Ejemplo n.º 1
0
args.split_type = 'random'
args.split_sizes = (0.05, 0.95)

# metric
args.metric = 'mae'

# run seeds
args.pytorch_seeds = [0,1,2,3,4]


################################################

# names and directories
args.results_dir = '/home/willlamb/results_pdts/swag_greedy2'
args.save_dir = '/home/willlamb/checkpoints_pdts/swag_greedy2'
args.checkpoint_path = '/home/willlamb/checkpoints_pdts/map_greedy'
args.wandb_proj = 'lanterne_swag2'
args.wandb_name = 'swag_greedy'
args.thompson = False

### swag ###
args.swag = True
args.samples = 50

args.pdts = True
args.pdts_batches = 30

args.epochs_init_map = 0
args.epochs = 0

args.lr_swag = 2e-5
Ejemplo n.º 2
0
args.data_seeds = [0, 1, 2, 3, 4]
args.split_type = 'random'
args.split_sizes = (0.05, 0.95)

# metric
args.metric = 'mae'

# run seeds
args.pytorch_seeds = [0, 1, 2, 3, 4]

################################################

# names and directories
args.results_dir = '/home/willlamb/results_pdts/dropR_thom'
args.save_dir = '/home/willlamb/checkpoints_pdts/dropR_thom'
args.checkpoint_path = '/home/willlamb/checkpoints_pdts/dropR_thom'
args.wandb_proj = 'lanterne_dropR'
args.wandb_name = 'dropR_thom'
args.thompson = True

### dropR ###
args.samples = 50

args.pdts = True
args.pdts_batches = 30

args.epochs_init_map = 500
args.epochs = 200

args.lr = 1e-4
Ejemplo n.º 3
0
args.max_data_size = 150000
args.seed = 0  # seed for data splits
args.split_type = 'scaffold_balanced'
args.split_sizes = (0.64, 0.16, 0.2)

# metric
args.metric = 'mae'

################################################

# names and directories
args.save_dir = '/home/willlamb/checkpoints/bbp'
args.results_dir = '/home/willlamb/results/bbp'
args.wandb_proj = 'official3'
args.wandb_name = 'bbp'
args.checkpoint_path = '/home/willlamb/checkpoints/map'

# ensembling and samples
args.ensemble_size = 3
args.ensemble_start_idx = 0
args.pytorch_seeds = [0, 1, 2, 3, 4]
args.samples = 30

### bbp ###
args.bbp = True
args.epochs = 0
args.epochs_bbp = 100

args.batch_size_bbp = 50
args.lr_bbp = 1e-4
args.prior_sig_bbp = 0.05
args.max_data_size = 150000
args.seed = 0  # seed for data splits
args.split_type = 'scaffold_balanced'
args.split_sizes = (0.64, 0.16, 0.2)

# metric
args.metric = 'mae'

################################################

# names and directories
args.save_dir = '/home/willlamb/checkpoints/dun'
args.results_dir = '/home/willlamb/results/dun'
args.wandb_proj = 'official_dun'
args.wandb_name = 'dun'
args.checkpoint_path = None

# ensembling and samples
args.ensemble_size = 1
args.ensemble_start_idx = 0
args.pytorch_seeds = [0, 1, 2, 3, 4]
args.samples = 100

### dun ###

args.dun = True
args.depth_min = 1
args.depth_max = 5

args.epochs = 0
args.epochs_dun = 350
args.bias = False

# data
args.max_data_size = 150000  # full data set
args.seed = 0  # seed for data splits
args.split_type = 'scaffold_balanced'
args.split_sizes = (0.64, 0.16, 0.2)

# metric
args.metric = 'mae'

################################################

# names and directories
#args.save_dir = '/home/willlamb/checkpoints/map'
#args.results_dir = '/home/willlamb/results/map'
#args.wandb_proj = 'official1'
#args.wandb_name = 'map'
args.method = 'map'
args.checkpoint_path = '/Users/georgelamb/Documents/checkpoints/map'  # SET THIS TO MAP FOR SWAG AND SGLD
args.results_dir = '/Users/georgelamb/Documents/results/map'

# ensembling and samples
args.ensemble_size = 5
args.samples = 1

################################################

# run
new_noise(args)