def calculate_uqsa_measures(joint_dist, polynomial, alpha=5): """ Use chaospy to calculate appropriate indices of uq and sa""" dists = joint_dist mean = cp.E(polynomial, dists) var = cp.Var(polynomial, dists) std = cp.Std(polynomial, dists) conInt = cp.Perc(polynomial, [alpha / 2., 100 - alpha / 2.], joint_dist) sens_m = cp.Sens_m(polynomial, dists) sens_m2 = cp.Sens_m2(polynomial, dists) sens_t = cp.Sens_t(polynomial, dists) return dict(mean=mean, var=var, std=std, conInt=conInt, sens_m=sens_m, sens_m2=sens_m2, sens_t=sens_t)
def analyse(self, data_frame=None): """Perform PCE analysis on input `data_frame`. Parameters ---------- data_frame : pandas DataFrame Input data for analysis. Returns ------- PCEAnalysisResults Use it to get the sobol indices and other information. """ def sobols(P, coefficients): """ Utility routine to calculate sobols based on coefficients """ A = np.array(P.coefficients) != 0 multi_indices = np.array( [P.exponents[A[:, i]].sum(axis=0) for i in range(A.shape[1])]) sobol_mask = multi_indices != 0 _, index = np.unique(sobol_mask, axis=0, return_index=True) index = np.sort(index) sobol_idx_bool = sobol_mask[index] sobol_idx_bool = np.delete(sobol_idx_bool, [0], axis=0) n_sobol_available = sobol_idx_bool.shape[0] if len(coefficients.shape) == 1: n_out = 1 else: n_out = coefficients.shape[1] n_coeffs = coefficients.shape[0] sobol_poly_idx = np.zeros([n_coeffs, n_sobol_available]) for i_sobol in range(n_sobol_available): sobol_poly_idx[:, i_sobol] = np.all( sobol_mask == sobol_idx_bool[i_sobol], axis=1) sobol = np.zeros([n_sobol_available, n_out]) for i_sobol in range(n_sobol_available): sobol[i_sobol] = np.sum(np.square( coefficients[sobol_poly_idx[:, i_sobol] == 1]), axis=0) idx_sort_descend_1st = np.argsort(sobol[:, 0], axis=0)[::-1] sobol = sobol[idx_sort_descend_1st, :] sobol_idx_bool = sobol_idx_bool[idx_sort_descend_1st] sobol_idx = [0 for _ in range(sobol_idx_bool.shape[0])] for i_sobol in range(sobol_idx_bool.shape[0]): sobol_idx[i_sobol] = np.array( [i for i, x in enumerate(sobol_idx_bool[i_sobol, :]) if x]) var = ((coefficients[1:]**2).sum(axis=0)) sobol = sobol / var return sobol, sobol_idx, sobol_idx_bool if data_frame is None: raise RuntimeError("Analysis element needs a data frame to " "analyse") elif data_frame.empty: raise RuntimeError( "No data in data frame passed to analyse element") qoi_cols = self.qoi_cols results = { 'statistical_moments': {}, 'percentiles': {}, 'sobols_first': {k: {} for k in qoi_cols}, 'sobols_second': {k: {} for k in qoi_cols}, 'sobols_total': {k: {} for k in qoi_cols}, 'correlation_matrices': {}, 'output_distributions': {}, 'fit': {}, 'Fourier_coefficients': {}, } # Get sampler informations P = self.sampler.P nodes = self.sampler._nodes weights = self.sampler._weights regression = self.sampler.regression # Extract output values for each quantity of interest from Dataframe # samples = {k: [] for k in qoi_cols} # for run_id in data_frame[('run_id', 0)].unique(): # for k in qoi_cols: # data = data_frame.loc[data_frame[('run_id', 0)] == run_id][k] # samples[k].append(data.values.flatten()) samples = {k: [] for k in qoi_cols} for k in qoi_cols: samples[k] = data_frame[k].values # Compute descriptive statistics for each quantity of interest for k in qoi_cols: # Approximation solver if regression: fit, fc = cp.fit_regression(P, nodes, samples[k], retall=1) else: fit, fc = cp.fit_quadrature(P, nodes, weights, samples[k], retall=1) results['fit'][k] = fit results['Fourier_coefficients'][k] = fc # Percentiles: 1%, 10%, 50%, 90% and 99% P01, P10, P50, P90, P99 = cp.Perc( fit, [1, 10, 50, 90, 99], self.sampler.distribution).squeeze() results['percentiles'][k] = { 'p01': P01, 'p10': P10, 'p50': P50, 'p90': P90, 'p99': P99 } if self.sampling: # use chaospy's sampling method # Statistical moments mean = cp.E(fit, self.sampler.distribution) var = cp.Var(fit, self.sampler.distribution) std = cp.Std(fit, self.sampler.distribution) results['statistical_moments'][k] = { 'mean': mean, 'var': var, 'std': std } # Sensitivity Analysis: First, Second and Total Sobol indices sobols_first_narr = cp.Sens_m(fit, self.sampler.distribution) sobols_second_narr = cp.Sens_m2(fit, self.sampler.distribution) sobols_total_narr = cp.Sens_t(fit, self.sampler.distribution) sobols_first_dict = {} sobols_second_dict = {} sobols_total_dict = {} for i, param_name in enumerate(self.sampler.vary.vary_dict): sobols_first_dict[param_name] = sobols_first_narr[i] sobols_second_dict[param_name] = sobols_second_narr[i] sobols_total_dict[param_name] = sobols_total_narr[i] results['sobols_first'][k] = sobols_first_dict results['sobols_second'][k] = sobols_second_dict results['sobols_total'][k] = sobols_total_dict else: # use PCE coefficients # Statistical moments mean = fc[0] var = np.sum(fc[1:]**2, axis=0) std = np.sqrt(var) results['statistical_moments'][k] = { 'mean': mean, 'var': var, 'std': std } # Sensitivity Analysis: First, Second and Total Sobol indices sobol, sobol_idx, _ = sobols(P, fc) varied = [_ for _ in self.sampler.vary.get_keys()] S1 = {_: np.zeros(sobol.shape[-1]) for _ in varied} ST = {_: np.zeros(sobol.shape[-1]) for _ in varied} #S2 = {_ : {__: np.zeros(sobol.shape[-1]) for __ in varied} for _ in varied} #for v in varied: del S2[v][v] S2 = { _: np.zeros((len(varied), sobol.shape[-1])) for _ in varied } for n, si in enumerate(sobol_idx): if len(si) == 1: v = varied[si[0]] S1[v] = sobol[n] elif len(si) == 2: v1 = varied[si[0]] v2 = varied[si[1]] #S2[v1][v2] = sobol[n] #S2[v2][v1] = sobol[n] S2[v1][si[1]] = sobol[n] S2[v2][si[0]] = sobol[n] for i in si: ST[varied[i]] += sobol[n] results['sobols_first'][k] = S1 results['sobols_second'][k] = S2 results['sobols_total'][k] = ST # Correlation matrix results['correlation_matrices'][k] = cp.Corr( fit, self.sampler.distribution) # Output distributions results['output_distributions'][k] = cp.QoI_Dist( fit, self.sampler.distribution) return PCEAnalysisResults(raw_data=results, samples=data_frame, qois=self.qoi_cols, inputs=list(self.sampler.vary.get_keys()))
Ns_pc = 200 polynomial_order = 3 # calculate sensitivity indices with gpc Spc, Stpc, gpce_reg = polynomial_chaos_sens(Ns_pc, jpdf, polynomial_order,return_reg=True) # compare the computations import pandas as pd row_labels = ['X_'+str(x) for x in range(1,N_terms*2+1)] S=np.column_stack((Sa,Spc,Smc,Sta,Stpc,Stmc)) S_table = pd.DataFrame(S, columns=['Sa','Spc','Smc','Sta','Stpc','Stmc'], index=row_labels) print(S_table.round(3)) # Second order indices with gpc S2 = cp.Sens_m2(gpce_reg, jpdf) # second order indices with gpc # print all second order indices print(pd.DataFrame(S2,columns=row_labels,index=row_labels).round(3)) # sum all second order indices SumS2=np.sum(np.triu(S2)) print('\nSum Sij = {:2.2f}'.format(SumS2)) # sum all first and second order indices print('Sum Si + Sij = {:2.2f}\n'.format(np.sum(Spc)+SumS2)) # compare nonzero second order indices with analytical indices Szw_pc=[S2[i,i+N_terms] for i in range(N_terms) ] Szw_table=np.column_stack((Szw_pc,Szw,(Szw_pc-Szw)/Szw)) print(pd.DataFrame(Szw_table,columns=['Szw','Szw pc','Error%']).round(3))
def analyse(self, data_frame=None): """Perform PCE analysis on input `data_frame`. Parameters ---------- data_frame : :obj:`pandas.DataFrame` Input data for analysis. Returns ------- dict: Contains analysis results in sub-dicts with keys - ['statistical_moments', 'percentiles', 'sobol_indices', 'correlation_matrices', 'output_distributions'] """ if data_frame is None: raise RuntimeError("Analysis element needs a data frame to " "analyse") elif data_frame.empty: raise RuntimeError( "No data in data frame passed to analyse element") qoi_cols = self.qoi_cols results = { 'statistical_moments': {}, 'percentiles': {}, 'sobols_first': {k: {} for k in qoi_cols}, 'sobols_second': {k: {} for k in qoi_cols}, 'sobols_total': {k: {} for k in qoi_cols}, 'correlation_matrices': {}, 'output_distributions': {}, } # Get the Polynomial P = self.sampler.P # Get the PCE variante to use (Regression or Projection) regression = self.sampler.regression # Compute nodes (and weights) if regression: nodes = cp.generate_samples(order=self.sampler.n_samples, domain=self.sampler.distribution, rule=self.sampler.rule) else: nodes, weights = cp.generate_quadrature( order=self.sampler.quad_order, dist=self.sampler.distribution, rule=self.sampler.rule, sparse=self.sampler.quad_sparse, growth=self.sampler.quad_growth) # Extract output values for each quantity of interest from Dataframe samples = {k: [] for k in qoi_cols} for run_id in data_frame.run_id.unique(): for k in qoi_cols: data = data_frame.loc[data_frame['run_id'] == run_id][k] samples[k].append(data.values) # Compute descriptive statistics for each quantity of interest for k in qoi_cols: # Approximation solver if regression: if samples[k][0].dtype == object: for i in range(self.sampler.count): samples[k][i] = samples[k][i].astype("float64") fit = cp.fit_regression(P, nodes, samples[k], "T") else: fit = cp.fit_quadrature(P, nodes, weights, samples[k]) # Statistical moments mean = cp.E(fit, self.sampler.distribution) var = cp.Var(fit, self.sampler.distribution) std = cp.Std(fit, self.sampler.distribution) results['statistical_moments'][k] = { 'mean': mean, 'var': var, 'std': std } # Percentiles (Pxx) P10 = cp.Perc(fit, 10, self.sampler.distribution) P90 = cp.Perc(fit, 90, self.sampler.distribution) results['percentiles'][k] = {'p10': P10, 'p90': P90} # Sensitivity Analysis: First, Second and Total Sobol indices sobols_first_narr = cp.Sens_m(fit, self.sampler.distribution) sobols_second_narr = cp.Sens_m2(fit, self.sampler.distribution) sobols_total_narr = cp.Sens_t(fit, self.sampler.distribution) sobols_first_dict = {} sobols_second_dict = {} sobols_total_dict = {} ipar = 0 i = 0 for param_name in self.sampler.vary.get_keys(): j = self.sampler.params_size[ipar] sobols_first_dict[param_name] = sobols_first_narr[i:i + j] sobols_second_dict[param_name] = sobols_second_narr[i:i + j] sobols_total_dict[param_name] = sobols_total_narr[i:i + j] i += j ipar += 1 results['sobols_first'][k] = sobols_first_dict results['sobols_second'][k] = sobols_second_dict results['sobols_total'][k] = sobols_total_dict # Correlation matrix results['correlation_matrices'][k] = cp.Corr( fit, self.sampler.distribution) # Output distributions results['output_distributions'][k] = cp.QoI_Dist( fit, self.sampler.distribution) return results
sai_file.write("\n") sai_file.write("Total-effect index \n" ) #np.savetxt(sai_file, sait.T, fmt=['%.5f','%.5f', '%.5f','%.5f','%.5f','%.5f'], header = " b_ff, b_xx, b_fx, C, K, fr_epi") #np.savetxt(sai_file, sait.T, fmt=['%.5f','%.5f', '%.5f','%.5f','%.5f','%.5f','%.5f','%.5f','%.5f'], header = " b_ff, b_xx, b_fx, C, K, fr_epi,fr_endo, sr_epi, sr_endo") sai_file.write("\n") sai_file.write("\n") #output displacement/stress metrics #sai1 = cp.Sens_m(qoi_hat[0],joint) u_mean = cp.E(qoi2_hat, joint_KL) u_var = cp.Var(qoi2_hat, joint_KL) u_stdv = np.sqrt(u_var) u_sai1 = cp.Sens_m(qoi2_hat,joint_KL) u_sai2 = cp.Sens_m2(qoi2_hat,joint_KL) u_sait = cp.Sens_t(qoi2_hat,joint_KL) sff_mean = cp.E(qoi3_hat, joint_KL) sff_var = cp.Var(qoi3_hat, joint_KL) sff_stdv = np.sqrt(sff_var) sff_sai1 = cp.Sens_m(qoi3_hat,joint_KL) sff_sai2 = cp.Sens_m2(qoi3_hat,joint_KL) sff_sait = cp.Sens_t(qoi3_hat,joint_KL) # save displacement/stress results umean.vector()[:] = u_mean ustdv.vector()[:] = u_stdv ums.vector()[:] = u_mean + u_stdv umean_file << umean
holdout_file.write("Polynomial order: %i \n" % order) holdout_file.write("Num. test samples: %i \n" % ntests) holdout_file.write("Test sampling rule: %s \n" % test_rule) holdout_file.write("\n") # np.savetxt(holdout_file, mse, fmt=['%.3f','%.3f', '%.3f','%.3f','%.3f','%.3f','%.3f'], delimiter = " ", header = "dVol, dLen, dRen, dRep, dThi, dTwi, dWV") holdout_file.write("Predictive error: \n") holdout_file.writelines(["%s\n" % item for item in pe]) txt_file.write("\n") holdout_file.write("Mean Square error: \n") holdout_file.writelines(["%s\n" % item for item in mse]) # output sensitivity index sai1 = cp.Sens_m(qoi1_hat, joint) sait = cp.Sens_t(qoi1_hat, joint) sai2 = cp.Sens_m2(qoi1_hat, joint) # save sensitivity index sai_file.write("Pressure (kPa) = %f \n" % pressure) sai_file.write("First order Sensitivity index \n") # np.savetxt(sai_file, sai1.T, fmt=['%.5f','%.5f', '%.5f','%.5f','%.5f','%.5f'], header = " b_ff, b_xx, b_fx, C, K, fr_epi") np.savetxt(sai_file, sai1.T, fmt=['%.5f', '%.5f', '%.5f', '%.5f', '%.5f', '%.5f', '%.5f', '%.5f', '%.5f'], header=" b_ff, b_xx, b_fx, C, K, fr_epi, fr_endo, sr_epi, sr_endo") sai_file.write("\n") sai_file.write("Total-effect index \n") # np.savetxt(sai_file, sait.T, fmt=['%.5f','%.5f', '%.5f','%.5f','%.5f','%.5f'], header = " b_ff, b_xx, b_fx, C, K, fr_epi") np.savetxt(sai_file, sait.T, fmt=['%.5f', '%.5f', '%.5f', '%.5f', '%.5f', '%.5f', '%.5f', '%.5f', '%.5f'], header=" b_ff, b_xx, b_fx, C, K, fr_epi,fr_endo, sr_epi, sr_endo") sai_file.write("\n")
def analyse(self, data_frame=None): """Perform PCE analysis on input `data_frame`. Parameters ---------- data_frame : :obj:`pandas.DataFrame` Input data for analysis. Returns ------- dict: Contains analysis results in sub-dicts with keys - ['statistical_moments', 'percentiles', 'sobol_indices', 'correlation_matrices', 'output_distributions'] """ if data_frame is None: raise RuntimeError("Analysis element needs a data frame to " "analyse") elif data_frame.empty: raise RuntimeError( "No data in data frame passed to analyse element") qoi_cols = self.qoi_cols results = { 'statistical_moments': {}, 'percentiles': {}, 'sobols_first': {k: {} for k in qoi_cols}, 'sobols_second': {k: {} for k in qoi_cols}, 'sobols_total': {k: {} for k in qoi_cols}, 'correlation_matrices': {}, 'output_distributions': {}, } # Get sampler informations P = self.sampler.P nodes = self.sampler._nodes weights = self.sampler._weights regression = self.sampler.regression # Extract output values for each quantity of interest from Dataframe samples = {k: [] for k in qoi_cols} for run_id in data_frame[('run_id', 0)].unique(): for k in qoi_cols: data = data_frame.loc[data_frame[('run_id', 0)] == run_id][k] samples[k].append(data.values.flatten()) # Compute descriptive statistics for each quantity of interest for k in qoi_cols: # Approximation solver if regression: fit = cp.fit_regression(P, nodes, samples[k]) else: fit = cp.fit_quadrature(P, nodes, weights, samples[k]) # Statistical moments mean = cp.E(fit, self.sampler.distribution) var = cp.Var(fit, self.sampler.distribution) std = cp.Std(fit, self.sampler.distribution) results['statistical_moments'][k] = { 'mean': mean, 'var': var, 'std': std } # Percentiles: 10% and 90% P10 = cp.Perc(fit, 10, self.sampler.distribution) P90 = cp.Perc(fit, 90, self.sampler.distribution) results['percentiles'][k] = {'p10': P10, 'p90': P90} # Sensitivity Analysis: First, Second and Total Sobol indices sobols_first_narr = cp.Sens_m(fit, self.sampler.distribution) sobols_second_narr = cp.Sens_m2(fit, self.sampler.distribution) sobols_total_narr = cp.Sens_t(fit, self.sampler.distribution) sobols_first_dict = {} sobols_second_dict = {} sobols_total_dict = {} for i, param_name in enumerate(self.sampler.vary.vary_dict): sobols_first_dict[param_name] = sobols_first_narr[i] sobols_second_dict[param_name] = sobols_second_narr[i] sobols_total_dict[param_name] = sobols_total_narr[i] results['sobols_first'][k] = sobols_first_dict results['sobols_second'][k] = sobols_second_dict results['sobols_total'][k] = sobols_total_dict # Correlation matrix results['correlation_matrices'][k] = cp.Corr( fit, self.sampler.distribution) # Output distributions results['output_distributions'][k] = cp.QoI_Dist( fit, self.sampler.distribution) return PCEAnalysisResults(raw_data=results, samples=data_frame, qois=self.qoi_cols, inputs=list(self.sampler.vary.get_keys()))