def test_TotalVariation_vs_FGP_TV_gpu(self):   

        # Isotropic TV cil
        TV_cil_iso = self.alpha * TotalVariation(max_iteration=self.iterations)
        res_TV_cil_iso = TV_cil_iso.proximal(self.data, tau=1.0)        

        # Anisotropic TV cil
        TV_cil_aniso = self.alpha * TotalVariation(max_iteration=self.iterations, isotropic=False) 
        res_TV_cil_aniso = TV_cil_aniso.proximal(self.data, tau=1.0)               
        
        # Isotropic FGP_TV CCPiReg toolkit (gpu)
        TV_regtoolkit_gpu_iso = self.alpha * FGP_TV(max_iteration=self.iterations, device = 'gpu') 
        res_TV_regtoolkit_gpu_iso = TV_regtoolkit_gpu_iso.proximal(self.data, tau=1.0)

        # Anisotropic FGP_TV CCPiReg toolkit (gpu)
        TV_regtoolkit_gpu_aniso = self.alpha * FGP_TV(max_iteration=self.iterations, device = 'gpu', isotropic=False)  
        res_TV_regtoolkit_gpu_aniso = TV_regtoolkit_gpu_aniso.proximal(self.data, tau=1.0)  

        # Anisotropic FGP_TV CCPiReg toolkit (cpu)
        TV_regtoolkit_cpu_aniso = self.alpha * FGP_TV(max_iteration=self.iterations, device = 'cpu', isotropic=False)         
        res_TV_regtoolkit_cpu_aniso = TV_regtoolkit_cpu_aniso.proximal(self.data, tau=1.0)          

        # Isotropic FGP_TV CCPiReg toolkit (cpu)
        TV_regtoolkit_cpu_iso = self.alpha * FGP_TV(max_iteration=self.iterations, device = 'cpu')
        res_TV_regtoolkit_cpu_iso = TV_regtoolkit_cpu_iso.proximal(self.data, tau=1.0)        

        np.testing.assert_array_almost_equal(res_TV_cil_iso.array, res_TV_regtoolkit_gpu_iso.array, decimal=3)
        np.testing.assert_array_almost_equal(res_TV_regtoolkit_cpu_iso.array, res_TV_regtoolkit_gpu_iso.array, decimal=3)

        np.testing.assert_array_almost_equal(res_TV_cil_aniso.array, res_TV_regtoolkit_gpu_aniso.array, decimal=3)
        np.testing.assert_array_almost_equal(res_TV_regtoolkit_cpu_aniso.array, res_TV_regtoolkit_gpu_aniso.array, decimal=3)              
 def test_FGP_TV_complex(self):
     data = dataexample.CAMERA.get(size=(256, 256))
     datarr = data.as_array()
     cmpx = np.zeros(data.shape, dtype=np.complex)
     cmpx.real = datarr[:]
     cmpx.imag = datarr[:]
     data.array = cmpx
     reg = FGP_TV()
     out = reg.proximal(data, 1)
     outarr = out.as_array()
     np.testing.assert_almost_equal(outarr.imag, outarr.real)
    def test_functionality_FGP_TV(self):

        data = dataexample.CAMERA.get(size=(256,256))
        datarr = data.as_array()
        from cil.plugins.ccpi_regularisation.functions import FGP_TV
        from ccpi.filters import regularisers

        tau = 1.
        fcil = FGP_TV()
        outcil = fcil.proximal(data, tau=tau)
        # use CIL defaults
        outrgl, info = regularisers.FGP_TV(datarr, fcil.alpha*tau, fcil.max_iteration, fcil.tolerance, 0, 1, 'cpu' )
        np.testing.assert_almost_equal(outrgl, outcil.as_array())
    def test_FGP_TV_raise_on_4D_data(self):

        from cil.plugins.ccpi_regularisation.functions import FGP_TV
        
        tau = 1.
        fcil = FGP_TV()
        data = ImageGeometry(3,4,5,channels=10).allocate(0)


        try:
            outcil = fcil.proximal(data, tau=tau)
            assert False
        except ValueError:
            assert True
Ejemplo n.º 5
0
 t1 = timer()
 print(t1-t0)
 
 plt.figure()
 plt.imshow(res1.as_array())
 plt.colorbar()
 plt.show()
 
 # CCPi Regularisation toolkit high tolerance
 r_alpha = alpha
 r_iterations = iters
 r_tolerance = 1e-9
 r_iso = 0
 r_nonneg = 1
 r_printing = 0
 g_CCPI_reg_toolkit = CCPiReg_FGP_TV(r_alpha, r_iterations, r_tolerance, r_iso, r_nonneg, r_printing, 'cpu')
 
 t2 = timer()
 res2 = g_CCPI_reg_toolkit.proximal(noisy_data, 1.)
 t3 = timer()
 print(t3-t2)
 
 plt.figure()
 plt.imshow(res2.as_array())
 plt.colorbar()
 plt.show()
 
 plt.figure()
 plt.imshow(np.abs(res1.as_array()-res2.as_array()))
 plt.colorbar()
 plt.title("Difference CIL_FGP_TV vs CCPi_FGP_TV")
Ejemplo n.º 6
0
    def test_compare_regularisation_toolkit_tomophantom(self):

        print("Compare CIL_FGP_TV vs CCPiReg_FGP_TV no tolerance (3D)")

        print("Building 3D phantom using TomoPhantom software")
        model = 13  # select a model number from the library
        N_size = 64  # Define phantom dimensions using a scalar value (cubic phantom)
        path = os.path.dirname(tomophantom.__file__)
        path_library3D = os.path.join(path, "Phantom3DLibrary.dat")
        #This will generate a N_size x N_size x N_size phantom (3D)
        phantom_tm = TomoP3D.Model(model, N_size, path_library3D)

        ig = ImageGeometry(N_size, N_size, N_size)
        data = ig.allocate()
        data.fill(phantom_tm)

        noisy_data = noise.gaussian(data, seed=10)

        alpha = 0.1
        iters = 1000

        print("Use tau as an array of ones")
        # CIL_TotalVariation no tolerance
        g_CIL = alpha * TotalVariation(iters, tolerance=None, info=True)
        res1 = g_CIL.proximal(noisy_data, ig.allocate(1.))
        t0 = timer()
        res1 = g_CIL.proximal(noisy_data, ig.allocate(1.))
        t1 = timer()
        print(t1 - t0)

        # CCPi Regularisation toolkit high tolerance
        r_alpha = alpha
        r_iterations = iters
        r_tolerance = 1e-9
        r_iso = 0
        r_nonneg = 0
        r_printing = 0
        g_CCPI_reg_toolkit = CCPiReg_FGP_TV(r_alpha, r_iterations, r_tolerance,
                                            r_iso, r_nonneg, r_printing, 'cpu')

        t2 = timer()
        res2 = g_CCPI_reg_toolkit.proximal(noisy_data, 1.)
        t3 = timer()
        print(t3 - t2)
        np.testing.assert_array_almost_equal(res1.as_array(),
                                             res2.as_array(),
                                             decimal=3)

        # CIL_FGP_TV no tolerance
        #g_CIL = FGP_TV(ig, alpha, iters, tolerance=None, info=True)
        g_CIL.tolerance = None
        t0 = timer()
        res1 = g_CIL.proximal(noisy_data, 1.)
        t1 = timer()
        print(t1 - t0)

        ###################################################################
        ###################################################################
        ###################################################################
        ###################################################################

        data = dataexample.PEPPERS.get(size=(256, 256))
        ig = data.geometry
        ag = ig

        noisy_data = noise.gaussian(data, seed=10)

        alpha = 0.1
        iters = 1000

        # CIL_FGP_TV no tolerance
        g_CIL = alpha * TotalVariation(iters, tolerance=None)
        t0 = timer()
        res1 = g_CIL.proximal(noisy_data, 1.)
        t1 = timer()
        print(t1 - t0)

        # CCPi Regularisation toolkit high tolerance
        r_alpha = alpha
        r_iterations = iters
        r_tolerance = 1e-8
        r_iso = 0
        r_nonneg = 0
        r_printing = 0
        g_CCPI_reg_toolkit = CCPiReg_FGP_TV(r_alpha, r_iterations, r_tolerance,
                                            r_iso, r_nonneg, r_printing, 'cpu')

        t2 = timer()
        res2 = g_CCPI_reg_toolkit.proximal(noisy_data, 1.)
        t3 = timer()
        print(t3 - t2)
Ejemplo n.º 7
0
    def test_compare_regularisation_toolkit(self):

        print("Compare CIL_FGP_TV vs CCPiReg_FGP_TV no tolerance (2D)")

        data = dataexample.SHAPES.get()
        ig = data.geometry
        ag = ig

        # Create noisy data.
        n1 = np.random.normal(0, 0.1, size=ig.shape)
        noisy_data = ig.allocate()
        noisy_data.fill(n1 + data.as_array())

        alpha = 0.1
        iters = 1000

        # CIL_FGP_TV no tolerance
        g_CIL = alpha * TotalVariation(
            iters, tolerance=None, lower=0, info=True)
        t0 = timer()
        res1 = g_CIL.proximal(noisy_data, 1.)
        t1 = timer()
        print(t1 - t0)

        # CCPi Regularisation toolkit high tolerance
        r_alpha = alpha
        r_iterations = iters
        r_tolerance = 1e-9
        r_iso = 0
        r_nonneg = 1
        r_printing = 0
        g_CCPI_reg_toolkit = CCPiReg_FGP_TV(r_alpha, r_iterations, r_tolerance,
                                            r_iso, r_nonneg, r_printing, 'cpu')

        t2 = timer()
        res2 = g_CCPI_reg_toolkit.proximal(noisy_data, 1.)
        t3 = timer()
        print(t3 - t1)

        np.testing.assert_array_almost_equal(res1.as_array(),
                                             res2.as_array(),
                                             decimal=4)

        ###################################################################
        ###################################################################
        ###################################################################
        ###################################################################

        print("Compare CIL_FGP_TV vs CCPiReg_FGP_TV with iterations.")
        iters = 408
        # CIL_FGP_TV no tolerance
        g_CIL = alpha * TotalVariation(iters, tolerance=1e-9, lower=0.)
        t0 = timer()
        res1 = g_CIL.proximal(noisy_data, 1.)
        t1 = timer()
        print(t1 - t0)

        # CCPi Regularisation toolkit high tolerance
        r_alpha = alpha
        r_iterations = iters
        r_tolerance = 1e-9
        r_iso = 0
        r_nonneg = 1
        r_printing = 0
        g_CCPI_reg_toolkit = CCPiReg_FGP_TV(r_alpha, r_iterations, r_tolerance,
                                            r_iso, r_nonneg, r_printing, 'cpu')

        t2 = timer()
        res2 = g_CCPI_reg_toolkit.proximal(noisy_data, 1.)
        t3 = timer()
        print(t3 - t2)

        print(mae(res1, res2))
        np.testing.assert_array_almost_equal(res1.as_array(),
                                             res2.as_array(),
                                             decimal=3)
Ejemplo n.º 8
0
fista.run(300)
LS_reco = fista.get_output()
show2D(LS_reco,
       slice_list=[('vertical', 204 // bins), ('horizontal_y', 570 // bins)],
       title="LS reconstruction",
       fix_range=(-0.02, 0.07))

#%%
plt.figure()
plt.semilogy(fista.objective)
plt.title('FISTA LS criterion')
plt.show()

#%% Setup total-variation (TV) with a non-negativity (NN) contraint
alpha = 1
TV = alpha * FGP_TV(isotropic=True, device='gpu')

#%% Setup FISTA to solve for LS with TV+NN
fista = FISTA(x_init=ig.allocate(0), f=LS, g=TV, max_iteration=1000)
fista.update_objective_interval = 10

#%% Run FISTA
fista.run(300)
TV_NN_reco_isotropic = fista.get_output()
show2D(TV_NN_reco_isotropic,
       slice_list=[('vertical', 204 // bins), ('horizontal_y', 570 // bins)],
       title="TV_NN 100it reconstruction",
       fix_range=(-0.02, 0.07))

#%%
plt.figure()
Ejemplo n.º 9
0
    from cil.plugins.astra.operators import ProjectionOperator as A  #
    from cil.plugins.ccpi_regularisation.functions import FGP_TV

    K = A(ig_cs, ag_shift)
    # the c parameter is used to remove scaling of L2NormSquared in PDHG
    #
    c = 2
    f = LeastSquares(K, ldata, c=0.5 * c)
    if sparse_beads:
        f.L = 1071.1967 * c
    else:
        f.L = 24.4184 * c
    alpha_rgl = 0.003
    alpha = alpha_rgl * ig_cs.voxel_size_x
    g = c * alpha * TotalVariation(lower=0.)
    g = FGP_TV(alpha, 100, 1e-5, 1, 1, 0, 'gpu')

    algo = FISTA(initial=K.domain.allocate(0),
                 f=f,
                 g=g,
                 max_iteration=10000,
                 update_objective_interval=2)
    #%%
    import cProfile
    algo.update_objective_interval = 10
    cProfile.run('algo.run(100, verbose=1)')
    #%%
    plotter2D(algo.solution, cmap='gist_earth')

    #%%
    def test_FGP_TV_rmul(self):
        from cil.plugins.ccpi_regularisation.functions import FGP_TV
        f = FGP_TV()

        self.rmul_test(f)