Ejemplo n.º 1
0
def _init_ops(data: Dict[str, Any]) -> 'cirq.OP_TREE':
    if 'init' not in data:
        return []
    init = data['init']
    if not isinstance(init, List):
        raise ValueError(f'Circuit JSON init must be a list but was {init!r}.')
    init_ops = []
    for i in range(len(init)):
        state = init[i]
        q = devices.LineQubit(i)
        if state == 0:
            pass
        elif state == 1:
            init_ops.append(ops.X(q))
        elif state == '+':
            init_ops.append(ops.Ry(np.pi / 2).on(q))
        elif state == '-':
            init_ops.append(ops.Ry(-np.pi / 2).on(q))
        elif state == 'i':
            init_ops.append(ops.Rx(-np.pi / 2).on(q))
        elif state == '-i':
            init_ops.append(ops.Rx(np.pi / 2).on(q))
        else:
            raise ValueError(f'Unrecognized init state: {state!r}')
    return ops.Moment(init_ops)
Ejemplo n.º 2
0
    def convert_one(self, op: ops.Operation) -> ops.OP_TREE:
        """Convert a single (one- or two-qubit) operation

        into ion trap native gates
        Args:
            op: gate operation to be converted

        Returns:
            the desired operation implemented with ion trap gates
        """

        # Known gate name
        if not isinstance(op, ops.GateOperation):
            raise TypeError("{!r} is not a gate operation.".format(op))

        if is_native_ion_gate(op.gate):
            return [op]
        # one choice of known Hadamard gate decomposition
        if isinstance(op.gate, ops.HPowGate) and op.gate.exponent == 1:
            return [
                ops.Rx(np.pi).on(op.qubits[0]),
                ops.Ry(-1 * np.pi / 2).on(op.qubits[0])
            ]
        # one choice of known CNOT gate decomposition
        if isinstance(op.gate, ops.CNotPowGate) and op.gate.exponent == 1:
            return [
                ops.Ry(np.pi / 2).on(op.qubits[0]),
                MS(np.pi / 4).on(op.qubits[0], op.qubits[1]),
                ops.Rx(-1 * np.pi / 2).on(op.qubits[0]),
                ops.Rx(-1 * np.pi / 2).on(op.qubits[1]),
                ops.Ry(-1 * np.pi / 2).on(op.qubits[0])
            ]
        # Known matrix
        mat = protocols.unitary(op, None) if len(op.qubits) <= 2 else None
        if mat is not None and len(op.qubits) == 1:
            gates = optimizers.single_qubit_matrix_to_phased_x_z(mat)
            return [g.on(op.qubits[0]) for g in gates]
        elif mat is not None and len(op.qubits) == 2:
            return two_qubit_matrix_to_ion_operations(op.qubits[0],
                                                      op.qubits[1], mat)
        else:
            if self.ignore_failures:
                return [op]
            else:
                raise TypeError("Don't know how to work with {!r}. "
                                "It isn't a native Ion Trap operation, "
                                "a 1 or 2 qubit gate with a known unitary, "
                                "or composite.".format(op.gate))
Ejemplo n.º 3
0
def _decompose_xx_yy_into_two_fsims_ignoring_single_qubit_ops(
        *,
        qubits: Sequence['cirq.Qid'],
        fsim_gate: 'cirq.FSimGate',
        canonical_x_kak_coefficient: float,
        canonical_y_kak_coefficient: float,
        atol: float = 1e-8) -> List['cirq.Operation']:
    x = canonical_x_kak_coefficient
    y = canonical_y_kak_coefficient
    assert 0 <= y <= x <= np.pi / 4

    eta = np.sin(x)**2 * np.cos(y)**2 + np.cos(x)**2 * np.sin(y)**2
    xi = abs(np.sin(2 * x) * np.sin(2 * y))

    t = fsim_gate.phi / 2
    kappa = np.sin(fsim_gate.theta)**2 - np.sin(t)**2
    s_sum = (eta - np.sin(t)**2) / kappa
    s_dif = 0.5 * xi / kappa

    a_dif = _sticky_0_to_1(s_sum + s_dif, atol=atol)
    a_sum = _sticky_0_to_1(s_sum - s_dif, atol=atol)
    if a_dif is None or a_sum is None:
        raise ValueError(
            f'Failed to synthesize XX^{x/np.pi}·YY^{y/np.pi} from two '
            f'{fsim_gate!r} separated by single qubit operations.')

    x_dif = np.arcsin(np.sqrt(a_dif))
    x_sum = np.arcsin(np.sqrt(a_sum))

    x_a = x_sum + x_dif
    x_b = x_dif - x_sum

    a, b = qubits
    return [
        fsim_gate(a, b),
        ops.Rz(t + np.pi).on(a),
        ops.Rz(t).on(b),
        ops.Rx(x_a).on(a),
        ops.Rx(x_b).on(b),
        fsim_gate(a, b),
    ]
Ejemplo n.º 4
0
class QasmParser:
    """Parser for QASM strings.

    Example:

        qasm = "OPENQASM 2.0; qreg q1[2]; CX q1[0], q1[1];"
        parsedQasm = QasmParser().parse(qasm)
    """
    def __init__(self):
        self.parser = yacc.yacc(module=self, debug=False, write_tables=False)
        self.circuit = Circuit()
        self.qregs: Dict[str, int] = {}
        self.cregs: Dict[str, int] = {}
        self.qelibinc = False
        self.lexer = QasmLexer()
        self.supported_format = False
        self.parsedQasm: Optional[Qasm] = None
        self.qubits: Dict[str, ops.Qid] = {}
        self.functions = {
            'sin': np.sin,
            'cos': np.cos,
            'tan': np.tan,
            'exp': np.exp,
            'ln': np.log,
            'sqrt': np.sqrt,
            'acos': np.arccos,
            'atan': np.arctan,
            'asin': np.arcsin
        }

        self.binary_operators = {
            '+': operator.add,
            '-': operator.sub,
            '*': operator.mul,
            '/': operator.truediv,
            '^': operator.pow
        }

    basic_gates: Dict[str, QasmGateStatement] = {
        'CX':
        QasmGateStatement(qasm_gate='CX',
                          cirq_gate=CX,
                          num_params=0,
                          num_args=2),
        'U':
        QasmGateStatement(
            qasm_gate='U',
            num_params=3,
            num_args=1,
            # QasmUGate expects half turns
            cirq_gate=(lambda params: QasmUGate(*[p / np.pi for p in params])))
    }

    qelib_gates = {
        'rx':
        QasmGateStatement(qasm_gate='rx',
                          cirq_gate=(lambda params: ops.Rx(params[0])),
                          num_params=1,
                          num_args=1),
        'ry':
        QasmGateStatement(qasm_gate='ry',
                          cirq_gate=(lambda params: ops.Ry(params[0])),
                          num_params=1,
                          num_args=1),
        'rz':
        QasmGateStatement(qasm_gate='rz',
                          cirq_gate=(lambda params: ops.Rz(params[0])),
                          num_params=1,
                          num_args=1),
        'id':
        QasmGateStatement(qasm_gate='id',
                          cirq_gate=ops.IdentityGate(1),
                          num_params=0,
                          num_args=1),
        'u2':
        QasmGateStatement(qasm_gate='u2',
                          cirq_gate=(lambda params: QasmUGate(
                              0.5, params[0] / np.pi, params[1] / np.pi)),
                          num_params=2,
                          num_args=1),
        'u3':
        QasmGateStatement(
            qasm_gate='u3',
            num_params=3,
            num_args=1,
            cirq_gate=(lambda params: QasmUGate(*[p / np.pi
                                                  for p in params]))),
        'x':
        QasmGateStatement(qasm_gate='x',
                          num_params=0,
                          num_args=1,
                          cirq_gate=ops.X),
        'y':
        QasmGateStatement(qasm_gate='y',
                          num_params=0,
                          num_args=1,
                          cirq_gate=ops.Y),
        'z':
        QasmGateStatement(qasm_gate='z',
                          num_params=0,
                          num_args=1,
                          cirq_gate=ops.Z),
        'h':
        QasmGateStatement(qasm_gate='h',
                          num_params=0,
                          num_args=1,
                          cirq_gate=ops.H),
        's':
        QasmGateStatement(qasm_gate='s',
                          num_params=0,
                          num_args=1,
                          cirq_gate=ops.S),
        't':
        QasmGateStatement(qasm_gate='t',
                          num_params=0,
                          num_args=1,
                          cirq_gate=ops.T),
        'cx':
        QasmGateStatement(qasm_gate='cx',
                          cirq_gate=CX,
                          num_params=0,
                          num_args=2),
        'cy':
        QasmGateStatement(qasm_gate='cy',
                          cirq_gate=ops.ControlledGate(ops.Y),
                          num_params=0,
                          num_args=2),
        'cz':
        QasmGateStatement(qasm_gate='cz',
                          cirq_gate=ops.CZ,
                          num_params=0,
                          num_args=2),
        'ch':
        QasmGateStatement(qasm_gate='ch',
                          cirq_gate=ops.ControlledGate(ops.H),
                          num_params=0,
                          num_args=2),
        'swap':
        QasmGateStatement(qasm_gate='swap',
                          cirq_gate=ops.SWAP,
                          num_params=0,
                          num_args=2),
        'cswap':
        QasmGateStatement(qasm_gate='cswap',
                          num_params=0,
                          num_args=3,
                          cirq_gate=ops.CSWAP),
        'ccx':
        QasmGateStatement(qasm_gate='ccx',
                          num_params=0,
                          num_args=3,
                          cirq_gate=ops.CCX),
        'sdg':
        QasmGateStatement(qasm_gate='sdg',
                          num_params=0,
                          num_args=1,
                          cirq_gate=ops.S**-1),
        'tdg':
        QasmGateStatement(qasm_gate='tdg',
                          num_params=0,
                          num_args=1,
                          cirq_gate=ops.T**-1),
    }

    all_gates = {**basic_gates, **qelib_gates}

    tokens = QasmLexer.tokens
    start = 'start'

    precedence = (
        ('left', '+', '-'),
        ('left', '*', '/'),
        ('right', '^'),
    )

    def p_start(self, p):
        """start : qasm"""
        p[0] = p[1]

    def p_qasm_format_only(self, p):
        """qasm : format"""
        self.supported_format = True
        p[0] = Qasm(self.supported_format, self.qelibinc, self.qregs,
                    self.cregs, self.circuit)

    def p_qasm_no_format_specified_error(self, p):
        """qasm : QELIBINC
                | circuit """
        if self.supported_format is False:
            raise QasmException("Missing 'OPENQASM 2.0;' statement")

    def p_qasm_include(self, p):
        """qasm : qasm QELIBINC"""
        self.qelibinc = True
        p[0] = Qasm(self.supported_format, self.qelibinc, self.qregs,
                    self.cregs, self.circuit)

    def p_qasm_circuit(self, p):
        """qasm : qasm circuit"""
        p[0] = Qasm(self.supported_format, self.qelibinc, self.qregs,
                    self.cregs, p[2])

    def p_format(self, p):
        """format : FORMAT_SPEC"""
        if p[1] != "2.0":
            raise QasmException(
                "Unsupported OpenQASM version: {}, "
                "only 2.0 is supported currently by Cirq".format(p[1]))

    # circuit : new_reg circuit
    #         | gate_op circuit
    #         | measurement circuit
    #         | empty

    def p_circuit_reg(self, p):
        """circuit : new_reg circuit"""
        p[0] = self.circuit

    def p_circuit_gate_or_measurement(self, p):
        """circuit :  circuit gate_op
                   |  circuit measurement"""
        self.circuit.append(p[2])
        p[0] = self.circuit

    def p_circuit_empty(self, p):
        """circuit : empty"""
        p[0] = self.circuit

    # qreg and creg

    def p_new_reg(self, p):
        """new_reg : QREG ID '[' NATURAL_NUMBER ']' ';'
                    | CREG ID '[' NATURAL_NUMBER ']' ';'"""
        name, length = p[2], p[4]
        if name in self.qregs.keys() or name in self.cregs.keys():
            raise QasmException("{} is already defined "
                                "at line {}".format(name, p.lineno(2)))
        if length == 0:
            raise QasmException("Illegal, zero-length register '{}' "
                                "at line {}".format(name, p.lineno(4)))
        if p[1] == "qreg":
            self.qregs[name] = length
        else:
            self.cregs[name] = length
        p[0] = (name, length)

    # gate operations
    # gate_op : ID qargs
    #         | ID ( params ) qargs

    def p_gate_op_no_params(self, p):
        """gate_op :  ID qargs"""
        self._resolve_gate_operation(p[2], gate=p[1], p=p, params=[])

    def p_gate_op_with_params(self, p):
        """gate_op :  ID '(' params ')' qargs"""
        self._resolve_gate_operation(args=p[5], gate=p[1], p=p, params=p[3])

    def _resolve_gate_operation(self, args: List[List[ops.Qid]], gate: str,
                                p: Any, params: List[float]):
        gate_set = (self.basic_gates if not self.qelibinc else self.all_gates)
        if gate not in gate_set.keys():
            msg = 'Unknown gate "{}" at line {}{}'.format(
                gate, p.lineno(1), ", did you forget to include qelib1.inc?"
                if not self.qelibinc else "")
            raise QasmException(msg)
        p[0] = gate_set[gate].on(args=args, params=params, lineno=p.lineno(1))

    # params : parameter ',' params
    #        | parameter

    def p_params_multiple(self, p):
        """params : expr ',' params"""
        p[3].insert(0, p[1])
        p[0] = p[3]

    def p_params_single(self, p):
        """params : expr """
        p[0] = [p[1]]

    # expr : term
    #            | func '(' expression ')' """
    #            | binary_op
    #            | unary_op

    def p_expr_term(self, p):
        """expr : term"""
        p[0] = p[1]

    def p_expr_parens(self, p):
        """expr : '(' expr ')'"""
        p[0] = p[2]

    def p_expr_function_call(self, p):
        """expr : ID '(' expr ')'"""
        func = p[1]
        if func not in self.functions.keys():
            raise QasmException(
                "Function not recognized: '{}' at line {}".format(
                    func, p.lineno(1)))
        p[0] = self.functions[func](p[3])

    def p_expr_unary(self, p):
        """expr : '-' expr
                | '+' expr """
        if p[1] == '-':
            p[0] = -p[2]
        else:
            p[0] = p[2]

    def p_expr_binary(self, p):
        """expr : expr '*' expr
                | expr '/' expr
                | expr '+' expr
                | expr '-' expr
                | expr '^' expr
        """
        p[0] = self.binary_operators[p[2]](p[1], p[3])

    def p_term(self, p):
        """term : NUMBER
                | NATURAL_NUMBER
                | PI """
        p[0] = p[1]

    # qargs : qarg ',' qargs
    #      | qarg ';'

    def p_args_multiple(self, p):
        """qargs : qarg ',' qargs"""
        p[3].insert(0, p[1])
        p[0] = p[3]

    def p_args_single(self, p):
        """qargs : qarg ';'"""
        p[0] = [p[1]]

    # qarg : ID
    #     | ID '[' NATURAL_NUMBER ']'

    def p_quantum_arg_register(self, p):
        """qarg : ID """
        reg = p[1]
        if reg not in self.qregs.keys():
            raise QasmException('Undefined quantum register "{}" '
                                'at line {}'.format(reg, p.lineno(1)))
        qubits = []
        for idx in range(self.qregs[reg]):
            arg_name = self.make_name(idx, reg)
            if arg_name not in self.qubits.keys():
                self.qubits[arg_name] = NamedQubit(arg_name)
            qubits.append(self.qubits[arg_name])
        p[0] = qubits

    # carg : ID
    #     | ID '[' NATURAL_NUMBER ']'

    def p_classical_arg_register(self, p):
        """carg : ID """
        reg = p[1]
        if reg not in self.cregs.keys():
            raise QasmException('Undefined classical register "{}" '
                                'at line {}'.format(reg, p.lineno(1)))

        p[0] = [self.make_name(idx, reg) for idx in range(self.cregs[reg])]

    def make_name(self, idx, reg):
        return str(reg) + "_" + str(idx)

    def p_quantum_arg_bit(self, p):
        """qarg : ID '[' NATURAL_NUMBER ']' """
        reg = p[1]
        idx = p[3]
        arg_name = self.make_name(idx, reg)
        if reg not in self.qregs.keys():
            raise QasmException('Undefined quantum register "{}" '
                                'at line {}'.format(reg, p.lineno(1)))
        size = self.qregs[reg]
        if idx >= size:
            raise QasmException('Out of bounds qubit index {} '
                                'on register {} of size {} '
                                'at line {}'.format(idx, reg, size,
                                                    p.lineno(1)))
        if arg_name not in self.qubits.keys():
            self.qubits[arg_name] = NamedQubit(arg_name)
        p[0] = [self.qubits[arg_name]]

    def p_classical_arg_bit(self, p):
        """carg : ID '[' NATURAL_NUMBER ']' """
        reg = p[1]
        idx = p[3]
        arg_name = self.make_name(idx, reg)
        if reg not in self.cregs.keys():
            raise QasmException('Undefined classical register "{}" '
                                'at line {}'.format(reg, p.lineno(1)))

        size = self.cregs[reg]
        if idx >= size:
            raise QasmException('Out of bounds bit index {} '
                                'on classical register {} of size {} '
                                'at line {}'.format(idx, reg, size,
                                                    p.lineno(1)))
        p[0] = [arg_name]

    # measurement operations
    # measurement : MEASURE qarg ARROW carg

    def p_measurement(self, p):
        """measurement : MEASURE qarg ARROW carg ';'"""
        qreg = p[2]
        creg = p[4]

        if len(qreg) != len(creg):
            raise QasmException(
                'mismatched register sizes {} -> {} for measurement '
                'at line {}'.format(len(qreg), len(creg), p.lineno(1)))

        p[0] = [
            ops.MeasurementGate(num_qubits=1, key=creg[i]).on(qreg[i])
            for i in range(len(qreg))
        ]

    def p_error(self, p):
        if p is None:
            raise QasmException('Unexpected end of file')

        raise QasmException("""Syntax error: '{}'
{}
at line {}, column {}""".format(p.value, self.debug_context(p), p.lineno,
                                self.find_column(p)))

    def find_column(self, p):
        line_start = self.qasm.rfind('\n', 0, p.lexpos) + 1
        return (p.lexpos - line_start) + 1

    def p_empty(self, p):
        """empty :"""

    def parse(self, qasm: str) -> Qasm:
        if self.parsedQasm is None:
            self.qasm = qasm
            self.lexer.input(self.qasm)
            self.parsedQasm = self.parser.parse(lexer=self.lexer)
        return self.parsedQasm

    def debug_context(self, p):
        debug_start = max(self.qasm.rfind('\n', 0, p.lexpos) + 1, p.lexpos - 5)
        debug_end = min(self.qasm.find('\n', p.lexpos, p.lexpos + 5),
                        p.lexpos + 5)

        return "..." + self.qasm[debug_start:debug_end] + "\n" + (
            " " * (3 + p.lexpos - debug_start)) + "^"
Ejemplo n.º 5
0
def generate_all_single_qubit_rotation_cell_makers() -> Iterator[CellMaker]:

    # Fixed single qubit rotations.
    yield _gate("H", ops.H)
    yield _gate("X", ops.X)
    yield _gate("Y", ops.Y)
    yield _gate("Z", ops.Z)
    yield _gate("X^½", ops.X**(1 / 2))
    yield _gate("X^⅓", ops.X**(1 / 3))
    yield _gate("X^¼", ops.X**(1 / 4))
    yield _gate("X^⅛", ops.X**(1 / 8))
    yield _gate("X^⅟₁₆", ops.X**(1 / 16))
    yield _gate("X^⅟₃₂", ops.X**(1 / 32))
    yield _gate("X^-½", ops.X**(-1 / 2))
    yield _gate("X^-⅓", ops.X**(-1 / 3))
    yield _gate("X^-¼", ops.X**(-1 / 4))
    yield _gate("X^-⅛", ops.X**(-1 / 8))
    yield _gate("X^-⅟₁₆", ops.X**(-1 / 16))
    yield _gate("X^-⅟₃₂", ops.X**(-1 / 32))
    yield _gate("Y^½", ops.Y**(1 / 2))
    yield _gate("Y^⅓", ops.Y**(1 / 3))
    yield _gate("Y^¼", ops.Y**(1 / 4))
    yield _gate("Y^⅛", ops.Y**(1 / 8))
    yield _gate("Y^⅟₁₆", ops.Y**(1 / 16))
    yield _gate("Y^⅟₃₂", ops.Y**(1 / 32))
    yield _gate("Y^-½", ops.Y**(-1 / 2))
    yield _gate("Y^-⅓", ops.Y**(-1 / 3))
    yield _gate("Y^-¼", ops.Y**(-1 / 4))
    yield _gate("Y^-⅛", ops.Y**(-1 / 8))
    yield _gate("Y^-⅟₁₆", ops.Y**(-1 / 16))
    yield _gate("Y^-⅟₃₂", ops.Y**(-1 / 32))
    yield _gate("Z^½", ops.Z**(1 / 2))
    yield _gate("Z^⅓", ops.Z**(1 / 3))
    yield _gate("Z^¼", ops.Z**(1 / 4))
    yield _gate("Z^⅛", ops.Z**(1 / 8))
    yield _gate("Z^⅟₁₆", ops.Z**(1 / 16))
    yield _gate("Z^⅟₃₂", ops.Z**(1 / 32))
    yield _gate("Z^⅟₆₄", ops.Z**(1 / 64))
    yield _gate("Z^⅟₁₂₈", ops.Z**(1 / 128))
    yield _gate("Z^-½", ops.Z**(-1 / 2))
    yield _gate("Z^-⅓", ops.Z**(-1 / 3))
    yield _gate("Z^-¼", ops.Z**(-1 / 4))
    yield _gate("Z^-⅛", ops.Z**(-1 / 8))
    yield _gate("Z^-⅟₁₆", ops.Z**(-1 / 16))

    # Dynamic single qubit rotations.
    yield _gate("X^t", ops.X**sympy.Symbol('t'))
    yield _gate("Y^t", ops.Y**sympy.Symbol('t'))
    yield _gate("Z^t", ops.Z**sympy.Symbol('t'))
    yield _gate("X^-t", ops.X**-sympy.Symbol('t'))
    yield _gate("Y^-t", ops.Y**-sympy.Symbol('t'))
    yield _gate("Z^-t", ops.Z**-sympy.Symbol('t'))
    yield _gate("e^iXt", ops.Rx(2 * sympy.pi * sympy.Symbol('t')))
    yield _gate("e^iYt", ops.Ry(2 * sympy.pi * sympy.Symbol('t')))
    yield _gate("e^iZt", ops.Rz(2 * sympy.pi * sympy.Symbol('t')))
    yield _gate("e^-iXt", ops.Rx(-2 * sympy.pi * sympy.Symbol('t')))
    yield _gate("e^-iYt", ops.Ry(-2 * sympy.pi * sympy.Symbol('t')))
    yield _gate("e^-iZt", ops.Rz(-2 * sympy.pi * sympy.Symbol('t')))

    # Formulaic single qubit rotations.
    yield _formula_gate("X^ft", "sin(pi*t)", lambda e: ops.X**e)
    yield _formula_gate("Y^ft", "sin(pi*t)", lambda e: ops.Y**e)
    yield _formula_gate("Z^ft", "sin(pi*t)", lambda e: ops.Z**e)
    yield _formula_gate("Rxft", "pi*t*t", ops.Rx)
    yield _formula_gate("Ryft", "pi*t*t", ops.Ry)
    yield _formula_gate("Rzft", "pi*t*t", ops.Rz)