def __init__(self, logfile):
     self.lp = LP(logfile)
     self.fileManager = FM(projectID = self.lp.projectID)
     self.node = self.lp.uname.split("node='")[1].split("'")[0]
     self.lastFrameTime = self.lp.frames[-1].time
     self.masterDirectory = self.fileManager.localMasterDir
     self.projectDirectory = self.fileManager.localProjectDir
     self.credentialDrive = self.fileManager.localCredentialDrive
     self.credentialSpreadsheet = self.fileManager.localCredentialSpreadsheet
     self._createImage()
     f = self.uploadImage(self.projectDirectory + self.lp.tankID + '.jpg', self.lp.tankID)
     self.insertImage(f)
Ejemplo n.º 2
0
 def __init__(self,
              projectID=None,
              modelID=None,
              workers=None,
              summaryFile=None):
     self.projectID = projectID
     self.fileManager = FM(projectID=projectID,
                           modelID=modelID,
                           summaryFile=summaryFile)
     self.modelID = modelID
     if not self._checkProjectID():
         raise Exception(projectID + ' is not valid.')
     self.workers = workers
    def __init__(self):

        # 1: Define valid commands and ignore warnings
        self.commands = [
            'New', 'Restart', 'Stop', 'Rewrite', 'UploadData', 'LocalDelete',
            'Snapshots'
        ]
        np.seterr(invalid='ignore')

        # 2: Determine which Kinect is attached (This script can handle v1 or v2 Kinects)
        self._identifyDevice()  #Stored in self.device
        self.system = platform.node()

        # 3: Create file manager
        self.fileManager = FM()

        # 4: Download credential files
        self.fileManager.downloadData(
            self.fileManager.localCredentialSpreadsheet)
        self.fileManager.downloadData(self.fileManager.localCredentialDrive)
        self.credentialSpreadsheet = self.fileManager.localCredentialSpreadsheet  # Rename to make code readable

        # 5: Connect to Google Spreadsheets
        self._authenticateGoogleSpreadSheets()  #Creates self.controllerGS
        self._modifyPiGS(error='')

        # 6: Start PiCamera
        self.camera = PiCamera()
        self.camera.resolution = (1296, 972)
        self.camera.framerate = 30
        self.piCamera = 'True'

        # 7: Keep track of processes spawned to convert and upload videofiles
        self.processes = []

        # 8: Set size of frame
        try:
            self.r
        except AttributeError:
            self.r = (0, 0, 640, 480)

        # 9: Await instructions
        self.monitorCommands()
Ejemplo n.º 4
0
    def __init__(self, all_data):
        
        self.all_data = all_data # Flag to keep all data if desired

        # 1: Define valid commands and ignore warnings
        self.commands = ['New', 'Restart', 'Stop', 'Rewrite', 'UploadData', 'LocalDelete']
        np.seterr(invalid='ignore')

        # 2: Determine which depth sensor is attached (This script can handle DepthSense cameras)
        self._identifyDevice() #Stored in self.device
        self.system = platform.node()

        # 3: Create file manager
        self.fileManager = FM()

        # 4: Start PiCamera
        self.camera = PiCamera()
        self.camera.resolution = (1296, 972)
        self.camera.framerate = 30
        self.piCamera = 'True'
        
        # 5: Download credential files
        self.fileManager.downloadData(self.fileManager.localCredentialDir)
        self.credentialSpreadsheet  = self.fileManager.localCredentialSpreadsheet # Rename to make code readable
        self._authenticateGoogleSpreadSheets() #Creates self.controllerGS
        self._identifyTank() #Stored in self.tankID
        self._identifyServiceAccount()
       
        # 6: Keep track of processes spawned to convert and upload videofiles
        self.processes = [] 

        # 7: Set size of frame
        try:
            self.r
        except AttributeError:
            self.r = (0,0,640,480)

        # 9: Await instructions
        print('Monitoring commands')
        self.monitorCommands()
Ejemplo n.º 5
0
import argparse, subprocess, pdb, shutil, os
import pandas as pd
from cichlid_bower_tracking.helper_modules.file_manager import FileManager as FM


parser = argparse.ArgumentParser(description='This script is used to manually prepared projects for downstream analysis')
parser.add_argument('--SummaryFile', type = str, help = 'Restrict analysis to projectIDs specified in csv file, which will be rewritten. ProjectIDs must be found in a column called projectID')
parser.add_argument('--Start', type = int)
parser.add_argument('--Total', type = int)
args = parser.parse_args()

fm_obj = FM() 

if args.SummaryFile is not None:
	summary_file = fm_obj.localAnalysisStatesDir + args.SummaryFile
	fm_obj.downloadData(summary_file)
	dt = pd.read_csv(summary_file, index_col = False)
	projectIDs = list(dt.projectID)
	if args.Start is not None:
		projectIDs = projectIDs[args.Start: args.Start + args.Total]
else:
	projectIDs = fm_obj.getAllProjectIDs()

for projectID in projectIDs:
	fm_obj = FM(projectID = projectID)
	print(projectID)
	lp = fm_obj.lp

	main_directory_data = subprocess.run(['rclone', 'lsf', 'cichlidVideo:McGrath/Apps/CichlidPiData/' + '__ProjectData/' + projectID + '/'], capture_output = True, encoding = 'utf-8').stdout.split('\n')
	for bad_data in ['AllClips.tar', 'MLClips.tar', 'MLFrames.tar', 'Backgrounds.tar']:
		if bad_data in main_directory_data:
Ejemplo n.º 6
0
parser.add_argument('-i',
                    '--Initials',
                    required=True,
                    type=str,
                    help='Initials to save annotations')

args = parser.parse_args()

numbers = {}
# Identify projects to run analysis on
if args.ProjectIDs is not None:
    projectIDs = args.ProjectIDs  # Specified at the command line
    for projectID in projectIDs:
        numbers[projectID] = args.Number
else:
    fm_obj = FM()
    summary_file = fm_obj.localAnalysisStatesDir + args.SummaryFile
    fm_obj.downloadData(summary_file)
    dt = pd.read_csv(summary_file, index_col=False)

    projectIDs = list(
        dt.projectID)  # Only run analysis on projects that need it
    for projectID in projectIDs:
        if dt.loc[dt.projectID == projectID]['Labeled' + args.DataType] > 0:
            numbers[projectID] = dt.loc[dt.projectID == projectID][
                'Labeled' + args.DataType]

# To run analysis efficiently, we download and upload data in the background while the main script runs

for projectID, number in numbers.items():
    print('Downloading: ' + projectID + ' ' + str(datetime.datetime.now()))
Ejemplo n.º 7
0
	f = open(fileManager.localProjectDir + 'VideoProcessLog.txt', 'a')
	if indent:
		print('    ' + str(datetime.datetime.now()) + ': ' + str(message), file = f)
	else:
		print(str(datetime.datetime.now()) + ': ' + str(message), file = f)

	f.close()

parser = argparse.ArgumentParser()
parser.add_argument('VideoFile', type = str, help = 'Name of h264 file to be processed')
parser.add_argument('Framerate', type = float, help = 'Video framerate')
parser.add_argument('ProjectID', type = str, help = 'Video framerate')

args = parser.parse_args()

fileManager = FM(projectID = args.ProjectID)

if '.h264' not in args.VideoFile:
	logPrinter(args.VideoFile + ' not an h264 file', indent = False)
	raise Exception(args.VideoFile + ' not an h264 file')

# Convert h264 to mp4
if os.path.exists(args.VideoFile.replace('.h264', '.mp4')):
	logPrinter(args.VideoFile.replace('.h264', '.mp4') + ' already exits. Deleting')
	subprocess.run(['rm', '-f', args.VideoFile.replace('.h264', '.mp4')])
command = ['ffmpeg', '-r', str(args.Framerate), '-i', args.VideoFile, '-threads', '1', '-c:v', 'copy', '-r', str(args.Framerate), args.VideoFile.replace('.h264', '.mp4')]
logPrinter('Beginning conversion of video: ' + args.VideoFile.split('/')[-1], indent = False)
logPrinter(command)
ffmpeg_output = subprocess.run(command, capture_output = True)

try:
Ejemplo n.º 8
0
import argparse, subprocess
from cichlid_bower_tracking.helper_modules.object_labeler import AnnotationDisagreements as AD
from cichlid_bower_tracking.helper_modules.file_manager import FileManager as FM

parser = argparse.ArgumentParser()
parser.add_argument('User1', type = str, help = 'Initials of user annotations to compare')
parser.add_argument('User2', type = str, help = 'Initials user annotations to compare')
parser.add_argument('ProjectID', type = str, help = 'Project to analyze')
parser.add_argument('-p', '--Practice', action = 'store_true', help = 'Use if you dont want to save annotations')

args = parser.parse_args()

fm_obj = FM(projectID = args.ProjectID)
fm_obj.downloadData(fm_obj.localLabeledClipsProjectDir, tarred = True)
fm_obj.downloadData(fm_obj.localBoxedFishFile)


obj = AD(self.fileManager.localLabeledFramesProjectDir, self.fileManager.localBoxedFishFile, args.ProjectID, args.User1, args.User2)

ad_obj = AD(fm_obj.localBoxedFishDir + args.ProjectID + '/', temp_dt, args.ProjectID, args.User1, args.User2, args.All)

# Redownload csv in case new annotations have been added
fm_obj.downloadData(fm_obj.localBoxedFishFile)

old_dt = pd.read_csv(fm_obj.localBoxedFishFile, index_col = 0)
new_dt = pd.read_csv(temp_dt)

old_dt = old_dt.append(new_dt, sort = 'False').drop_duplicates(subset = ['ProjectID', 'Framefile', 'User', 'Sex', 'Box'], keep = 'last').sort_values(by = ['ProjectID', 'Framefile'])
old_dt.to_csv(fm_obj.localBoxedFishFile, sep = ',', columns = ['ProjectID', 'Framefile', 'Nfish', 'Sex', 'Box', 'CorrectAnnotation','User', 'DateTime'])

if not args.Practice:
Ejemplo n.º 9
0
from cichlid_bower_tracking.helper_modules.file_manager import FileManager as FM

parser = argparse.ArgumentParser(
    description=
    'This script is used to determine analysis states for each project.')
parser.add_argument(
    '--SummaryFile',
    type=str,
    help=
    'Restrict analysis to projectIDs specified in csv file, which will be rewritten. ProjectIDs must be found in a column called projectID'
)

args = parser.parse_args()

fm_obj = FM(summaryFile=args.SummaryFile)

if args.SummaryFile is not None:
    summary_file = fm_obj.localSummaryFile
    fm_obj.downloadData(summary_file)
    dt = pd.read_csv(summary_file, index_col=False)
    projectIDs = list(dt.projectID)
else:
    fm_obj.createDirectory(fm_obj.localAnalysisStatesDir)
    summary_file = fm_obj.localAnalysisStatesDir + 'AllProjects.csv'
    projectIDs = fm_obj.getAllProjectIDs()
    dt = pd.DataFrame(columns=[
        'projectID', 'tankID', 'StartingFiles', 'Prep', 'Depth', 'Cluster',
        'ClusterClassification', 'LabeledVideos', 'LabeledFrames', 'Summary'
    ])
Ejemplo n.º 10
0
import subprocess, gspread, pdb
from cichlid_bower_tracking.helper_modules.file_manager import FileManager as FM
import pandas as pd
# Requires ttab https://www.npmjs.com/package/ttab#manual-installation

fileManager = FM()

fileManager.downloadData(fileManager.localCredentialDir)
gs = gspread.service_account(filename=fileManager.localCredentialSpreadsheet)
controllerGS = gs.open('Controller')
pi_ws = controllerGS.worksheet('RaspberryPi')
data = pi_ws.get_all_values()
dt = pd.DataFrame(data[1:], columns=data[0])

for row in dt.RaspberryPiID:
    print(row)
    #subprocess.run(['ssh-keygen', '-t', 'rsa', '-f', '~/.ssh/id_rsa'])
    #subprocess.run(['ssh-copy-id', 'pi@' + row + '.biosci.gatech.edu'])

for row in dt.RaspberryPiID:
    subprocess.run(
        ['ttab', '-t', row, 'ssh', 'pi@' + row + '.biosci.gatech.edu'])