Ejemplo n.º 1
0
 def valid(self):
     chopper = Chopper()
     params = eval(chopper.params)
     params["upper"] = False
     chopper.name = "sliding_full"
     params["step"] = 32
     params["scale"] = 128
     chopper.params = str(params)
     chop = chopper.get()
     x_valid, y_valid = self.prepare_data(chop, self.validation_tracks)
     x_valid = remove_track_boundaries(x_valid)
     y_valid = remove_track_boundaries(y_valid)
     return x_valid, y_valid
Ejemplo n.º 2
0
    def random(self):
        chopper = Chopper()

        # only one slices at a time is needed
        if chopper.params:
            chopparams = eval(chopper.params)
        else:
            chopparams = {}
        chopparams["slices"] = 1
        chopper.params = str(chopparams)

        # get full or partial depending on chopper
        if "full" in chopper.name:
            chopper.name = "random_full"
        else:
            chopper.name = "random"
        chop = chopper.get()

        def generator(features, labels, batch_size):
            shape = self._calculate_shape(features[0].shape)
            # Create empty arrays to contain batch of features and labels
            batch_features = np.zeros((batch_size, *shape))
            batch_labels = np.zeros((batch_size, *shape))
            n_tracks = len(features)
            while True:
                for i in range(batch_size):
                    # get random track
                    t = random.randrange(n_tracks)
                    x_track = features[t]
                    y_track = labels[t]

                    feature, label = chop(x_track, y_track)

                    batch_features[i] = feature[0]
                    batch_labels[i] = label[0]
                yield batch_features, batch_labels

        return generator
    def process_spectrogram(self, spectrogram, channels=1):
        chopper = Chopper()
        chopper.name = "infer"
        chopper.params = "{'scale': %d}" % self.config.inference_slice
        chop = chopper.get(both=False)

        slices = chop(spectrogram)

        normalizer = Normalizer()
        normalize = normalizer.get(both=False)
        denormalize = normalizer.get_reverse()

        new_spectrogram = np.zeros((spectrogram.shape[0], 0, channels))
        for slice in slices:
            # normalize
            slice, norm = normalize(slice)

            epanded_spectrogram = conversion.expand_to_grid(
                slice, self.peakDownscaleFactor, channels)
            epanded_spectrogram_with_batch_and_channels = \
                epanded_spectrogram[np.newaxis, :, :]

            predicted_spectrogram_with_batch_and_channels = self.model.predict(
                epanded_spectrogram_with_batch_and_channels)
            # o /// o
            predicted_spectrogram = \
                predicted_spectrogram_with_batch_and_channels[0, :, :, :]
            local_spectrogram = predicted_spectrogram[:slice.shape[0], :slice.
                                                      shape[1], :]

            # de-normalize
            local_spectrogram = denormalize(local_spectrogram, norm)

            new_spectrogram = np.concatenate(
                (new_spectrogram, local_spectrogram), axis=1)
        console.log("Processed spectrogram")
        return spectrogram, new_spectrogram