Ejemplo n.º 1
0
def main():
    parser = argparse.ArgumentParser()
    parser.add_argument('--model',
                        choices=('fcis_resnet101'),
                        default='fcis_resnet101')
    parser.add_argument('--pretrained_model')
    parser.add_argument('--iou-thresh', type=float, default=0.5)
    parser.add_argument('--gpu', type=int, default=-1)
    args = parser.parse_args()

    if args.model == 'fcis_resnet101':
        if args.pretrained_model:
            model = FCISResNet101(
                n_fg_class=len(sbd_instance_segmentation_label_names),
                pretrained_model=args.pretrained_model)
        else:
            model = FCISResNet101(pretrained_model='sbd')

    model.use_preset('evaluate')

    if args.gpu >= 0:
        chainer.cuda.get_device_from_id(args.gpu).use()
        model.to_gpu()

    dataset = SBDInstanceSegmentationDataset(split='val')
    iterator = iterators.SerialIterator(dataset,
                                        1,
                                        repeat=False,
                                        shuffle=False)

    in_values, out_values, rest_values = apply_to_iterator(model.predict,
                                                           iterator,
                                                           hook=ProgressHook(
                                                               len(dataset)))
    # delete unused iterators explicitly
    del in_values

    pred_masks, pred_labels, pred_scores = out_values
    gt_masks, gt_labels = rest_values

    result = eval_instance_segmentation_voc(pred_masks,
                                            pred_labels,
                                            pred_scores,
                                            gt_masks,
                                            gt_labels,
                                            args.iou_thresh,
                                            use_07_metric=True)

    print('')
    print('mAP: {:f}'.format(result['map']))
    for l, name in enumerate(sbd_instance_segmentation_label_names):
        if result['ap'][l]:
            print('{:s}: {:f}'.format(name, result['ap'][l]))
        else:
            print('{:s}: -'.format(name))
Ejemplo n.º 2
0
    def test_pretrained(self):
        kwargs = {
            'n_fg_class': self.n_fg_class,
            'pretrained_model': self.pretrained_model,
        }

        if self.pretrained_model == 'sbd':
            valid = self.n_fg_class in {None, 20}

        if valid:
            FCISResNet101(**kwargs)
        else:
            with self.assertRaises(ValueError):
                FCISResNet101(**kwargs)
Ejemplo n.º 3
0
def main():
    parser = argparse.ArgumentParser()
    parser.add_argument('--gpu', type=int, default=-1)
    parser.add_argument('--pretrained-model', default='sbd')
    parser.add_argument('image')
    args = parser.parse_args()

    model = FCISResNet101(
        n_fg_class=20, pretrained_model=args.pretrained_model)

    if args.gpu >= 0:
        chainer.cuda.get_device_from_id(args.gpu).use()
        model.to_gpu()

    img = read_image(args.image, color=True)

    masks, labels, scores = model.predict([img])
    mask, label, score = masks[0], labels[0], scores[0]
    bbox = mask_to_bbox(mask)
    colors = voc_colormap(list(range(1, len(mask) + 1)))
    ax = vis_bbox(
        img, bbox, instance_colors=colors, alpha=0.5, linewidth=1.5)
    vis_instance_segmentation(
        None, mask, label, score,
        label_names=sbd_instance_segmentation_label_names,
        instance_colors=colors, alpha=0.7, ax=ax)
    plt.show()
Ejemplo n.º 4
0
def main():
    parser = argparse.ArgumentParser()
    parser.add_argument('--gpu', type=int, default=-1)
    parser.add_argument('--pretrained-model', default=None)
    parser.add_argument('--dataset', choices=('sbd', 'coco'), default='sbd')
    parser.add_argument('image')
    args = parser.parse_args()

    if args.dataset == 'sbd':
        if args.pretrained_model is None:
            args.pretrained_model = 'sbd'
        label_names = sbd_instance_segmentation_label_names
        model = FCISResNet101(n_fg_class=len(label_names),
                              pretrained_model=args.pretrained_model)
    elif args.dataset == 'coco':
        if args.pretrained_model is None:
            args.pretrained_model = 'coco'
        label_names = coco_instance_segmentation_label_names
        proposal_creator_params = FCISResNet101.proposal_creator_params
        proposal_creator_params['min_size'] = 2
        model = FCISResNet101(n_fg_class=len(label_names),
                              anchor_scales=(4, 8, 16, 32),
                              pretrained_model=args.pretrained_model,
                              proposal_creator_params=proposal_creator_params)

    if args.gpu >= 0:
        chainer.cuda.get_device_from_id(args.gpu).use()
        model.to_gpu()

    img = read_image(args.image, color=True)

    masks, labels, scores = model.predict([img])
    mask, label, score = masks[0], labels[0], scores[0]
    bbox = mask_to_bbox(mask)
    colors = voc_colormap(list(range(1, len(mask) + 1)))
    ax = vis_bbox(img, bbox, instance_colors=colors, alpha=0.5, linewidth=1.5)
    vis_instance_segmentation(None,
                              mask,
                              label,
                              score,
                              label_names=label_names,
                              instance_colors=colors,
                              alpha=0.7,
                              ax=ax)
    plt.show()
Ejemplo n.º 5
0
    def test_pretrained(self):
        kwargs = {
            'n_fg_class': self.n_fg_class,
            'anchor_scales': self.anchor_scales,
            'pretrained_model': self.pretrained_model,
        }

        if self.pretrained_model.startswith('sbd'):
            valid = self.n_fg_class in [None, 20]
            valid = valid and self.anchor_scales == (8, 16, 32)
        elif self.pretrained_model.startswith('coco'):
            valid = self.n_fg_class in [None, 80]
            valid = valid and self.anchor_scales == (4, 8, 16, 32)

        if valid:
            FCISResNet101(**kwargs)
        else:
            with self.assertRaises(ValueError):
                FCISResNet101(**kwargs)
Ejemplo n.º 6
0
def main():
    parser = argparse.ArgumentParser(
        description='Script to convert mxnet params to chainer npz')
    parser.add_argument('mxnet_param_file',
                        metavar='mxnet-param-file',
                        help='Mxnet param file i.e. fcis_coco-0000.params')
    parser.add_argument('--process', action='store_true')
    parser.add_argument('--dataset',
                        choices=('sbd', 'coco'),
                        type=str,
                        default='sbd')
    parser.add_argument('--out', '-o', type=str, default=None)
    args = parser.parse_args()

    if args.dataset == 'sbd':
        model = FCISResNet101(n_fg_class=20, pretrained_model=None)
    elif args.dataset == 'coco':
        model = FCISResNet101(n_fg_class=80,
                              pretrained_model=None,
                              anchor_scales=[4, 8, 16, 32],
                              proposal_creator_params={
                                  'nms_thresh': 0.7,
                                  'n_train_pre_nms': 6000,
                                  'n_train_post_nms': 300,
                                  'n_test_pre_nms': 6000,
                                  'n_test_post_nms': 300,
                                  'force_cpu_nms': False,
                                  'min_size': 2
                              })
    params = mx.nd.load(args.mxnet_param_file)
    print('mxnet param is loaded: {}'.format(args.mxnet_param_file))
    print('start conversion')
    if args.process:
        tests = [k for k in params.keys() if k.endswith('_test')]
        for test in tests:
            params[test.replace('_test', '')] = params.pop(test)
    model = convert(model, params)
    print('finish conversion')
    if args.out is None:
        out = 'fcis_resnet101_{}_converted.npz'.format(args.dataset)
    print('saving to {}'.format(out))
    chainer.serializers.save_npz(out, model)
Ejemplo n.º 7
0
    def setUp(self):
        proposal_creator_params = {
            'n_train_post_nms': self.n_train_post_nms,
            'n_test_post_nms': self.n_test_post_nms,
        }
        self.link = FCISResNet101(
            self.n_fg_class, pretrained_model=None,
            iter2=self.iter2,
            proposal_creator_params=proposal_creator_params)

        chainer.config.train = self.train
Ejemplo n.º 8
0
    def setUp(self):
        proposal_creator_params = {
            'n_train_post_nms': self.n_train_post_nms,
            'n_test_post_nms': self.n_test_post_nms,
        }
        self.model = FCISTrainChain(
            FCISResNet101(self.n_fg_class,
                          pretrained_model=None,
                          iter2=False,
                          proposal_creator_params=proposal_creator_params))

        self.masks = np.random.randint(0, 2, size=(1, self.n_bbox, 600,
                                                   800)).astype(np.bool)
        self.labels = np.random.randint(0,
                                        self.n_fg_class,
                                        size=(1, self.n_bbox)).astype(np.int32)
        self.imgs = _random_array(np, (1, 3, 600, 800))
        self.scale = np.array(1.)
Ejemplo n.º 9
0
def main():
    parser = argparse.ArgumentParser()
    parser.add_argument('--model',
                        choices=('fcis_resnet101', ),
                        default='fcis_resnet101')
    parser.add_argument('--pretrained-model', default=None)
    parser.add_argument('--gpu', type=int, default=-1)
    args = parser.parse_args()

    if args.model == 'fcis_resnet101':
        if args.pretrained_model is None:
            args.pretrained_model = 'coco'
        proposal_creator_params = FCISResNet101.proposal_creator_params
        proposal_creator_params['min_size'] = 2
        model = FCISResNet101(
            n_fg_class=len(coco_instance_segmentation_label_names),
            anchor_scales=(4, 8, 16, 32),
            pretrained_model=args.pretrained_model,
            proposal_creator_params=proposal_creator_params)

    model.use_preset('coco_evaluate')

    if args.gpu >= 0:
        chainer.cuda.get_device_from_id(args.gpu).use()
        model.to_gpu()

    dataset = COCOInstanceSegmentationDataset(split='minival',
                                              year='2014',
                                              use_crowded=True,
                                              return_crowded=True,
                                              return_area=True)
    iterator = iterators.SerialIterator(dataset,
                                        1,
                                        repeat=False,
                                        shuffle=False)

    in_values, out_values, rest_values = apply_to_iterator(model.predict,
                                                           iterator,
                                                           hook=ProgressHook(
                                                               len(dataset)))
    # delete unused iterators explicitly
    del in_values

    pred_masks, pred_labels, pred_scores = out_values
    gt_masks, gt_labels, gt_areas, gt_crowdeds = rest_values

    result = eval_instance_segmentation_coco(pred_masks, pred_labels,
                                             pred_scores, gt_masks, gt_labels,
                                             gt_areas, gt_crowdeds)

    keys = [
        'map/iou=0.50:0.95/area=all/max_dets=100',
        'map/iou=0.50/area=all/max_dets=100',
        'map/iou=0.75/area=all/max_dets=100',
        'map/iou=0.50:0.95/area=small/max_dets=100',
        'map/iou=0.50:0.95/area=medium/max_dets=100',
        'map/iou=0.50:0.95/area=large/max_dets=100',
        'mar/iou=0.50:0.95/area=all/max_dets=1',
        'mar/iou=0.50:0.95/area=all/max_dets=10',
        'mar/iou=0.50:0.95/area=all/max_dets=100',
        'mar/iou=0.50:0.95/area=small/max_dets=100',
        'mar/iou=0.50:0.95/area=medium/max_dets=100',
        'mar/iou=0.50:0.95/area=large/max_dets=100',
    ]

    print('')
    for key in keys:
        print('{:s}: {:f}'.format(key, result[key]))
Ejemplo n.º 10
0
def main():
    parser = argparse.ArgumentParser(
        description='ChainerCV training example: FCIS')
    parser.add_argument('--gpu', '-g', type=int, default=-1)
    parser.add_argument('--out',
                        '-o',
                        default='result',
                        help='Output directory')
    parser.add_argument('--seed', '-s', type=int, default=0)
    parser.add_argument('--lr', '-l', type=float, default=0.0005)
    parser.add_argument('--lr-cooldown-factor',
                        '-lcf',
                        type=float,
                        default=0.1)
    parser.add_argument('--epoch', '-e', type=int, default=42)
    parser.add_argument('--cooldown-epoch', '-ce', type=int, default=28)
    args = parser.parse_args()

    np.random.seed(args.seed)

    # dataset
    train_dataset = SBDInstanceSegmentationDataset(split='train')
    test_dataset = SBDInstanceSegmentationDataset(split='val')

    # model
    fcis = FCISResNet101(n_fg_class=len(sbd_instance_segmentation_label_names),
                         pretrained_model='imagenet',
                         iter2=False)
    fcis.use_preset('evaluate')
    model = FCISTrainChain(fcis)

    # gpu
    if args.gpu >= 0:
        chainer.cuda.get_device_from_id(args.gpu).use()
        model.to_gpu()

    # optimizer
    optimizer = chainer.optimizers.MomentumSGD(lr=args.lr, momentum=0.9)
    optimizer.setup(model)

    model.fcis.head.conv1.W.update_rule.add_hook(GradientScaling(3.0))
    model.fcis.head.conv1.b.update_rule.add_hook(GradientScaling(3.0))
    optimizer.add_hook(chainer.optimizer.WeightDecay(rate=0.0005))

    for param in model.params():
        if param.name in ['beta', 'gamma']:
            param.update_rule.enabled = False
    model.fcis.extractor.conv1.disable_update()
    model.fcis.extractor.res2.disable_update()

    train_dataset = TransformDataset(train_dataset, Transform(model.fcis))

    # iterator
    train_iter = chainer.iterators.SerialIterator(train_dataset, batch_size=1)
    test_iter = chainer.iterators.SerialIterator(test_dataset,
                                                 batch_size=1,
                                                 repeat=False,
                                                 shuffle=False)
    updater = chainer.training.updater.StandardUpdater(
        train_iter, optimizer, converter=concat_examples, device=args.gpu)

    trainer = chainer.training.Trainer(updater, (args.epoch, 'epoch'),
                                       out=args.out)

    # lr scheduler
    trainer.extend(chainer.training.extensions.ExponentialShift(
        'lr', args.lr_cooldown_factor, init=args.lr),
                   trigger=(args.cooldown_epoch, 'epoch'))

    # interval
    log_interval = 100, 'iteration'
    plot_interval = 3000, 'iteration'
    print_interval = 20, 'iteration'

    # training extensions
    trainer.extend(extensions.snapshot_object(model.fcis,
                                              filename='snapshot_model.npz'),
                   trigger=(args.epoch, 'epoch'))
    trainer.extend(extensions.observe_lr(), trigger=log_interval)
    trainer.extend(
        extensions.LogReport(log_name='log.json', trigger=log_interval))
    trainer.extend(extensions.PrintReport([
        'iteration',
        'epoch',
        'elapsed_time',
        'lr',
        'main/loss',
        'main/rpn_loc_loss',
        'main/rpn_cls_loss',
        'main/roi_loc_loss',
        'main/roi_cls_loss',
        'main/roi_mask_loss',
        'validation/main/map',
    ]),
                   trigger=print_interval)
    trainer.extend(extensions.ProgressBar(update_interval=10))

    if extensions.PlotReport.available():
        trainer.extend(extensions.PlotReport(['main/loss'],
                                             file_name='loss.png',
                                             trigger=plot_interval),
                       trigger=plot_interval)

    trainer.extend(InstanceSegmentationVOCEvaluator(
        test_iter,
        model.fcis,
        iou_thresh=0.5,
        use_07_metric=True,
        label_names=sbd_instance_segmentation_label_names),
                   trigger=ManualScheduleTrigger([
                       len(train_dataset) * args.cooldown_epoch,
                       len(train_dataset) * args.epoch
                   ], 'iteration'))

    trainer.extend(extensions.dump_graph('main/loss'))

    trainer.run()
Ejemplo n.º 11
0
def main():
    parser = argparse.ArgumentParser(
        description='ChainerCV training example: FCIS')
    parser.add_argument('--out',
                        '-o',
                        default='result',
                        help='Output directory')
    parser.add_argument('--seed', '-s', type=int, default=0)
    parser.add_argument(
        '--lr',
        '-l',
        type=float,
        default=0.0005,
        help='Default value is for 1 GPU.\n'
        'The learning rate should be multiplied by the number of gpu')
    parser.add_argument('--epoch', '-e', type=int, default=18)
    parser.add_argument('--cooldown-epoch', '-ce', type=int, default=12)
    args = parser.parse_args()

    # chainermn
    comm = chainermn.create_communicator()
    device = comm.intra_rank

    np.random.seed(args.seed)

    # model
    proposal_creator_params = FCISResNet101.proposal_creator_params
    proposal_creator_params['min_size'] = 2
    fcis = FCISResNet101(
        n_fg_class=len(coco_instance_segmentation_label_names),
        anchor_scales=(4, 8, 16, 32),
        pretrained_model='imagenet',
        iter2=False,
        proposal_creator_params=proposal_creator_params)
    fcis.use_preset('coco_evaluate')
    proposal_target_creator = ProposalTargetCreator()
    proposal_target_creator.neg_iou_thresh_lo = 0.0
    model = FCISTrainChain(fcis,
                           proposal_target_creator=proposal_target_creator)

    chainer.cuda.get_device_from_id(device).use()
    model.to_gpu()

    # train dataset
    train_dataset = COCOInstanceSegmentationDataset(year='2014', split='train')
    vmml_dataset = COCOInstanceSegmentationDataset(year='2014',
                                                   split='valminusminival')

    # filter non-annotated data
    train_indices = np.array([
        i for i, label in enumerate(train_dataset.slice[:, ['label']])
        if len(label[0]) > 0
    ],
                             dtype=np.int32)
    train_dataset = train_dataset.slice[train_indices]
    vmml_indices = np.array([
        i for i, label in enumerate(vmml_dataset.slice[:, ['label']])
        if len(label[0]) > 0
    ],
                            dtype=np.int32)
    vmml_dataset = vmml_dataset.slice[vmml_indices]

    train_dataset = TransformDataset(
        ConcatenatedDataset(train_dataset, vmml_dataset),
        ('img', 'mask', 'label', 'bbox', 'scale'), Transform(model.fcis))
    if comm.rank == 0:
        indices = np.arange(len(train_dataset))
    else:
        indices = None
    indices = chainermn.scatter_dataset(indices, comm, shuffle=True)
    train_dataset = train_dataset.slice[indices]
    train_iter = chainer.iterators.SerialIterator(train_dataset, batch_size=1)

    # test dataset
    if comm.rank == 0:
        test_dataset = COCOInstanceSegmentationDataset(year='2014',
                                                       split='minival',
                                                       use_crowded=True,
                                                       return_crowded=True,
                                                       return_area=True)
        indices = np.arange(len(test_dataset))
        test_dataset = test_dataset.slice[indices]
        test_iter = chainer.iterators.SerialIterator(test_dataset,
                                                     batch_size=1,
                                                     repeat=False,
                                                     shuffle=False)

    # optimizer
    optimizer = chainermn.create_multi_node_optimizer(
        chainer.optimizers.MomentumSGD(momentum=0.9), comm)
    optimizer.setup(model)

    model.fcis.head.conv1.W.update_rule.add_hook(GradientScaling(3.0))
    model.fcis.head.conv1.b.update_rule.add_hook(GradientScaling(3.0))
    optimizer.add_hook(chainer.optimizer.WeightDecay(rate=0.0005))

    for param in model.params():
        if param.name in ['beta', 'gamma']:
            param.update_rule.enabled = False
    model.fcis.extractor.conv1.disable_update()
    model.fcis.extractor.res2.disable_update()

    updater = chainer.training.updater.StandardUpdater(
        train_iter, optimizer, converter=concat_examples, device=device)

    trainer = chainer.training.Trainer(updater, (args.epoch, 'epoch'),
                                       out=args.out)

    # lr scheduler
    @make_shift('lr')
    def lr_scheduler(trainer):
        base_lr = args.lr

        iteration = trainer.updater.iteration
        epoch = trainer.updater.epoch
        if (iteration * comm.size) < 2000:
            rate = 0.1
        elif epoch < args.cooldown_epoch:
            rate = 1
        else:
            rate = 0.1
        return rate * base_lr

    trainer.extend(lr_scheduler)

    if comm.rank == 0:
        # interval
        log_interval = 100, 'iteration'
        plot_interval = 3000, 'iteration'
        print_interval = 20, 'iteration'

        # training extensions
        trainer.extend(extensions.snapshot_object(
            model.fcis, filename='snapshot_model.npz'),
                       trigger=(args.epoch, 'epoch'))
        trainer.extend(extensions.observe_lr(), trigger=log_interval)
        trainer.extend(
            extensions.LogReport(log_name='log.json', trigger=log_interval))
        report_items = [
            'iteration',
            'epoch',
            'elapsed_time',
            'lr',
            'main/loss',
            'main/rpn_loc_loss',
            'main/rpn_cls_loss',
            'main/roi_loc_loss',
            'main/roi_cls_loss',
            'main/roi_mask_loss',
            'validation/main/map/iou=0.50:0.95/area=all/max_dets=100',
        ]
        trainer.extend(extensions.PrintReport(report_items),
                       trigger=print_interval)
        trainer.extend(extensions.ProgressBar(update_interval=10))

        if extensions.PlotReport.available():
            trainer.extend(extensions.PlotReport(['main/loss'],
                                                 file_name='loss.png',
                                                 trigger=plot_interval),
                           trigger=plot_interval)

        trainer.extend(InstanceSegmentationCOCOEvaluator(
            test_iter,
            model.fcis,
            label_names=coco_instance_segmentation_label_names),
                       trigger=ManualScheduleTrigger([
                           len(train_dataset) * args.cooldown_epoch,
                           len(train_dataset) * args.epoch
                       ], 'iteration'))

        trainer.extend(extensions.dump_graph('main/loss'))

    trainer.run()
Ejemplo n.º 12
0
 def test_pretrained_n_fg_class(self):
     link = FCISResNet101(n_fg_class=20, pretrained_model='sbd')
     self.assertIsInstance(link, FCIS)
Ejemplo n.º 13
0
 def test_pretrained(self):
     link = FCISResNet101(pretrained_model='sbd')
     self.assertIsInstance(link, FCIS)
Ejemplo n.º 14
0
 def test_pretrained_wrong_n_fg_class(self):
     with self.assertRaises(ValueError):
         FCISResNet101(n_fg_class=10, pretrained_model='sbd')
Ejemplo n.º 15
0
def main():
    parser = argparse.ArgumentParser()
    parser.add_argument('--gpu', type=int, default=-1)
    parser.add_argument('--pretrained-model', default='sbd')
    parser.add_argument('video')
    args = parser.parse_args()

    model = FCISResNet101(
        n_fg_class=20, pretrained_model=args.pretrained_model)

    if args.gpu >= 0:
        chainer.cuda.get_device_from_id(args.gpu).use()
        model.to_gpu()

    if args.video == "0":
        vid = cv2.VideoCapture(0)
    else:
        vid = cv2.VideoCapture(args.video)
    if not vid.isOpened():
        raise ImportError("Couldn't open video file or webcam.")

    # Compute aspect ratio of video
    vidw = vid.get(cv2.CAP_PROP_FRAME_WIDTH)
    vidh = vid.get(cv2.CAP_PROP_FRAME_HEIGHT)
    # vidar = vidw / vidh
    print(vidw)
    print(vidh)

    accum_time = 0
    curr_fps = 0
    fps = "FPS: ??"
    prev_time = timer()

    frame_count = 1
    while True:
        ret, frame = vid.read()
        if ret == False:
            print("Done!")
            return

        # BGR -> RGB
        rgb = cv2.cvtColor(frame, cv2.COLOR_BGR2RGB)

        # Result image
        result = frame.copy()

        # (H, W, C) -> (C, H, W)
        img = np.asarray(rgb, dtype=np.float32).transpose((2, 0, 1))

        # Object Detection
        masks, labels, scores = model.predict([img])
        mask, label, score = masks[0], labels[0], scores[0]
        bbox = mask_to_bbox(mask)
        colors = voc_colormap(list(range(1, len(mask) + 1)))

        # For Colors
        n_inst = len(bbox)
        instance_colors = voc_colormap(list(range(1, n_inst + 1)))
        instance_colors = np.array(instance_colors)

        # For Mask
        _, H, W = mask.shape
        canvas_img = np.zeros((H, W, 4), dtype=np.uint8)
        alf_img = np.zeros((H, W, 1), dtype=np.uint8)

        if len(bbox) != 0:
            # for i, bb in enumerate(bbox):
            for i, (bb, msk) in enumerate(zip(bbox, mask)):
                # print(i)
                lb = label[i]
                conf = score[i].tolist()
                ymin = int(bb[0])
                xmin = int(bb[1])
                ymax = int(bb[2])
                xmax = int(bb[3])

                class_num = int(lb)

                # Draw box
                # cv2.rectangle(result, (xmin, ymin), (xmax, ymax), (0,255,0), 2)

                text = sbd_instance_segmentation_label_names[
                           class_num] + " " + ('%.2f' % conf)
                print(text)

                # text_pos 1
                test_x = round(xmax - xmin / 2) - 30
                test_y = round(ymax - ymin / 2) - 30
                text_top = (test_x, test_y - 10)
                text_bot = (test_x + 80, test_y + 5)
                text_pos = (test_x + 5, test_y)

                # text_pos 2
                # text_top = (xmin, ymin - 10)
                # text_bot = (xmin + 80, ymin + 5)
                # text_pos = (xmin + 5, ymin)

                # Draw label
                cv2.rectangle(result, text_top, text_bot, (255, 255, 255), -1)
                cv2.putText(result, text, text_pos,
                            cv2.FONT_HERSHEY_SIMPLEX, 0.35, (0, 0, 0), 1)

                # Draw msk 1
                color = instance_colors[i % len(instance_colors)]
                rgba = np.append(color, 0.7 * 255)  # alpha=0.7
                if ymax > ymin and xmax > xmin:
                    canvas_img[msk] = rgba
                    mask_img = np.asarray(canvas_img)
                    tmp_bgr = cv2.split(result)
                    mask_result = cv2.merge(tmp_bgr + [alf_img])
                    mask_result = cv2.addWeighted(mask_result, 1, mask_img,
                                                  0.5, 0)

                # Draw msk 2
                # rgba = np.append((0,255,0), 0.7 * 255) # alpha=0.7
                # if ymax > ymin and xmax > xmin:
                #     canvas_img[msk] = rgba
                #     mask_img = np.asarray(canvas_img)
                #     tmp_bgr = cv2.split(result)
                #     mask_result = cv2.merge(tmp_bgr + [alf_img])
                #     mask_result = cv2.addWeighted(mask_result, 1, mask_img, 0.5, 0)

        # Calculate FPS
        curr_time = timer()
        exec_time = curr_time - prev_time
        prev_time = curr_time
        accum_time = accum_time + exec_time
        curr_fps = curr_fps + 1
        if accum_time > 1:
            accum_time = accum_time - 1
            fps = "FPS:" + str(curr_fps)
            curr_fps = 0

        # Draw FPS in top right corner
        cv2.rectangle(result, (590, 0), (640, 17), (0, 0, 0), -1)
        cv2.putText(result, fps, (595, 10),
                    cv2.FONT_HERSHEY_SIMPLEX, 0.35, (255, 255, 255), 1)

        # Draw Frame Number
        cv2.rectangle(result, (0, 0), (50, 17), (0, 0, 0), -1)
        cv2.putText(result, str(frame_count), (0, 10),
                    cv2.FONT_HERSHEY_SIMPLEX, 0.35, (255, 255, 255), 1)

        # Output Result
        # cv2.imshow("BBOX Result", result)
        # cv2.imshow("Mask img", mask_img)
        cv2.imshow("Fcis Result", mask_result)

        # For Debug
        print("===== BBOX Result =====")
        print(type(result))
        print(result.shape)
        print(type(result.shape))

        print("===== Mask img =====")
        print(type(mask_img))
        print(mask_img.shape)
        print(type(mask_img.shape))

        # Stop Processing
        if cv2.waitKey(1) & 0xFF == ord('q'):
            break

        frame_count += 1
Ejemplo n.º 16
0
def main():
    parser = argparse.ArgumentParser(
        description='ChainerCV training example: FCIS')
    parser.add_argument('--out',
                        '-o',
                        default='result',
                        help='Output directory')
    parser.add_argument('--seed', '-s', type=int, default=0)
    parser.add_argument('--lr',
                        '-l',
                        type=float,
                        default=None,
                        help='Learning rate for multi GPUs')
    parser.add_argument('--batchsize', type=int, default=8)
    parser.add_argument('--epoch', '-e', type=int, default=42)
    parser.add_argument('--cooldown-epoch', '-ce', type=int, default=28)
    args = parser.parse_args()

    # https://docs.chainer.org/en/stable/chainermn/tutorial/tips_faqs.html#using-multiprocessiterator
    if hasattr(multiprocessing, 'set_start_method'):
        multiprocessing.set_start_method('forkserver')
        p = multiprocessing.Process()
        p.start()
        p.join()

    # chainermn
    comm = chainermn.create_communicator('pure_nccl')
    device = comm.intra_rank

    np.random.seed(args.seed)

    # model
    fcis = FCISResNet101(n_fg_class=len(sbd_instance_segmentation_label_names),
                         pretrained_model='imagenet',
                         iter2=False)
    fcis.use_preset('evaluate')
    model = FCISTrainChain(fcis)
    chainer.cuda.get_device_from_id(device).use()
    model.to_gpu()

    # dataset
    train_dataset = TransformDataset(
        SBDInstanceSegmentationDataset(split='train'),
        ('img', 'mask', 'label', 'bbox', 'scale'), Transform(model.fcis))
    if comm.rank == 0:
        indices = np.arange(len(train_dataset))
    else:
        indices = None
    indices = chainermn.scatter_dataset(indices, comm, shuffle=True)
    train_dataset = train_dataset.slice[indices]
    train_iter = chainer.iterators.SerialIterator(train_dataset,
                                                  batch_size=args.batchsize //
                                                  comm.size)

    if comm.rank == 0:
        test_dataset = SBDInstanceSegmentationDataset(split='val')
        test_iter = chainer.iterators.SerialIterator(test_dataset,
                                                     batch_size=1,
                                                     repeat=False,
                                                     shuffle=False)

    # optimizer
    optimizer = chainermn.create_multi_node_optimizer(
        chainer.optimizers.MomentumSGD(lr=args.lr, momentum=0.9), comm)
    optimizer.setup(model)

    model.fcis.head.conv1.W.update_rule.add_hook(GradientScaling(3.0))
    model.fcis.head.conv1.b.update_rule.add_hook(GradientScaling(3.0))
    optimizer.add_hook(chainer.optimizer.WeightDecay(rate=0.0005))

    for param in model.params():
        if param.name in ['beta', 'gamma']:
            param.update_rule.enabled = False
    model.fcis.extractor.conv1.disable_update()
    model.fcis.extractor.res2.disable_update()

    updater = chainer.training.updater.StandardUpdater(
        train_iter, optimizer, converter=concat_examples, device=device)

    trainer = chainer.training.Trainer(updater, (args.epoch, 'epoch'),
                                       out=args.out)

    @make_shift('lr')
    def lr_scheduler(trainer):
        if args.lr is None:
            base_lr = 0.0005 * args.batchsize
        else:
            base_lr = args.lr

        epoch = trainer.updater.epoch
        if epoch < args.cooldown_epoch:
            rate = 1
        else:
            rate = 0.1
        return rate * base_lr

    trainer.extend(lr_scheduler)

    if comm.rank == 0:
        # interval
        log_interval = 100, 'iteration'
        plot_interval = 3000, 'iteration'
        print_interval = 20, 'iteration'

        # training extensions
        trainer.extend(extensions.snapshot_object(
            model.fcis, filename='snapshot_model.npz'),
                       trigger=(args.epoch, 'epoch'))
        trainer.extend(extensions.observe_lr(), trigger=log_interval)
        trainer.extend(
            extensions.LogReport(log_name='log.json', trigger=log_interval))
        trainer.extend(extensions.PrintReport([
            'iteration',
            'epoch',
            'elapsed_time',
            'lr',
            'main/loss',
            'main/rpn_loc_loss',
            'main/rpn_cls_loss',
            'main/roi_loc_loss',
            'main/roi_cls_loss',
            'main/roi_mask_loss',
            'validation/main/map',
        ]),
                       trigger=print_interval)
        trainer.extend(extensions.ProgressBar(update_interval=10))

        if extensions.PlotReport.available():
            trainer.extend(extensions.PlotReport(['main/loss'],
                                                 file_name='loss.png',
                                                 trigger=plot_interval),
                           trigger=plot_interval)

        trainer.extend(InstanceSegmentationVOCEvaluator(
            test_iter,
            model.fcis,
            iou_thresh=0.5,
            use_07_metric=True,
            label_names=sbd_instance_segmentation_label_names),
                       trigger=ManualScheduleTrigger([
                           len(train_dataset) * args.cooldown_epoch,
                           len(train_dataset) * args.epoch
                       ], 'iteration'))

        trainer.extend(extensions.dump_graph('main/loss'))

    trainer.run()