Ejemplo n.º 1
0
 def __init__(self,
              projectID=None,
              modelID=None,
              workers=None,
              summaryFile=None):
     self.projectID = projectID
     self.fileManager = FM(projectID=projectID,
                           modelID=modelID,
                           summaryFile=summaryFile)
     self.modelID = modelID
     if not self._checkProjectID():
         raise Exception(projectID + ' is not valid.')
     self.workers = workers
    def __init__(self):

        # 1: Define valid commands and ignore warnings
        self.commands = [
            'New', 'Restart', 'Stop', 'Rewrite', 'UploadData', 'LocalDelete',
            'Snapshots'
        ]
        np.seterr(invalid='ignore')

        # 2: Determine which Kinect is attached (This script can handle v1 or v2 Kinects)
        self._identifyDevice()  #Stored in self.device
        self.system = platform.node()

        # 3: Create file manager
        self.fileManager = FM()

        # 4: Download credential files
        self.fileManager.downloadData(
            self.fileManager.localCredentialSpreadsheet)
        self.fileManager.downloadData(self.fileManager.localCredentialDrive)
        self.credentialSpreadsheet = self.fileManager.localCredentialSpreadsheet  # Rename to make code readable

        # 5: Connect to Google Spreadsheets
        self._authenticateGoogleSpreadSheets()  #Creates self.controllerGS
        self._modifyPiGS(error='')

        # 6: Start PiCamera
        self.camera = PiCamera()
        self.camera.resolution = (1296, 972)
        self.camera.framerate = 30
        self.piCamera = 'True'

        # 7: Keep track of processes spawned to convert and upload videofiles
        self.processes = []

        # 8: Set size of frame
        try:
            self.r
        except AttributeError:
            self.r = (0, 0, 640, 480)

        # 9: Await instructions
        self.monitorCommands()
Ejemplo n.º 3
0
    def __init__(self, all_data):
        
        self.all_data = all_data # Flag to keep all data if desired

        # 1: Define valid commands and ignore warnings
        self.commands = ['New', 'Restart', 'Stop', 'Rewrite', 'UploadData', 'LocalDelete']
        np.seterr(invalid='ignore')

        # 2: Determine which depth sensor is attached (This script can handle DepthSense cameras)
        self._identifyDevice() #Stored in self.device
        self.system = platform.node()

        # 3: Create file manager
        self.fileManager = FM()

        # 4: Start PiCamera
        self.camera = PiCamera()
        self.camera.resolution = (1296, 972)
        self.camera.framerate = 30
        self.piCamera = 'True'
        
        # 5: Download credential files
        self.fileManager.downloadData(self.fileManager.localCredentialDir)
        self.credentialSpreadsheet  = self.fileManager.localCredentialSpreadsheet # Rename to make code readable
        self._authenticateGoogleSpreadSheets() #Creates self.controllerGS
        self._identifyTank() #Stored in self.tankID
        self._identifyServiceAccount()
       
        # 6: Keep track of processes spawned to convert and upload videofiles
        self.processes = [] 

        # 7: Set size of frame
        try:
            self.r
        except AttributeError:
            self.r = (0,0,640,480)

        # 9: Await instructions
        print('Monitoring commands')
        self.monitorCommands()
Ejemplo n.º 4
0
import argparse, subprocess, pdb, shutil, os
import pandas as pd
from cichlid_bower_tracking.helper_modules.file_manager import FileManager as FM


parser = argparse.ArgumentParser(description='This script is used to manually prepared projects for downstream analysis')
parser.add_argument('--SummaryFile', type = str, help = 'Restrict analysis to projectIDs specified in csv file, which will be rewritten. ProjectIDs must be found in a column called projectID')
parser.add_argument('--Start', type = int)
parser.add_argument('--Total', type = int)
args = parser.parse_args()

fm_obj = FM() 

if args.SummaryFile is not None:
	summary_file = fm_obj.localAnalysisStatesDir + args.SummaryFile
	fm_obj.downloadData(summary_file)
	dt = pd.read_csv(summary_file, index_col = False)
	projectIDs = list(dt.projectID)
	if args.Start is not None:
		projectIDs = projectIDs[args.Start: args.Start + args.Total]
else:
	projectIDs = fm_obj.getAllProjectIDs()

for projectID in projectIDs:
	fm_obj = FM(projectID = projectID)
	print(projectID)
	lp = fm_obj.lp

	main_directory_data = subprocess.run(['rclone', 'lsf', 'cichlidVideo:McGrath/Apps/CichlidPiData/' + '__ProjectData/' + projectID + '/'], capture_output = True, encoding = 'utf-8').stdout.split('\n')
	for bad_data in ['AllClips.tar', 'MLClips.tar', 'MLFrames.tar', 'Backgrounds.tar']:
		if bad_data in main_directory_data:
Ejemplo n.º 5
0
parser.add_argument('-i',
                    '--Initials',
                    required=True,
                    type=str,
                    help='Initials to save annotations')

args = parser.parse_args()

numbers = {}
# Identify projects to run analysis on
if args.ProjectIDs is not None:
    projectIDs = args.ProjectIDs  # Specified at the command line
    for projectID in projectIDs:
        numbers[projectID] = args.Number
else:
    fm_obj = FM()
    summary_file = fm_obj.localAnalysisStatesDir + args.SummaryFile
    fm_obj.downloadData(summary_file)
    dt = pd.read_csv(summary_file, index_col=False)

    projectIDs = list(
        dt.projectID)  # Only run analysis on projects that need it
    for projectID in projectIDs:
        if dt.loc[dt.projectID == projectID]['Labeled' + args.DataType] > 0:
            numbers[projectID] = dt.loc[dt.projectID == projectID][
                'Labeled' + args.DataType]

# To run analysis efficiently, we download and upload data in the background while the main script runs

for projectID, number in numbers.items():
    print('Downloading: ' + projectID + ' ' + str(datetime.datetime.now()))
class CichlidTracker:
    def __init__(self):

        # 1: Define valid commands and ignore warnings
        self.commands = [
            'New', 'Restart', 'Stop', 'Rewrite', 'UploadData', 'LocalDelete',
            'Snapshots'
        ]
        np.seterr(invalid='ignore')

        # 2: Determine which Kinect is attached (This script can handle v1 or v2 Kinects)
        self._identifyDevice()  #Stored in self.device
        self.system = platform.node()

        # 3: Create file manager
        self.fileManager = FM()

        # 4: Download credential files
        self.fileManager.downloadData(
            self.fileManager.localCredentialSpreadsheet)
        self.fileManager.downloadData(self.fileManager.localCredentialDrive)
        self.credentialSpreadsheet = self.fileManager.localCredentialSpreadsheet  # Rename to make code readable

        # 5: Connect to Google Spreadsheets
        self._authenticateGoogleSpreadSheets()  #Creates self.controllerGS
        self._modifyPiGS(error='')

        # 6: Start PiCamera
        self.camera = PiCamera()
        self.camera.resolution = (1296, 972)
        self.camera.framerate = 30
        self.piCamera = 'True'

        # 7: Keep track of processes spawned to convert and upload videofiles
        self.processes = []

        # 8: Set size of frame
        try:
            self.r
        except AttributeError:
            self.r = (0, 0, 640, 480)

        # 9: Await instructions
        self.monitorCommands()

    def __del__(self):
        # Try to close out files and stop running Kinects
        self._modifyPiGS(command='None',
                         status='Stopped',
                         error='UnknownError')
        if self.piCamera:
            if self.camera.recording:
                self.camera.stop_recording()
                self._print('PiCameraStopped: Time=' +
                            str(datetime.datetime.now()) + ', File=Videos/' +
                            str(self.videoCounter).zfill(4) + "_vid.h264")

        try:
            if self.device == 'kinect2':
                self.K2device.stop()
            if self.device == 'kinect':
                freenect.sync_stop()
                freenect.shutdown(self.a)
        except AttributeError:
            pass
        self._closeFiles()

    def monitorCommands(self, delta=10):
        # This function checks the master Controller Google Spreadsheet to determine if a command was issued (delta = seconds to recheck)
        while True:
            self._identifyTank()  #Stored in self.tankID
            command, projectID = self._returnCommand()
            if projectID in ['', 'None']:
                self._reinstructError('ProjectID must be set')
                time.sleep(delta)
                continue

            if command != 'None':
                print(command + '\t' + projectID)
                self.fileManager.createProjectData(projectID)
                self.runCommand(command, projectID)
            self._modifyPiGS(status='AwaitingCommand')
            time.sleep(delta)

    def runCommand(self, command, projectID):
        # This function is used to run a specific command found int he  master Controller Google Spreadsheet
        self.projectID = projectID

        # Rename files to make code more readable
        self.projectDirectory = self.fileManager.localProjectDir
        self.loggerFile = self.fileManager.localLogfile
        self.frameDirectory = self.fileManager.localFrameDir
        self.videoDirectory = self.fileManager.localVideoDir
        self.backupDirectory = self.fileManager.localBackupDir

        if command not in self.commands:
            self._reinstructError(command +
                                  ' is not a valid command. Options are ' +
                                  str(self.commands))

        if command == 'Stop':

            if self.piCamera:
                if self.camera.recording:
                    self.camera.stop_recording()
                    self._print('PiCameraStopped: Time: ' +
                                str(datetime.datetime.now()) +
                                ',,File: Videos/' +
                                str(self.videoCounter).zfill(4) + "_vid.h264")

                    command = [
                        'python3', 'unit_scripts/process_video.py',
                        self.videoDirectory + str(self.videoCounter).zfill(4) +
                        '_vid.h264'
                    ]
                    command += [str(self.camera.framerate[0]), self.projectID]
                    self._print(command)
                    self.processes.append(subprocess.Popen(command))

            try:
                if self.device == 'kinect2':
                    self.K2device.stop()
                if self.device == 'kinect':
                    freenect.sync_stop()
                    freenect.shutdown(self.a)
            except:
                self._print('ErrorStopping kinect')

            self._closeFiles()

            self._modifyPiGS(command='None', status='AwaitingCommand')
            return

        if command == 'UploadData':

            self._modifyPiGS(command='None')
            self._uploadFiles()
            return

        if command == 'LocalDelete':
            if os.path.exists(self.projectDirectory):
                shutil.rmtree(self.projectDirectory)
            self._modifyPiGS(command='None', status='AwaitingCommand')
            return

        self._modifyPiGS(command='None', status='Running', error='')

        if command == 'New':
            # Project Directory should not exist. If it does, report error
            if os.path.exists(self.projectDirectory):
                self._reinstructError(
                    'New command cannot be run if ouput directory already exists. Use Rewrite or Restart'
                )

        if command == 'Rewrite':
            if os.path.exists(self.projectDirectory):
                shutil.rmtree(self.projectDirectory)
            os.makedirs(self.projectDirectory)

        if command in ['New', 'Rewrite']:
            self.masterStart = datetime.datetime.now()
            if command == 'New':
                os.makedirs(self.projectDirectory)
            os.makedirs(self.frameDirectory)
            os.makedirs(self.videoDirectory)
            os.makedirs(self.backupDirectory)
            #self._createDropboxFolders()
            self.frameCounter = 1
            self.videoCounter = 1

        if command == 'Restart':
            logObj = LP(self.loggerFile)
            self.masterStart = logObj.master_start
            #self.r = logObj.bounding_shape
            self.frameCounter = logObj.lastFrameCounter + 1
            self.videoCounter = logObj.lastVideoCounter + 1
            if self.system != logObj.system or self.device != logObj.device or self.piCamera != logObj.camera:
                self._reinstructError(
                    'Restart error. System, device, or camera does not match what is in logfile'
                )

        self.lf = open(self.loggerFile, 'a')
        self._modifyPiGS(start=str(self.masterStart))

        if command in ['New', 'Rewrite']:
            self._print('MasterStart: System: ' + self.system + ',,Device: ' +
                        self.device + ',,Camera: ' + str(self.piCamera) +
                        ',,Uname: ' + str(platform.uname()) + ',,TankID: ' +
                        self.tankID + ',,ProjectID: ' + self.projectID)
            self._print('MasterRecordInitialStart: Time: ' +
                        str(self.masterStart))
            self._print(
                'PrepFiles: FirstDepth: PrepFiles/FirstDepth.npy,,LastDepth: PrepFiles/LastDepth.npy,,PiCameraRGB: PiCameraRGB.jpg,,DepthRGB: DepthRGB.jpg'
            )
            picamera_settings = {
                'AnalogGain': str(self.camera.analog_gain),
                'AWB_Gains': str(self.camera.awb_gains),
                'AWB_Mode': str(self.camera.awb_mode),
                'Brightness': str(self.camera.brightness),
                'ClockMode': str(self.camera.clock_mode),
                'Contrast': str(self.camera.contrast),
                'Crop': str(self.camera.crop),
                'DigitalGain': str(self.camera.digital_gain),
                'ExposureCompensation': str(self.camera.exposure_compensation),
                'ExposureMode': str(self.camera.exposure_mode),
                'ExposureSpeed': str(self.camera.exposure_speed),
                'FrameRate': str(self.camera.framerate),
                'ImageDenoise': str(self.camera.image_denoise),
                'MeterMode': str(self.camera.meter_mode),
                'RawFormat': str(self.camera.raw_format),
                'Resolution': str(self.camera.resolution),
                'Saturation': str(self.camera.saturation),
                'SensorMode': str(self.camera.sensor_mode),
                'Sharpness': str(self.camera.sharpness),
                'ShutterSpeed': str(self.camera.shutter_speed),
                'VideoDenoise': str(self.camera.video_denoise),
                'VideoStabilization': str(self.camera.video_stabilization)
            }
            self._print('PiCameraSettings: ' + ',,'.join([
                x + ': ' + picamera_settings[x]
                for x in sorted(picamera_settings.keys())
            ]))
            #self._createROI(useROI = False)

        else:
            self._print('MasterRecordRestart: Time: ' +
                        str(datetime.datetime.now()))

        # Start kinect
        self._start_kinect()

        # Diagnose speed
        self._diagnose_speed()

        # Capture data
        self.captureFrames()

    def captureFrames(self,
                      frame_delta=5,
                      background_delta=5,
                      max_frames=20,
                      stdev_threshold=20):

        current_background_time = datetime.datetime.now()
        current_frame_time = current_background_time + datetime.timedelta(
            seconds=60 * frame_delta)

        command = ''

        while True:
            self._modifyPiGS(command='None', status='Running', error='')
            # Grab new time
            now = datetime.datetime.now()

            # Fix camera if it needs to be
            if self.piCamera:
                if self._video_recording() and not self.camera.recording:
                    self.camera.capture(self.videoDirectory +
                                        str(self.videoCounter).zfill(4) +
                                        "_pic.jpg")
                    self.camera.start_recording(
                        self.videoDirectory + str(self.videoCounter).zfill(4) +
                        "_vid.h264",
                        bitrate=7500000)
                    self._print('PiCameraStarted: FrameRate: ' +
                                str(self.camera.framerate) + ',,Resolution: ' +
                                str(self.camera.resolution) + ',,Time: ' +
                                str(datetime.datetime.now()) +
                                ',,VideoFile: Videos/' +
                                str(self.videoCounter).zfill(4) +
                                '_vid.h264,,PicFile: Videos/' +
                                str(self.videoCounter).zfill(4) + '_pic.jpg')
                elif not self._video_recording() and self.camera.recording:
                    self.camera.stop_recording()
                    self._print('PiCameraStopped: Time: ' +
                                str(datetime.datetime.now()) +
                                ',, File: Videos/' +
                                str(self.videoCounter).zfill(4) + "_vid.h264")
                    #self._print(['rclone', 'copy', self.videoDirectory + str(self.videoCounter).zfill(4) + "_vid.h264"])
                    command = [
                        'python3', 'unit_scripts/process_video.py',
                        self.videoDirectory + str(self.videoCounter).zfill(4) +
                        '_vid.h264'
                    ]
                    command += [str(self.camera.framerate[0]), self.projectID]
                    self._print(command)
                    self.processes.append(subprocess.Popen(command))
                    self.videoCounter += 1

            # Capture a frame and background if necessary

            if now > current_background_time:
                if command == 'Snapshots':
                    out = self._captureFrame(current_frame_time,
                                             max_frames=max_frames,
                                             stdev_threshold=stdev_threshold,
                                             snapshots=True)
                else:
                    out = self._captureFrame(current_frame_time,
                                             max_frames=max_frames,
                                             stdev_threshold=stdev_threshold)
                if out is not None:
                    current_background_time += datetime.timedelta(
                        seconds=60 * background_delta)
                subprocess.Popen([
                    'python3', 'unit_scripts/drive_updater.py', self.loggerFile
                ])
            else:
                if command == 'Snapshots':
                    out = self._captureFrame(current_frame_time,
                                             max_frames=max_frames,
                                             stdev_threshold=stdev_threshold,
                                             snapshots=True)
                else:
                    out = self._captureFrame(current_frame_time,
                                             max_frames=max_frames,
                                             stdev_threshold=stdev_threshold)
            current_frame_time += datetime.timedelta(seconds=60 * frame_delta)

            self._modifyPiGS(status='Running')

            # Check google doc to determine if recording has changed.
            try:
                command, projectID = self._returnCommand()
            except KeyError:
                continue
            if command != 'None':
                if command == 'Snapshots':
                    self._modifyPiGS(command='None',
                                     status='Writing Snapshots')
                    continue
                else:
                    break
            else:
                self._modifyPiGS(error='')

    def _authenticateGoogleSpreadSheets(self):
        scope = [
            "https://spreadsheets.google.com/feeds",
            "https://www.googleapis.com/auth/spreadsheets"
        ]
        credentials = ServiceAccountCredentials.from_json_keyfile_name(
            self.credentialSpreadsheet, scope)
        for i in range(0, 3):  # Try to autheticate three times before failing
            try:
                gs = gspread.authorize(credentials)
            except:
                continue
            try:
                self.controllerGS = gs.open('Controller')
                pi_ws = self.controllerGS.worksheet('RaspberryPi')
            except:
                continue
            try:
                headers = pi_ws.row_values(1)
            except:
                continue
            column = headers.index('RaspberryPiID') + 1
            try:
                pi_ws.col_values(column).index(platform.node())
                return True
            except ValueError:
                s = socket.socket(socket.AF_INET, socket.SOCK_DGRAM)
                s.connect(("8.8.8.8", 80))
                ip = s.getsockname()[0]
                s.close()
                try:
                    pi_ws.append_row([
                        platform.node(), ip, '', '', '', '', '', 'None',
                        'Stopped', 'Error: Awaiting assignment of TankID',
                        str(datetime.datetime.now())
                    ])
                except:
                    continue
                return True
            except:
                continue
            time.sleep(2)
        return False

    def _identifyDevice(self):
        try:
            global freenect
            import freenect
            self.a = freenect.init()
            if freenect.num_devices(self.a) == 0:
                kinect = False
            elif freenect.num_devices(self.a) > 1:
                self._initError(
                    'Multiple Kinect1s attached. Unsure how to handle')
            else:
                kinect = True
        except ImportError:
            kinect = False

        try:
            global rs
            import pyrealsense2 as rs

            ctx = rs.context()
            if len(ctx.devices) == 0:
                realsense = False
            if len(ctx.devices) > 1:
                self._initError(
                    'Multiple RealSense devices attached. Unsure how to handle'
                )
            else:
                realsense = True
        except ImportError:
            realsense = False

        if kinect and realsense:
            self._initError(
                'Kinect1 and RealSense devices attached. Unsure how to handle')
        elif not kinect and not realsense:
            self._initError('No depth sensor attached')
        elif kinect:
            self.device = 'kinect'
        else:
            self.device = 'realsense'

    def _identifyTank(self):
        while True:
            self._authenticateGoogleSpreadSheets(
            )  # link to google drive spreadsheet stored in self.controllerGS
            pi_ws = self.controllerGS.worksheet('RaspberryPi')
            headers = pi_ws.row_values(1)
            raPiID_col = headers.index('RaspberryPiID') + 1
            for i in range(5):
                try:
                    row = pi_ws.col_values(raPiID_col).index(
                        platform.node()) + 1
                    break
                except:
                    continue
            col = headers.index('TankID')
            if pi_ws.row_values(row)[col] not in ['None', '']:
                self.tankID = pi_ws.row_values(row)[col]
                for i in range(5):
                    try:
                        self._modifyPiGS(capability='Device=' + self.device +
                                         ',Camera=' + str(self.piCamera),
                                         status='AwaitingCommand')
                        return
                    except:
                        continue
                return
            else:
                self._modifyPiGS(error='Awaiting assignment of TankID')
                time.sleep(5)

    def _initError(self, message):
        try:
            self._modifyPiGS(command='None',
                             status='Stopped',
                             error='InitError: ' + message)
        except:
            pass
        self._print('InitError: ' + message)
        raise TypeError

    def _reinstructError(self, message):
        self._modifyPiGS(command='None',
                         status='AwaitingCommands',
                         error='InstructError: ' + message)

        # Update google doc to indicate error
        self.monitorCommands()

    def _print(self, text):
        try:
            print(text, file=self.lf, flush=True)
        except:
            pass
        print(text, file=sys.stderr, flush=True)

    def _returnRegColor(self, crop=True):
        # This function returns a registered color array
        if self.device == 'kinect':
            out = freenect.sync_get_video()[0]

        if self.device == 'realsense':
            frames = self.pipeline.wait_for_frames()
            color_frame = frames.get_color_frame()
            out = np.asanyarray(color_frame.get_data())

        if crop:
            return out[self.r[1]:self.r[1] + self.r[3],
                       self.r[0]:self.r[0] + self.r[2]]
        else:
            return out

    def _returnDepth(self):
        # This function returns a float64 npy array containing one frame of data with all bad data as NaNs
        if self.device == 'kinect':
            data = freenect.sync_get_depth()[0].astype('float64')
            data[data == 2047] = np.nan  # 2047 indicates bad data from Kinect
            return data[self.r[1]:self.r[1] + self.r[3],
                        self.r[0]:self.r[0] + self.r[2]]

        if self.device == 'realsense':
            depth_frame = self.pipeline.wait_for_frames().get_depth_frame(
            ).as_depth_frame()
            data = np.asanyarray(depth_frame.data) * depth_frame.get_units(
            )  # Convert to meters
            data[data == 0] = np.nan  # 0 indicates bad data from RealSense
            data[data >
                 1] = np.nan  # Anything further away than 1 m is a mistake
            return data[self.r[1]:self.r[1] + self.r[3],
                        self.r[0]:self.r[0] + self.r[2]]

    def _returnCommand(self):
        if not self._authenticateGoogleSpreadSheets():
            raise KeyError
            # link to google drive spreadsheet stored in self.controllerGS
        while True:
            try:
                pi_ws = self.controllerGS.worksheet('RaspberryPi')
                headers = pi_ws.row_values(1)
                piIndex = pi_ws.col_values(headers.index('RaspberryPiID') +
                                           1).index(platform.node())
                command = pi_ws.col_values(headers.index('Command') +
                                           1)[piIndex]
                projectID = pi_ws.col_values(headers.index('ProjectID') +
                                             1)[piIndex]
                return command, projectID
            except gspread.exceptions.RequestError:
                continue

    def _modifyPiGS(self,
                    start=None,
                    command=None,
                    status=None,
                    IP=None,
                    capability=None,
                    error=None):
        while not self._authenticateGoogleSpreadSheets(
        ):  # link to google drive spreadsheet stored in self.controllerGS
            continue
        try:
            pi_ws = self.controllerGS.worksheet('RaspberryPi')
            headers = pi_ws.row_values(1)
            row = pi_ws.col_values(headers.index('RaspberryPiID') + 1).index(
                platform.node()) + 1
            if start is not None:
                column = headers.index('MasterStart') + 1
                pi_ws.update_cell(row, column, start)
            if command is not None:
                column = headers.index('Command') + 1
                pi_ws.update_cell(row, column, command)
            if status is not None:
                column = headers.index('Status') + 1
                pi_ws.update_cell(row, column, status)
            if error is not None:
                column = headers.index('Error') + 1
                pi_ws.update_cell(row, column, error)
            if IP is not None:
                column = headers.index('IP') + 1
                pi_ws.update_cell(row, column, IP)
            if capability is not None:
                column = headers.index('Capability') + 1
                pi_ws.update_cell(row, column, capability)
            column = headers.index('Ping') + 1
            pi_ws.update_cell(row, column, str(datetime.datetime.now()))
        except gspread.exceptions.RequestError as e:
            self._print('GoogleError: Time: ' + str(datetime.datetime.now()) +
                        ',,Error: ' + str(e))
        except TypeError:
            self._print(
                'GoogleError: Time: ' + str(datetime.datetime.now()) +
                ',,Error: Unknown. Gspread does not handle RequestErrors properly'
            )

    def _video_recording(self):
        if datetime.datetime.now().hour >= 8 and datetime.datetime.now(
        ).hour <= 18:
            return True
        else:
            return False

    def _start_kinect(self):
        if self.device == 'kinect':
            freenect.sync_get_depth()  #Grabbing a frame initializes the device
            freenect.sync_get_video()

        elif self.device == 'realsense':
            # Create a context object. This object owns the handles to all connected realsense devices
            self.pipeline = rs.pipeline()

            # Configure streams
            config = rs.config()
            config.enable_stream(rs.stream.depth, rs.format.z16, 30)
            config.enable_stream(rs.stream.color, rs.format.rgb8, 30)

            # Start streaming
            self.pipeline.start(config)

            frames = self.pipeline.wait_for_frames()
            depth = frames.get_depth_frame()
            self.r = (0, 0, depth.width, depth.height)

    def _diagnose_speed(self, time=10):
        print('Diagnosing speed for ' + str(time) + ' seconds.',
              file=sys.stderr)
        delta = datetime.timedelta(seconds=time)
        start_t = datetime.datetime.now()
        counter = 0
        while True:
            depth = self._returnDepth()
            counter += 1
            if datetime.datetime.now() - start_t > delta:
                break
        #Grab single snapshot of depth and save it
        depth = self._returnDepth()
        np.save(self.projectDirectory + 'Frames/FirstFrame.npy', depth)

        #Grab a bunch of depth files to characterize the variability
        data = np.zeros(shape=(50, self.r[3], self.r[2]))
        for i in range(0, 50):
            data[i] = self._returnDepth()

        counts = np.count_nonzero(~np.isnan(data), axis=0)
        std = np.nanstd(data, axis=0)
        np.save(self.projectDirectory + 'Frames/FirstDataCount.npy', counts)
        np.save(self.projectDirectory + 'Frames/StdevCount.npy', std)

        self._print('DiagnoseSpeed: Rate: ' + str(counter / time))

        self._print(
            'FirstFrameCaptured: FirstFrame: Frames/FirstFrame.npy,,GoodDataCount: Frames/FirstDataCount.npy,,StdevCount: Frames/StdevCount.npy'
        )

    def _captureFrame(self,
                      endtime,
                      max_frames=40,
                      stdev_threshold=.05,
                      snapshots=False):
        # Captures time averaged frame of depth data

        sums = np.zeros(shape=(self.r[3], self.r[2]))
        n = np.zeros(shape=(self.r[3], self.r[2]))
        stds = np.zeros(shape=(self.r[3], self.r[2]))

        current_time = datetime.datetime.now()
        if current_time >= endtime:
            return

        counter = 1

        all_data = np.empty(shape=(int(max_frames), self.r[3], self.r[2]))
        all_data[:] = np.nan

        for i in range(0, max_frames):
            all_data[i] = self._returnDepth()
            current_time = datetime.datetime.now()

            if snapshots:
                self._print('SnapshotCaptured: NpyFile: Frames/Snapshot_' +
                            str(counter).zfill(6) + '.npy,,Time: ' +
                            str(current_time) + ',,GP: ' +
                            str(np.count_nonzero(~np.isnan(all_data[i]))))
                np.save(
                    self.projectDirectory + 'Frames/Snapshot_' +
                    str(counter).zfill(6) + '.npy', all_data[i])

            counter += 1

            if current_time >= endtime:
                break
            time.sleep(10)

        med = np.nanmean(all_data, axis=0)

        std = np.nanstd(all_data, axis=0)

        med[np.isnan(std)] = np.nan

        med[std > stdev_threshold] = np.nan
        std[std > stdev_threshold] = np.nan

        counts = np.count_nonzero(~np.isnan(all_data), axis=0)

        med[counts < 3] = np.nan
        std[counts < 3] = np.nan

        color = self._returnRegColor()

        self._print('FrameCaptured: NpyFile: Frames/Frame_' +
                    str(self.frameCounter).zfill(6) +
                    '.npy,,PicFile: Frames/Frame_' +
                    str(self.frameCounter).zfill(6) + '.jpg,,Time: ' +
                    str(endtime) + ',,NFrames: ' + str(i) + ',,AvgMed: ' +
                    '%.2f' % np.nanmean(med) + ',,AvgStd: ' +
                    '%.2f' % np.nanmean(std) + ',,GP: ' +
                    str(np.count_nonzero(~np.isnan(med))))

        np.save(
            self.projectDirectory + 'Frames/Frame_' +
            str(self.frameCounter).zfill(6) + '.npy', med)
        matplotlib.image.imsave(
            self.projectDirectory + 'Frames/Frame_' +
            str(self.frameCounter).zfill(6) + '.jpg', color)

        self.frameCounter += 1

        return med

    def _uploadFiles(self):
        self._modifyPiGS(status='Finishing converting and uploading of videos')
        for p in self.processes:
            p.communicate()

        for movieFile in os.listdir(self.videoDirectory):
            if '.h264' in movieFile:
                command = [
                    'python3', 'unit_scripts/process_video.py',
                    self.videoDirectory + movieFile
                ]
                command += [str(self.camera.framerate[0]), self.projectID]
                self._print(command)
                self.processes.append(subprocess.Popen(command))

        for p in self.processes:
            p.communicate()

        self._modifyPiGS(status='Creating prep files')

        # Move files around as appropriate
        prepDirectory = self.projectDirectory + 'PrepFiles/'
        shutil.rmtree(prepDirectory) if os.path.exists(prepDirectory) else None
        os.makedirs(prepDirectory)

        lp = LP(self.loggerFile)

        self.frameCounter = lp.lastFrameCounter + 1

        videoObj = [
            x for x in lp.movies
            if x.startTime.hour >= 8 and x.startTime.hour <= 20
        ][0]
        subprocess.call([
            'cp', self.projectDirectory + videoObj.pic_file,
            prepDirectory + 'PiCameraRGB.jpg'
        ])

        subprocess.call([
            'cp', self.projectDirectory + lp.movies[-1].pic_file,
            prepDirectory + 'LastPiCameraRGB.jpg'
        ])

        # Find depthfile that is closest to the video file time
        depthObj = [x for x in lp.frames if x.time > videoObj.startTime][0]

        subprocess.call([
            'cp', self.projectDirectory + depthObj.pic_file,
            prepDirectory + 'DepthRGB.jpg'
        ])

        if not os.path.isdir(self.frameDirectory):
            self._modifyPiGS(status='Error: ' + self.frameDirectory +
                             ' does not exist.')
            return

        subprocess.call([
            'cp', self.frameDirectory + 'Frame_000001.npy',
            prepDirectory + 'FirstDepth.npy'
        ])
        subprocess.call([
            'cp', self.frameDirectory + 'Frame_' +
            str(self.frameCounter - 1).zfill(6) + '.npy',
            prepDirectory + 'LastDepth.npy'
        ])

        try:
            self._modifyPiGS(status='Uploading data to cloud')
            self.fileManager.uploadData(self.frameDirectory, tarred=True)
            #print(prepDirectory)
            self.fileManager.uploadData(prepDirectory)
            #print(self.videoDirectory)
            self.fileManager.uploadData(self.videoDirectory)
            #print(self.loggerFile)
            self.fileManager.uploadData(self.loggerFile)
            self._modifyPiGS(error='UploadSuccessful, ready for delete')

        except Exception as e:
            print('UploadError: ' + str(e))
            self._modifyPiGS(error='UploadFailed, Need to rerun')
            raise Exception

    def _closeFiles(self):
        try:
            self._print('MasterRecordStop: ' + str(datetime.datetime.now()))
            self.lf.close()
        except AttributeError:
            pass
        try:
            if self.system == 'mac':
                self.caff.kill()
        except AttributeError:
            pass
Ejemplo n.º 7
0
class ProjectPreparer():
    # This class takes in a projectID and runs all the appropriate analysis

    def __init__(self,
                 projectID=None,
                 modelID=None,
                 workers=None,
                 summaryFile=None):
        self.projectID = projectID
        self.fileManager = FM(projectID=projectID,
                              modelID=modelID,
                              summaryFile=summaryFile)
        self.modelID = modelID
        if not self._checkProjectID():
            raise Exception(projectID + ' is not valid.')
        self.workers = workers

    def _checkProjectID(self):
        if self.projectID is None:
            return True
        projectIDs = subprocess.run([
            'rclone', 'lsf', self.fileManager.cloudMasterDir + '__ProjectData/'
        ],
                                    capture_output=True,
                                    encoding='utf-8').stdout.split()
        if self.projectID + '/' in projectIDs:
            return True
        else:
            return False

    def downloadData(self, dtype, videoIndex=None):
        self.fileManager.downloadProjectData(dtype, videoIndex)

    def uploadData(self,
                   dtype,
                   videoIndex=None,
                   delete=False,
                   no_upload=False):
        print(no_upload)
        self.fileManager.uploadProjectData(dtype, videoIndex, delete,
                                           no_upload)

    def runPrepAnalysis(self):
        prp_obj = PrP(self.fileManager)
        prp_obj.validateInputData()
        prp_obj.prepData()

    def runDepthAnalysis(self):
        dp_obj = DP(self.fileManager)
        dp_obj.validateInputData()
        dp_obj.createSmoothedArray()
        dp_obj.createRGBVideo()

    def runClusterAnalysis(self, videoIndex):
        if videoIndex is None:
            videos = list(range(len(self.fileManager.lp.movies)))
        else:
            videos = [videoIndex]
        for videoIndex in videos:
            cp_obj = CP(self.fileManager, videoIndex, self.workers)
            cp_obj.validateInputData()
            cp_obj.runClusterAnalysis()

    def run3DClassification(self):
        tdcp_obj = TDCP(self.fileManager)
        tdcp_obj.validateInputData()
        tdcp_obj.predictLabels()
        tdcp_obj.createSummaryFile()

    def manuallyLabelVideos(self, initials, number):
        mlv_obj = MLVP(self.fileManager, initials, number)
        mlv_obj.validateInputData()
        mlv_obj.labelVideos()

    def manuallyLabelFrames(self, initials, number):
        mlf_obj = MLFP(self.fileManager, initials, number)
        mlf_obj.validateInputData()
        mlf_obj.labelFrames()

    def createModel(self, MLtype, projectIDs, gpu):
        if MLtype == '3DResnet':
            tdm_obj = TDMP(self.fileManager, projectIDs, self.modelID, gpu)
            tdm_obj.validateInputData()
            tdm_obj.create3DModel()

    def runMLFishDetection(self):
        pass

    def runSummaryCreation(self):
        sp_obj = SP(self.fileManager)
        sp_obj.createFullSummary()

    def backupAnalysis(self):
        uploadCommands = set()

        uploadFiles = [
            x for x in os.listdir(self.fileManager.localUploadDir)
            if 'UploadData' in x
        ]

        for uFile in uploadFiles:
            with open(self.fileManager.localUploadDir + uFile) as f:
                line = next(f)
                for line in f:
                    tokens = line.rstrip().split(',')
                    tokens[2] = bool(int(tokens[2]))
                    uploadCommands.add(tuple(tokens))

        for command in uploadCommands:
            self.fileManager.uploadData(command[0], command[1], command[2])

        for uFile in uploadFiles:
            subprocess.run(
                ['rm', '-rf', self.fileManager.localUploadDir + uFile])

        self.fileManager.uploadData(self.fileManager.localAnalysisLogDir,
                                    self.fileManager.cloudAnalysisLogDir,
                                    False)
        subprocess.run(['rm', '-rf', self.projFileManager.localMasterDir])

    def localDelete(self):
        subprocess.run(['rm', '-rf', self.fileManager.localProjectDir])

    def createUploadFile(self, uploads):
        with open(
                self.fileManager.localUploadDir + 'UploadData_' +
                str(datetime.datetime.now().timestamp()) + '.csv', 'w') as f:
            print('Local,Cloud,Tar', file=f)
            for upload in uploads:
                print(upload[0] + ',' + upload[1] + ',' + str(upload[2]),
                      file=f)

    def createAnalysisUpdate(self, aType, procObj):
        now = datetime.datetime.now()
        with open(
                self.fileManager.localAnalysisLogDir + 'AnalysisUpdate_' +
                str(now.timestamp()) + '.csv', 'w') as f:
            print('ProjectID,Type,Version,Date', file=f)
            print(self.projectID + ',' + aType + ',' + procObj.__version__ +
                  '_' + os.getenv('USER') + ',' + str(now),
                  file=f)
Ejemplo n.º 8
0
	f = open(fileManager.localProjectDir + 'VideoProcessLog.txt', 'a')
	if indent:
		print('    ' + str(datetime.datetime.now()) + ': ' + str(message), file = f)
	else:
		print(str(datetime.datetime.now()) + ': ' + str(message), file = f)

	f.close()

parser = argparse.ArgumentParser()
parser.add_argument('VideoFile', type = str, help = 'Name of h264 file to be processed')
parser.add_argument('Framerate', type = float, help = 'Video framerate')
parser.add_argument('ProjectID', type = str, help = 'Video framerate')

args = parser.parse_args()

fileManager = FM(projectID = args.ProjectID)

if '.h264' not in args.VideoFile:
	logPrinter(args.VideoFile + ' not an h264 file', indent = False)
	raise Exception(args.VideoFile + ' not an h264 file')

# Convert h264 to mp4
if os.path.exists(args.VideoFile.replace('.h264', '.mp4')):
	logPrinter(args.VideoFile.replace('.h264', '.mp4') + ' already exits. Deleting')
	subprocess.run(['rm', '-f', args.VideoFile.replace('.h264', '.mp4')])
command = ['ffmpeg', '-r', str(args.Framerate), '-i', args.VideoFile, '-threads', '1', '-c:v', 'copy', '-r', str(args.Framerate), args.VideoFile.replace('.h264', '.mp4')]
logPrinter('Beginning conversion of video: ' + args.VideoFile.split('/')[-1], indent = False)
logPrinter(command)
ffmpeg_output = subprocess.run(command, capture_output = True)

try:
Ejemplo n.º 9
0
import argparse, subprocess
from cichlid_bower_tracking.helper_modules.object_labeler import AnnotationDisagreements as AD
from cichlid_bower_tracking.helper_modules.file_manager import FileManager as FM

parser = argparse.ArgumentParser()
parser.add_argument('User1', type = str, help = 'Initials of user annotations to compare')
parser.add_argument('User2', type = str, help = 'Initials user annotations to compare')
parser.add_argument('ProjectID', type = str, help = 'Project to analyze')
parser.add_argument('-p', '--Practice', action = 'store_true', help = 'Use if you dont want to save annotations')

args = parser.parse_args()

fm_obj = FM(projectID = args.ProjectID)
fm_obj.downloadData(fm_obj.localLabeledClipsProjectDir, tarred = True)
fm_obj.downloadData(fm_obj.localBoxedFishFile)


obj = AD(self.fileManager.localLabeledFramesProjectDir, self.fileManager.localBoxedFishFile, args.ProjectID, args.User1, args.User2)

ad_obj = AD(fm_obj.localBoxedFishDir + args.ProjectID + '/', temp_dt, args.ProjectID, args.User1, args.User2, args.All)

# Redownload csv in case new annotations have been added
fm_obj.downloadData(fm_obj.localBoxedFishFile)

old_dt = pd.read_csv(fm_obj.localBoxedFishFile, index_col = 0)
new_dt = pd.read_csv(temp_dt)

old_dt = old_dt.append(new_dt, sort = 'False').drop_duplicates(subset = ['ProjectID', 'Framefile', 'User', 'Sex', 'Box'], keep = 'last').sort_values(by = ['ProjectID', 'Framefile'])
old_dt.to_csv(fm_obj.localBoxedFishFile, sep = ',', columns = ['ProjectID', 'Framefile', 'Nfish', 'Sex', 'Box', 'CorrectAnnotation','User', 'DateTime'])

if not args.Practice:
Ejemplo n.º 10
0
from cichlid_bower_tracking.helper_modules.file_manager import FileManager as FM

parser = argparse.ArgumentParser(
    description=
    'This script is used to determine analysis states for each project.')
parser.add_argument(
    '--SummaryFile',
    type=str,
    help=
    'Restrict analysis to projectIDs specified in csv file, which will be rewritten. ProjectIDs must be found in a column called projectID'
)

args = parser.parse_args()

fm_obj = FM(summaryFile=args.SummaryFile)

if args.SummaryFile is not None:
    summary_file = fm_obj.localSummaryFile
    fm_obj.downloadData(summary_file)
    dt = pd.read_csv(summary_file, index_col=False)
    projectIDs = list(dt.projectID)
else:
    fm_obj.createDirectory(fm_obj.localAnalysisStatesDir)
    summary_file = fm_obj.localAnalysisStatesDir + 'AllProjects.csv'
    projectIDs = fm_obj.getAllProjectIDs()
    dt = pd.DataFrame(columns=[
        'projectID', 'tankID', 'StartingFiles', 'Prep', 'Depth', 'Cluster',
        'ClusterClassification', 'LabeledVideos', 'LabeledFrames', 'Summary'
    ])
Ejemplo n.º 11
0
import subprocess, gspread, pdb
from cichlid_bower_tracking.helper_modules.file_manager import FileManager as FM
import pandas as pd
# Requires ttab https://www.npmjs.com/package/ttab#manual-installation

fileManager = FM()

fileManager.downloadData(fileManager.localCredentialDir)
gs = gspread.service_account(filename=fileManager.localCredentialSpreadsheet)
controllerGS = gs.open('Controller')
pi_ws = controllerGS.worksheet('RaspberryPi')
data = pi_ws.get_all_values()
dt = pd.DataFrame(data[1:], columns=data[0])

for row in dt.RaspberryPiID:
    print(row)
    #subprocess.run(['ssh-keygen', '-t', 'rsa', '-f', '~/.ssh/id_rsa'])
    #subprocess.run(['ssh-copy-id', 'pi@' + row + '.biosci.gatech.edu'])

for row in dt.RaspberryPiID:
    subprocess.run(
        ['ttab', '-t', row, 'ssh', 'pi@' + row + '.biosci.gatech.edu'])
Ejemplo n.º 12
0
                    help='ModelID to use to classify clusters with')
parser.add_argument(
    '--Force',
    type=bool,
    default=False,
    help=
    'if True, run the analysis even if the summary file indicates is has already been run. Default False'
)

args = parser.parse_args()

# Identify projects to run analysis on
if args.ProjectIDs is not None:
    projectIDs = args.ProjectIDs  # Specified at the command line
else:
    fm_obj = FM(summaryFile=args.SummaryFile)

    fm_obj.downloadData(fm_obj.localSummaryFile)
    dt = pd.read_csv(fm_obj.localSummaryFile)

    if args.Force:
        projectIDs = list(dt.projectID)
    else:
        projectIDs = list(
            dt[dt[args.AnalysisType] ==
               False].projectID)  # Only run analysis on projects that need it

if args.Workers is None:
    workers = os.cpu_count()
else:
    workers = args.Workers
Ejemplo n.º 13
0
class CichlidTracker:
    def __init__(self, all_data):
        
        self.all_data = all_data # Flag to keep all data if desired

        # 1: Define valid commands and ignore warnings
        self.commands = ['New', 'Restart', 'Stop', 'Rewrite', 'UploadData', 'LocalDelete']
        np.seterr(invalid='ignore')

        # 2: Determine which depth sensor is attached (This script can handle DepthSense cameras)
        self._identifyDevice() #Stored in self.device
        self.system = platform.node()

        # 3: Create file manager
        self.fileManager = FM()

        # 4: Start PiCamera
        self.camera = PiCamera()
        self.camera.resolution = (1296, 972)
        self.camera.framerate = 30
        self.piCamera = 'True'
        
        # 5: Download credential files
        self.fileManager.downloadData(self.fileManager.localCredentialDir)
        self.credentialSpreadsheet  = self.fileManager.localCredentialSpreadsheet # Rename to make code readable
        self._authenticateGoogleSpreadSheets() #Creates self.controllerGS
        self._identifyTank() #Stored in self.tankID
        self._identifyServiceAccount()
       
        # 6: Keep track of processes spawned to convert and upload videofiles
        self.processes = [] 

        # 7: Set size of frame
        try:
            self.r
        except AttributeError:
            self.r = (0,0,640,480)

        # 9: Await instructions
        print('Monitoring commands')
        self.monitorCommands()
        
    def __del__(self):
        # Try to close out files and stop running Kinects
        self._modifyPiGS('Command','None', ping = False)
        self._modifyPiGS('Status','Stopped', ping = False)
        self._modifyPiGS('Error','UnknownError', ping = False)

        if self.piCamera:
            if self.camera.recording:
                self.camera.stop_recording()
                self._print('PiCameraStopped: Time=' + str(datetime.datetime.now()) + ', File=Videos/' + str(self.videoCounter).zfill(4) + "_vid.h264")

        if self.device == 'realsense':
            self.pipeline.stop()

        self._closeFiles()

    def monitorCommands(self, delta = 20):
        # This function checks the master Controller Google Spreadsheet to determine if a command was issued (delta = seconds to recheck)
        self._modifyPiGS('Status', 'AwaitingCommand')
        self._modifyPiGS('Error', '', ping = False)

        while True:
            command, projectID = self._returnCommand()
            if projectID in ['','None']:
                self._reinstructError('ProjectID must be set')
                time.sleep(delta)
                continue
            
            if command not in ['None',None]:
                print(command + '\t' + projectID)
                self.fileManager.createProjectData(projectID)    
                self.runCommand(command, projectID)

            time.sleep(delta)

    def runCommand(self, command, projectID):
        # This function is used to run a specific command found in the  master Controller Google Spreadsheet
        self.projectID = projectID

        # Rename files to make code more readable 
        self.projectDirectory = self.fileManager.localProjectDir
        self.loggerFile = self.fileManager.localLogfile
        self.googleErrorFile = self.fileManager.localProjectDir + 'GoogleErrors.txt'
        self.frameDirectory = self.fileManager.localFrameDir
        self.videoDirectory = self.fileManager.localVideoDir
        self.backupDirectory = self.fileManager.localBackupDir

        if command not in self.commands:
            self._reinstructError(command + ' is not a valid command. Options are ' + str(self.commands))
            
        if command == 'Stop':
            
            if self.piCamera:
                if self.camera.recording:
                    self.camera.stop_recording()
                    self._print('PiCameraStopped: Time: ' + str(datetime.datetime.now()) + ',,File: Videos/' + str(self.videoCounter).zfill(4) + "_vid.h264")
                    
                    command = ['python3', 'unit_scripts/process_video.py', self.videoDirectory + str(self.videoCounter).zfill(4) + '_vid.h264']
                    command += [str(self.camera.framerate[0]), self.projectID]
                    self._print(command)
                    self.processes.append(subprocess.Popen(command))

            try:
                if self.device == 'realsense':
                    self.pipeline.stop()
            except Exception as e:
                self._googlePrint(e)
                self._print('ErrorStopping kinect')
                
            self._closeFiles()

            self._modifyPiGS('Command', 'None', ping = False)
            self._modifyPiGS('Status', 'AwaitingCommand', ping = False)
            return

        if command == 'UploadData':

            self._modifyPiGS('Command', 'None')
            self._uploadFiles()
            return
            
        if command == 'LocalDelete':
            if os.path.exists(self.projectDirectory):
                shutil.rmtree(self.projectDirectory)
            self._modifyPiGS('Command', 'None', ping = False)
            self._modifyPiGS('Status', 'AwaitingCommand', ping = False)
            return

        self._modifyPiGS('Command', 'None', ping = False)
        self._modifyPiGS('Status', 'Running', ping = False)
        self._modifyPiGS('Error', '', ping = False)


        if command == 'New':
            # Project Directory should not exist. If it does, report error
            if os.path.exists(self.projectDirectory):
                self._reinstructError('New command cannot be run if ouput directory already exists. Use Rewrite or Restart')

        if command == 'Rewrite':
            if os.path.exists(self.projectDirectory):
                shutil.rmtree(self.projectDirectory)
            
        if command in ['New','Rewrite']:
            self.masterStart = datetime.datetime.now()
            
            os.makedirs(self.projectDirectory)
            os.makedirs(self.frameDirectory)
            os.makedirs(self.videoDirectory)
            os.makedirs(self.backupDirectory)
            #self._createDropboxFolders()
            self.frameCounter = 1
            self.videoCounter = 1

        if command == 'Restart':
            logObj = LP(self.loggerFile)
            self.masterStart = logObj.master_start
            self.frameCounter = logObj.lastFrameCounter + 1
            self.videoCounter = logObj.lastVideoCounter + 1
            if self.system != logObj.system or self.device != logObj.device:
                self._reinstructError('Restart error. LogData: ' + ','.join([str(x) for x in [logObj.system,logObj.device,logObj.camera]]) + ',, SystemData: ' + ','.join([str(x) for x in [self.system, self.device, self.camera]]))
                return
            if self.device != 'None':
                row, column, ping_column = self._getRowColumn('Image')
                subprocess.Popen(['python3', 'unit_scripts/drive_updater.py', self.loggerFile, str(row), str(column)])
                pass

        self.lf = open(self.loggerFile, 'a', buffering = 1) # line buffered
        self.g_lf = open(self.googleErrorFile, 'a', buffering = 1)
        self._modifyPiGS('MasterStart',str(self.masterStart), ping = False)

        if command in ['New', 'Rewrite']:
            self._print('MasterStart: System: '+self.system + ',,Device: ' + self.device + ',,Camera: ' + str(self.piCamera) + ',,Uname: ' + str(platform.uname()) + ',,TankID: ' + self.tankID + ',,ProjectID: ' + self.projectID)
            self._print('MasterRecordInitialStart: Time: ' + str(self.masterStart))
            self._print('PrepFiles: FirstDepth: PrepFiles/FirstDepth.npy,,LastDepth: PrepFiles/LastDepth.npy,,PiCameraRGB: PiCameraRGB.jpg,,DepthRGB: DepthRGB.jpg')
            picamera_settings = {'AnalogGain': str(self.camera.analog_gain), 'AWB_Gains': str(self.camera.awb_gains), 
                                'AWB_Mode': str(self.camera.awb_mode), 'Brightness': str(self.camera.brightness), 
                                'ClockMode': str(self.camera.clock_mode), 'Contrast': str(self.camera.contrast),
                                'Crop': str(self.camera.crop),'DigitalGain': str(self.camera.digital_gain),
                                'ExposureCompensation': str(self.camera.exposure_compensation),'ExposureMode': str(self.camera.exposure_mode),
                                'ExposureSpeed': str(self.camera.exposure_speed),'FrameRate': str(self.camera.framerate),
                                'ImageDenoise': str(self.camera.image_denoise),'MeterMode': str(self.camera.meter_mode),
                                'RawFormat': str(self.camera.raw_format), 'Resolution': str(self.camera.resolution),
                                'Saturation': str(self.camera.saturation),'SensorMode': str(self.camera.sensor_mode),
                                'Sharpness': str(self.camera.sharpness),'ShutterSpeed': str(self.camera.shutter_speed),
                                'VideoDenoise': str(self.camera.video_denoise),'VideoStabilization': str(self.camera.video_stabilization)}
            self._print('PiCameraSettings: ' + ',,'.join([x + ': ' + picamera_settings[x] for x in sorted(picamera_settings.keys())]))
            #self._createROI(useROI = False)

        else:
            self._print('MasterRecordRestart: Time: ' + str(datetime.datetime.now()))

            
        # Start kinect
        if self.device != 'None':
            self._start_kinect()
            # Diagnose speed
            self._diagnose_speed()

        # Capture data
        self.captureFrames()
    
    def captureFrames(self, frame_delta = 5, background_delta = 5):

        current_background_time = datetime.datetime.now()
        current_frame_time = current_background_time + datetime.timedelta(seconds = 60 * frame_delta)

        command = ''
        
        while True:

            # Grab new time
            now = datetime.datetime.now()
            
            # Fix camera if it needs to be
            if self.piCamera:
                if self._video_recording() and not self.camera.recording:
                    self.camera.capture(self.videoDirectory + str(self.videoCounter).zfill(4) + "_pic.jpg")
                    self._print('PiCameraStarted: FrameRate: ' + str(self.camera.framerate) + ',,Resolution: ' + str(self.camera.resolution) + ',,Time: ' + str(datetime.datetime.now()) + ',,VideoFile: Videos/' + str(self.videoCounter).zfill(4) + '_vid.h264,,PicFile: Videos/' + str(self.videoCounter).zfill(4) + '_pic.jpg')
                    self.camera.start_recording(self.videoDirectory + str(self.videoCounter).zfill(4) + "_vid.h264", bitrate=7500000)
                elif not self._video_recording() and self.camera.recording:
                    self._print('PiCameraStopped: Time: ' + str(datetime.datetime.now()) + ',, File: Videos/' + str(self.videoCounter).zfill(4) + "_vid.h264")
                    self.camera.stop_recording()
                    #self._print(['rclone', 'copy', self.videoDirectory + str(self.videoCounter).zfill(4) + "_vid.h264"])
                    command = ['python3', 'unit_scripts/process_video.py', self.videoDirectory + str(self.videoCounter).zfill(4) + '_vid.h264']
                    command += [str(self.camera.framerate[0]), self.projectID]
                    self._print(command)
                    self.processes.append(subprocess.Popen(command))
                    self.videoCounter += 1

            # Capture a frame and background if necessary
            if self.device != 'None':
                if now > current_background_time:
                    out = self._captureFrame(current_frame_time, keep_all_data = self.all_data)
                    if out is not None:
                        current_background_time += datetime.timedelta(seconds = 60 * background_delta)
                    row, column, ping_column = self._getRowColumn('Image')
                    subprocess.Popen(['python3', 'unit_scripts/drive_updater.py', self.loggerFile, str(row), str(column)])
                else:
                    out = self._captureFrame(current_frame_time, stdev_threshold = stdev_threshold, keep_all_data = self.all_data)
            else:
                while datetime.datetime.now() < current_frame_time:
                    time.sleep(5)

            current_frame_time += datetime.timedelta(seconds = 60 * frame_delta)

            
            # Check google doc to determine if recording has changed.
            try:
                command, projectID = self._returnCommand()
            except KeyError:
                continue                
            if command != 'None' and command is not None:
                break
            else:
                self._modifyPiGS('Error', '')

    def _authenticateGoogleSpreadSheets(self):
        # scope = [
        #     "https://spreadsheets.google.com/feeds",
        #     "https://www.googleapis.com/auth/spreadsheets"
        # ]
        # credentials = ServiceAccountCredentials.from_json_keyfile_name(self.credentialSpreadsheet, scope)

        # Get IP address
        s = socket.socket(socket.AF_INET, socket.SOCK_DGRAM)
        s.connect(("8.8.8.8", 80))
        self.IP = s.getsockname()[0]
        s.close()

        for i in range(0,3): # Try to autheticate three times before failing
            try:
                # gs = gspread.authorize(credentials)
                gs = gspread.service_account(filename=self.credentialSpreadsheet)
            except Exception as e:
                self._googlePrint(e)
                continue
            try:
                self.controllerGS = gs.open('Controller')
                self.pi_ws = self.controllerGS.worksheet('RaspberryPi')
                data = self.pi_ws.get_all_values()
                dt = pd.DataFrame(data[1:], columns = data[0])
            except Exception as e:
                self._googlePrint(e)
                continue

            try:
                if len(dt.loc[dt.RaspberryPiID == platform.node()]) == 0:
                    self.pi_ws.append_row([platform.node(),self.IP,'','','','','','None','Stopped','Error: Awaiting assignment of TankID',str(datetime.datetime.now())])
                    return True
                else:
                    return True
            except Exception as e:
                self._googlePrint(e)
                continue    
            time.sleep(2)
        return False
            
    def _identifyDevice(self):

        try:
            global rs
            import pyrealsense2 as rs

            ctx = rs.context()
            if len(ctx.devices) == 0:
                self.device = 'None'
            elif len(ctx.devices) > 1:
                self._initError('Multiple RealSense devices attached. Unsure how to handle')
            else:
                self.device = 'realsense'
        except Exception:
            self.device = 'None'

    def _identifyTank(self):
        while True:
            tankID = self._getPiGS('TankID')
            if tankID not in ['None','']:
                self.tankID = tankID

                self._modifyPiGS('Capability', 'Device=' + self.device + ',Camera=' + str(self.piCamera), ping = False)
                #self._modifyPiGS('Status', 'AwaitingCommand')
                break
            else:
                self._modifyPiGS('Error','Awaiting assignment of TankID')
                time.sleep(20)

    def _identifyServiceAccount(self):
        while True:
            serviceAccount = self._getPiGS('ServiceAccount')
            if serviceAccount not in ['None','']:
                self.serviceAccount = serviceAccount
                self.credentialSpreadsheet = self.credentialSpreadsheet.replace('_1.json', '_' + self.serviceAccount + '.json')
                self._authenticateGoogleSpreadSheets() #Creates self.controllerGS

                break
            else:
                self._modifyPiGS('Error','Awaiting assignment of ServiceAccount')
                time.sleep(20)

    def _initError(self, message):
        try:
            self._modifyPiGS('Command', 'None')
            self._modifyPiGS('Status', 'Stopped', ping = False)
            self._modifyPiGS('Error', 'InitError: ' + message, ping = False)

        except Exception as e:
            self._googlePrint(e)
            pass
        self._print('InitError: ' + message)
        raise TypeError
            
    def _reinstructError(self, message):
        try:
            #self._modifyPiGS('Command', 'None')
            #self._modifyPiGS('Status', 'AwaitingCommands', ping = False)
            self._modifyPiGS('Error', 'InstructError: ' + message, ping = False)
            self._print(message)
        except Exception as e:
            self._googlePrint(e)
            pass

        # Update google doc to indicate error
        self.monitorCommands()
 
    def _print(self, text):
        #temperature = subprocess.run(['/opt/vc/bin/vcgencmd','measure_temp'], capture_output = True)
        try:
            print(str(text), file = self.lf, flush = True)
        except Exception as e:
            pass
        print(str(text), file = sys.stderr, flush = True)

    def _googlePrint(self, e):
        try:
            print(str(datetime.datetime.now()) + ': ' + str(type(e)) + ': ' + str(e), file = self.g_lf, flush = True)
            time.sleep(20)
        except AttributeError as e2: # log file not created yet so just print to stderr
            print(str(datetime.datetime.now()) + ': ' + str(type(e)) + ': ' + str(e), flush = True)
            time.sleep(20)

    def _returnRegColor(self, crop = True):
        # This function returns a registered color array
        if self.device == 'kinect':
            out = freenect.sync_get_video()[0]
            
        if self.device == 'realsense':
            frames = self.pipeline.wait_for_frames(1000)
            color_frame = frames.get_color_frame()
            out = np.asanyarray(color_frame.get_data())

        if crop:
            return out[self.r[1]:self.r[1]+self.r[3], self.r[0]:self.r[0]+self.r[2]]
        else:
            return out
            
    def _returnDepth(self):
        # This function returns a float64 npy array containing one frame of data with all bad data as NaNs

        if self.device == 'realsense':
            frames = self.pipeline.wait_for_frames(1000)
            frames = self.align.process(frames)
            depth_frame = frames.get_depth_frame().as_depth_frame()

            #except RuntimeError:
            #    self._googlePrint('No frame received from Kinect. Restarting')
            #    self._start_kinect()
            #    depth_frame = self.pipeline.wait_for_frames(1000).get_depth_frame().as_depth_frame()

            data = np.asanyarray(depth_frame.data)*depth_frame.get_units() # Convert to meters
            data[data==0] = np.nan # 0 indicates bad data from RealSense
            data[data>1] = np.nan # Anything further away than 1 m is a mistake
            return data[self.r[1]:self.r[1]+self.r[3], self.r[0]:self.r[0]+self.r[2]]

    def _returnCommand(self):

        command, projectID = self._getPiGS(['Command','ProjectID'])
        return command, projectID

    def _getPiGS(self, column_names):
        # Make this compatible with both lists and also strings
        if not isinstance(column_names, list):
            column_names = [column_names]
        for i in range(3):
            try:
                #print('Read request: ' + str(datetime.datetime.now()))
                data = self.pi_ws.get_all_values()
            except gspread.exceptions.APIError as e:
                if e.response.status_code == 429:
                # Read requests per minute exceeded
                    self._googlePrint('Read requests per minute exceeded')
                    continue
                elif e.response.status_code == 500:
                    self._googlePrint('Internal error encountered')
                    continue
                elif e.response.status_code == 404:
                    self._googlePrint('Requested entity was not found')
                    continue
                else:
                    self._googlePrint('gspread error of unknown nature: ' + str(e))
                    continue
            except requests.exceptions.ReadTimeout as e:
                self._googlePrint('Requests read timeout error encountered')
                continue
            except Exception as e:
                self._googlePrint(f'uncaught exception in _getPiGS: {str(e)}')

            except requests.exceptions.ConnectionError as e:
                self._googlePrint('Requests connection error encountered')
                continue


            dt = pd.DataFrame(data[1:], columns = data[0])
            self.dt = dt
            out_data = []
            for column_name in column_names:
                if column_name not in dt.columns:
                    self._googlePrint('Cant find column name in Controller: ' + column_name)
                    raise Exception
                try:
                    cell = dt.loc[(dt.RaspberryPiID == platform.node())&(dt.IP == self.IP),column_name]
                except AttributeError as error:
                    pdb.set_trace()
                if len(cell) > 1:
                    self._googlePrint('Multiple rows in the Controller with the same ID and IP. Using 1st')
                    self._modifyPiGS('Error', 'InstructError: Multiple rows with the same IP/ID', ping = False)
                out_data.append(cell.values[0])

            if len(out_data) == 1:
                return out_data[0]
            else:
                return out_data
        self._googlePrint('Failed contancting controller for three tries')
        return [None]*len(column_names)

    def _getRowColumn(self, column_name):
        column = self.dt.columns.get_loc(column_name)
        ping_column = self.dt.columns.get_loc('Ping')
        row = pd.Index((self.dt.RaspberryPiID == platform.node())&(self.dt.IP == self.IP)).get_loc(True)
        return (row + 2, column + 1, ping_column + 1) # 0 vs 1 indexing for pandas vs gspread + column names aren't in the pandas dataframe

    def _modifyPiGS(self, column_name, new_value, ping = True):
        for i in range(3):
            try:
                row, column, ping_column = self._getRowColumn(column_name)

                #print('Write request: ' + str(datetime.datetime.now()))
                self.pi_ws.update_cell(row, column, new_value)

                if ping:
                    #print('Write request: ' + str(datetime.datetime.now()))
                    self.pi_ws.update_cell(row, ping_column, str(datetime.datetime.now()))
                break
            except gspread.exceptions.APIError as e:
                if e.response.status_code == 429:
                    # Read requests per minute exceeded
                    self._googlePrint('Read requests per minute exceeded')
                    continue
                elif e.response.status_code == 500:
                    self._googlePrint('Internal error encountered')
                    continue
                elif e.response.status_code == 404:
                    self._googlePrint('Requested entity was not found')
                    continue
                else:
                    self._googlePrint('gspread error of unknown nature: ' + str(e))
                    continue
            except requests.exceptions.ReadTimeout:
                self._googlePrint('Read timeout error')
                continue

    
    def _video_recording(self):
        if datetime.datetime.now().hour >= 8 and datetime.datetime.now().hour <= 18:
            return True
        else:
            return False
            
    def _start_kinect(self):

        if self.device == 'realsense':
            # Create a context object. This object owns the handles to all connected realsense devices
            self.pipeline = rs.pipeline()
            self.align = rs.align(rs.stream.color)

            # Configure streams
            config = rs.config()
            config.enable_stream(rs.stream.depth, 640, 480, rs.format.z16, 30)
            config.enable_stream(rs.stream.color, 640, 480, rs.format.rgb8, 30)

            # Start streaming
            self.profile = self.pipeline.start(config)
            #device = self.profile.get_device()
            #depth_sensor = device.first_depth_sensor()
            #device.hardware_reset()

            frames = self.pipeline.wait_for_frames(1000)
            depth = frames.get_depth_frame()
            self.r = (0,0,depth.width,depth.height)

    def _diagnose_speed(self, time = 10):
        print('Diagnosing speed for ' + str(time) + ' seconds.', file = sys.stderr)
        delta = datetime.timedelta(seconds = time)
        start_t = datetime.datetime.now()
        counter = 0
        while True:
            depth = self._returnDepth()
            counter += 1
            if datetime.datetime.now() - start_t > delta:
                break
        #Grab single snapshot of depth and save it
        depth = self._returnDepth()
        np.save(self.projectDirectory +'Frames/FirstFrame.npy', depth)

        #Grab a bunch of depth files to characterize the variability
        data = np.zeros(shape = (50, self.r[3], self.r[2]))
        for i in range(0, 50):
            data[i] = self._returnDepth()
            
        counts = np.count_nonzero(~np.isnan(data), axis = 0)
        std = np.nanstd(data, axis = 0)
        np.save(self.projectDirectory +'Frames/FirstDataCount.npy', counts)
        np.save(self.projectDirectory +'Frames/StdevCount.npy', std)
         
        self._print('DiagnoseSpeed: Rate: ' + str(counter/time))

        self._print('FirstFrameCaptured: FirstFrame: Frames/FirstFrame.npy,,GoodDataCount: Frames/FirstDataCount.npy,,StdevCount: Frames/StdevCount.npy')
    
    def _captureFrame(self, endtime, max_frames = 40, stdev_threshold = .05, count_threshold = 10, keep_all_data = False):
        # Captures time averaged frame of depth data
        sums = np.zeros(shape = (self.r[3], self.r[2]))
        n = np.zeros(shape = (self.r[3], self.r[2]))
        stds = np.zeros(shape = (self.r[3], self.r[2]))
        
        current_time = datetime.datetime.now()
        if current_time >= endtime:
            self._print('Frame without data')
            return

        counter = 1

        all_data = np.empty(shape = (int(max_frames), self.r[3], self.r[2]))
        all_data[:] = np.nan
        
        for i in range(0, max_frames):
            all_data[i] = self._returnDepth()
            current_time = datetime.datetime.now()
            
            counter += 1

            if current_time >= endtime:
                break
            time.sleep(10)
        
        if (endtime.minute > 0 and endtime.minute <= 5) or keep_all_data:
            self._print('AllDataCaptured: NpyFile: Frames/AllData_' + str(self.frameCounter).zfill(6) + '.npy,,PicFile: Frames/Frame_' + str(self.frameCounter).zfill(6) + '.jpg,,Time: ' + str(endtime)  + ',,NFrames: ' + str(i))
            np.save(self.projectDirectory +'Frames/AllData_' + str(self.frameCounter).zfill(6) + '.npy', all_data)

        bad_all_pixels = np.count_nonzero(np.isnan(all_data))
        good_all_pixels = np.count_nonzero(~np.isnan(all_data))

        med = np.nanmedian(all_data, axis = 0)
        std = np.nanstd(all_data, axis = 0)
        
        med[np.isnan(std)] = np.nan

        bad_std_avg_pixels = (std > stdev_threshold).sum()
        med[std > stdev_threshold] = np.nan
        std[std > stdev_threshold] = np.nan


        counts = np.count_nonzero(~np.isnan(all_data), axis = 0)

        bad_count_avg_pixels = (counts<count_threshold).sum()
        med[counts < count_threshold] = np.nan
        std[counts < count_threshold] = np.nan

        color = self._returnRegColor()                        
        
        outstring = 'FrameCaptured: NpyFile: Frames/Frame_' + str(self.frameCounter).zfill(6) + '.npy,,PicFile: Frames/Frame_' + str(self.frameCounter).zfill(6) + '.jpg,,'
        outstring += 'Time: ' + str(endtime)  + ',,NFrames: ' + str(i) + ',,AvgMed: '+ '%.2f' % np.nanmean(med) + ',,AvgStd: ' + '%.2f' % np.nanmean(std) + ',,'
        outstring += 'GP: ' + str(np.count_nonzero(~np.isnan(med))) + ',,AllPixelsBad: ' + str(bad_all_pixels) + ',,AllPixelsGood: ' + str(good_all_pixels) + ',,'
        outstring += 'FilteredStdPixels: ' + str(bad_std_avg_pixels) + ',,FilteredCountPixels: ' + str(bad_count_avg_pixels) + ',,LOF: ' + str(self._video_recording())
        
        self._print(outstring)
        np.save(self.projectDirectory +'Frames/Frame_' + str(self.frameCounter).zfill(6) + '.npy', med)
        matplotlib.image.imsave(self.projectDirectory+'Frames/Frame_' + str(self.frameCounter).zfill(6) + '.jpg', color)
        
        self.frameCounter += 1

        return med

            
    def _uploadFiles(self):
        self._modifyPiGS('Status', 'Finishing converting and uploading of videos')
        for p in self.processes:
            p.communicate()
        
        for movieFile in os.listdir(self.videoDirectory):
            if '.h264' in movieFile:
                command = ['python3', 'unit_scripts/process_video.py', self.videoDirectory + movieFile]
                command += [str(self.camera.framerate[0]), self.projectID]
                self._print(command)
                self.processes.append(subprocess.Popen(command))

        for p in self.processes:
            p.communicate()

        self._modifyPiGS('Status','Creating prep files')

        # Move files around as appropriate
        prepDirectory = self.projectDirectory + 'PrepFiles/'
        shutil.rmtree(prepDirectory) if os.path.exists(prepDirectory) else None
        os.makedirs(prepDirectory)

        lp = LP(self.loggerFile)

        self.frameCounter = lp.lastFrameCounter + 1

        videoObj = [x for x in lp.movies if x.startTime.hour >= 8 and x.startTime.hour <= 20][0]
        subprocess.call(['cp', self.projectDirectory + videoObj.pic_file, prepDirectory + 'PiCameraRGB.jpg'])

        subprocess.call(['cp', self.projectDirectory + lp.movies[-1].pic_file, prepDirectory + 'LastPiCameraRGB.jpg'])

        # Find depthfile that is closest to the video file time
        if self.device != 'None':
            depthObj = [x for x in lp.frames if x.time > videoObj.startTime][0]


            subprocess.call(['cp', self.projectDirectory + depthObj.pic_file, prepDirectory + 'DepthRGB.jpg'])

            if not os.path.isdir(self.frameDirectory):
                self._modifyPiGS('Status', 'Error: ' + self.frameDirectory + ' does not exist.')
                return

            subprocess.call(['cp', self.frameDirectory + 'Frame_000001.npy', prepDirectory + 'FirstDepth.npy'])
            subprocess.call(['cp', self.frameDirectory + 'Frame_' + str(self.frameCounter-1).zfill(6) + '.npy', prepDirectory + 'LastDepth.npy'])
        
        try:
            self._modifyPiGS('Status', 'Uploading data to cloud')
            if self.device != 'None':
                self.fileManager.uploadData(self.frameDirectory, tarred = True)
            #print(prepDirectory)
            self.fileManager.uploadData(prepDirectory)
            #print(self.videoDirectory)
            self.fileManager.uploadData(self.videoDirectory)
            #print(self.loggerFile)
            self.fileManager.uploadData(self.loggerFile)
            self._modifyPiGS('Error','UploadSuccessful, ready for delete')

        except Exception as e:
            print('UploadError: ' + str(e))
            self._modifyPiGS('Error','UploadFailed, Need to rerun')
            raise Exception
        
    def _closeFiles(self):
       try:
            self._print('MasterRecordStop: ' + str(datetime.datetime.now()))
            self.lf.close()
       except AttributeError:
           pass
       try:
           if self.system == 'mac':
               self.caff.kill()
       except AttributeError:
           pass