "main/loss", "validation/main/loss",
        "main/loss_resp", "validation/main/loss_resp",
        "main/loss_iou", "validation/main/loss_iou",
        "main/loss_coor", "validation/main/loss_coor",
        "main/loss_size", "validation/main/loss_size",
        "main/loss_limb", "validation/main/loss_limb",
        "main/loss_vect_cos", "validation/main/loss_vect_cos",
        "main/loss_vect_norm", "validation/main/loss_vect_cos",
        "main/loss_vect_square", "validation/main/loss_vect_square",
    ]))
    trainer.extend(extensions.ProgressBar())

    trainer.extend(extensions.snapshot(filename="best_snapshot"),
                   trigger=training.triggers.MinValueTrigger("validation/main/loss"))
    trainer.extend(extensions.snapshot_object(model, filename="bestmodel.npz"),
                   trigger=training.triggers.MinValueTrigger("validation/main/loss"))

    logger.info("> start training")
    trainer.run()