Ejemplo n.º 1
0
def estimate_pose_checkerboard(grayf, intrinsics, board):
    ratio = 400.0 / grayf.shape[0]
    gray = cv2.resize(grayf, (0, 0),
                      fx=ratio,
                      fy=ratio,
                      interpolation=cv2.INTER_CUBIC)

    board_size = board.getChessboardSize()

    corners, check_score = detect_checkerboard(gray, board_size)

    if corners is None:
        return False, None

    INTRINSICS_K = np.array(intrinsics['camera_mat'])
    INTRINSICS_D = np.array(intrinsics['dist_coeff'])

    retval, rvec, tvec, inliers = cv2.solvePnPRansac(board.objPoints,
                                                     corners,
                                                     INTRINSICS_K,
                                                     INTRINSICS_D,
                                                     confidence=0.9,
                                                     reprojectionError=10)

    return True, (corners, None, rvec, tvec)
Ejemplo n.º 2
0
    def extract_points_2D(self, img_msg, now, proc_results, calibrator_instance, rectify=False):
        # print("board_points:", len(board_points), ":", [x.shape for x in board_points])
        # Log PID
        rospy.loginfo('2D Picker PID: [%d]' % os.getpid())

        # Read image using CV bridge
        try:
            if (IMAGE_COMPRESSED):
                img = CV_BRIDGE.compressed_imgmsg_to_cv2(img_msg, 'bgr8')
            else:
                img = CV_BRIDGE.imgmsg_to_cv2(img_msg, 'bgr8')
        except CvBridgeError as e: 
            rospy.logerr(e)
            return None
        rospy.loginfo('image msg converted.')

        # Rectify image
        if rectify and CAMERA_MODEL_INITED: CAMERA_MODEL.rectifyImage(img, img)
        cv2.imwrite(os.path.join(PKG_PATH, CALIB_PATH, self.camera_name+"_pcd", str(self.board_points_num)+".jpg"), img)

        # gamma = 2.
        # invGamma = 1.0 / gamma
        # table = np.array([((i / 255.0) ** invGamma) * 255 for i in np.arange(0, 256)]).astype("uint8")
        # # apply gamma correction using the lookup table
        # img = cv2.LUT(np.array(img, dtype = np.uint8), table)
        # cv2.namedWindow('gamma_transform', 0)
        # cv2.imshow("gamma_transform", img)
        # cv2.waitKey(0)
        # detect corners
        gray = cv2.cvtColor(img, cv2.COLOR_BGR2GRAY)
        ret, corners = cv2.findChessboardCorners(gray, self.chessboard_size, None)
        # corners2 = None
        if ret == True:
            cv2.cornerSubPix(gray,corners,(11,11),(-1,-1),self.chessboard_corner_criteria)
            # Draw and display the corners
            cv2.drawChessboardCorners(img, self.chessboard_size, corners, ret)
            cv2.namedWindow('chessboard corner detect', 0)
            cv2.imshow('chessboard corner detect', img)
            key = cv2.waitKey(0)
            if (key == ord('q')):
                cv2.destroyAllWindows()
            proc_results.put([self.chessboard_corner_coords, np.squeeze(corners)])
        else:
            rospy.logwarn("No chessboard corners found in the current image! Try another chessboard corners detection method...")
            corners, score = detect_checkerboard(gray, self.chessboard_size[::-1])
            if (corners is None):
                rospy.logerr("Chessboard corner detection failed! Skip this frame.")
                return
            corners = corners.astype(np.float32)
            proc_results.put([self.chessboard_corner_coords, np.squeeze(corners)])
            cv2.drawChessboardCorners(img, self.chessboard_size, corners, True)
            cv2.namedWindow('chessboard', 0)
            cv2.imshow('chessboard', img)
            cv2.resizeWindow('chessboard', 640,480)
            cv2.moveWindow('chessboard', 500,0)
            key = cv2.waitKey(0)
            if (key==13 or key==32): #按空格和回车键退出
                # cv2.destroyAllWindows()
                pass
            cv2.destroyWindow('chessboard')
    def extract_points_2D(self, img_file, proc_results, rectify=False):
        # print("board_points:", len(board_points), ":", [x.shape for x in board_points])
        # Log PID
        rospy.loginfo('2D Picker PID: [%d] file name: %s' %
                      (os.getpid(), os.path.basename(img_file)))

        # Read image
        img = cv2.imread(img_file)

        # Rectify image
        if rectify and CAMERA_MODEL_INITED: CAMERA_MODEL.rectifyImage(img, img)

        # detect corners
        gray = cv2.cvtColor(img, cv2.COLOR_BGR2GRAY)
        ret, corners = cv2.findChessboardCorners(gray, self.chessboard_size,
                                                 None)
        # corners2 = None
        if ret == True:
            cv2.cornerSubPix(gray, corners, (11, 11), (-1, -1),
                             self.chessboard_corner_criteria)
            # Draw and display the corners
            cv2.drawChessboardCorners(img, self.chessboard_size, corners, ret)
            cv2.namedWindow('chessboard', 0)
            cv2.imshow('chessboard', img)
            cv2.resizeWindow('chessboard', 640, 480)
            cv2.moveWindow('chessboard', 500, 0)
            key = cv2.waitKey(0)
            if (key == ord('q')):
                # cv2.destroyAllWindows()
                pass
            cv2.destroyWindow('chessboard')
            proc_results.put(
                [self.chessboard_corner_coords,
                 np.squeeze(corners)])
        else:
            rospy.logwarn(
                "No chessboard corners found in the current image! Try another chessboard corners detection method..."
            )
            corners, score = detect_checkerboard(gray,
                                                 self.chessboard_size[::-1])
            if (corners is None):
                rospy.logerr(
                    "Chessboard corner detection failed! Skip this frame.")
                return
            corners = corners.astype(np.float32)
            proc_results.put(
                [self.chessboard_corner_coords,
                 np.squeeze(corners)])
            cv2.drawChessboardCorners(img, self.chessboard_size, corners, True)
            cv2.namedWindow('chessboard', 0)
            cv2.imshow('chessboard', img)
            cv2.resizeWindow('chessboard', 640, 480)
            cv2.moveWindow('chessboard', 500, 0)
            key = cv2.waitKey(0)
            if (key == 13 or key == 32):  #按空格和回车键退出
                # cv2.destroyAllWindows()
                pass
            cv2.destroyWindow('chessboard')
Ejemplo n.º 4
0
def get_corners_checkerboard(fname, board, skip=20):
    cap = cv2.VideoCapture(fname)

    length = int(cap.get(cv2.CAP_PROP_FRAME_COUNT))

    allCorners = []
    allScores = []

    go = int(skip / 2)

    board_size = board.getChessboardSize()

    for framenum in trange(length, ncols=70):
        ret, frame = cap.read()
        if not ret:
            break

        if framenum % skip != 0 and go <= 0:
            continue

        grayf = cv2.cvtColor(frame, cv2.COLOR_BGR2GRAY)

        ## TODO: adjust the checkerboard library to handle more general ratios
        ## TODO: make this ratio and trimming configurable
        ratio = 400.0 / grayf.shape[0]
        gray = cv2.resize(grayf, (0, 0),
                          fx=ratio,
                          fy=ratio,
                          interpolation=cv2.INTER_CUBIC)

        corners, check_score = detect_checkerboard(gray, board_size)

        if corners is not None and len(corners) > 0:
            corners_new = corners / ratio
            allCorners.append(corners_new)
            allScores.append(check_score)
            go = int(skip / 2)

        go = max(0, go - 1)

    cap.release()

    return allCorners, allScores
Ejemplo n.º 5
0
objpoints = [] # 3d point in real world space
imgpoints = [] # 2d points in image plane.

images = glob.glob('/home/user/ACSC/calibration_data/**/**/*.png')

# path = 'results'
# pathlib.Path(path).mkdir(parents=True, exist_ok=True)

found = 0
for fname in images:  # Here, 10 can be changed to whatever number you like to choose
    orig = cv2.imread(fname) # Capture frame-by-frame
    img = cv2.cvtColor(orig, cv2.COLOR_BGR2GRAY)
    clahe = cv2.createCLAHE(clipLimit=2.0, tileGridSize=(8,8))
    img = clahe.apply(img)
    # Find the chess board corners
    corners, score  = detect_checkerboard(img, (7,5))

    # If found, add object points, image points (after refining them)
    if corners is not None:
        corners = corners.astype(np.float32)
        objpoints.append(objp)   # Certainly, every loop objp is the same, in 3D.
        imgpoints.append(corners)
        # Draw and display the corners\
        #print(len(corners), score, corners.shape)
        #rint(orig.shape)
        #image = cv2.drawChessboardCorners(orig, (7,5), corners, True)
        found += 1
        # cv2.imshow('image', image)
        # cv2.waitKey(500)
        # if you want to save images with detected corners
        # uncomment following 2 lines and lines 5, 18 and 19
Ejemplo n.º 6
0
# cv2.imshow('thresh', thresh)
cv2.imshow('image', img)
cv2.waitKey()

# maybe template matching is gonna work better
from checkerboard import detect_checkerboard

size = (7, 7)  # size of checkerboard
img = cv2.imread('screenshot.png')  # obtain checkerboard
gray = cv2.cvtColor(img, cv2.COLOR_BGR2GRAY)

sharpen_kernel = np.array([[-1, -1, -1], [-1, 9, -1], [-1, -1, -1]])
sharpen = cv2.filter2D(gray, -1, sharpen_kernel)

thresh = cv2.threshold(sharpen, 160, 255, cv2.THRESH_BINARY_INV)[1]
corners, score = detect_checkerboard(thresh, size)
score

corners_int = corners.astype(int)

for i in corners_int:
    x, y = i.ravel()
    cv2.circle(img, (x, y), 11, (0, 0, 255), -1)

cv2.imshow("image", img)
cv2.waitKey()

# this works but is super slow
# approaches we can use to make it faster => use the thresholded image for cv2
# rescale image to a tiny size and upscale results
Ejemplo n.º 7
0
def example_two(picture):
    """
    Skew correction using homography and corner detection using contour points
    Returns: None

    """
    print("Identifying boad and Correcting skew")
    #image = cv2.imread('images/example_2.jpg')
    image = cv2.imread(picture)
    image = cv2.cvtColor(image, cv2.COLOR_BGR2RGB)
    plt.imshow(image)
    plt.title('Original Image')
    plt.show()

    filtered_image = apply_filter(image)
    threshold_image = apply_threshold(filtered_image)

    cnv, largest_contour = detect_contour(threshold_image, image.shape)
    corners = detect_corners_from_contour(cnv, largest_contour)

    destination_points, h, w = get_destination_points(corners)
    un_warped = unwarp(threshold_image, np.float32(corners), destination_points)

    cropped = un_warped[0:h, 0:w]
    #f, (ax1, ax2) = plt.subplots(1, 2, figsize=(15, 8))
    # f.subplots_adjust(hspace=.2, wspace=.05)
    #ax1.imshow(un_warped)
    #ax2.imshow(cropped)

    #plt.show()
    

    
    plt.imshow(cropped)
    plt.axis('off')
    
    plt.savefig('images/processed.jpg')
    plt.show()
    
    print("looking for checkerboard")
    filename='images/processed.jpg'

    size = (5, 5) # size of checkerboard
    image = cv2.imread(filename)
    #plt.imshow(image)
    #plt.title('Original Image')
    #plt.show()
    start=time.time()
    corners, score = detect_checkerboard(image, size)
    print(filename)
    if score > 0.7:
        print("Obstructed", score)
        messagebox.showinfo('Result', 'Board is obstructed')
    elif score > 0.3:
        print("Not sure", score)
        messagebox.showinfo('Result', 'Not Sure')
    else:
        print("Clear", score)
        messagebox.showinfo('Result', 'Board is clear')
    elapsed=time.time()-start
    print("Elapsed time: {} s".format(elapsed))