Ejemplo n.º 1
0
def test_quantum_state_computational_basis_state():
    state = cirq.quantum_state(7, qid_shape=(3, 4))
    np.testing.assert_allclose(
        state.data, cirq.one_hot(index=7, shape=(12, ), dtype=np.complex64))
    assert state.qid_shape == (3, 4)
    assert state.dtype == np.complex64

    state = cirq.quantum_state((0, 1, 2, 3),
                               qid_shape=(1, 2, 3, 4),
                               dtype=np.complex128)
    np.testing.assert_allclose(
        state.data,
        cirq.one_hot(index=(0, 1, 2, 3),
                     shape=(1, 2, 3, 4),
                     dtype=np.complex64))
    assert state.qid_shape == (1, 2, 3, 4)
    assert state.dtype == np.complex128

    with pytest.raises(ValueError, match='ambiguous'):
        _ = cirq.quantum_state(7)

    with pytest.raises(ValueError, match='out of range'):
        _ = cirq.quantum_state(7, qid_shape=(2, 2))

    with pytest.raises(ValueError, match='ambiguous'):
        _ = cirq.quantum_state((0, 1, 2, 3))

    with pytest.raises(ValueError, match='out of bounds'):
        _ = cirq.quantum_state((0, 1, 2, 3), qid_shape=(2, 2, 2, 2))

    with pytest.raises(ValueError, match='ambiguous'):
        _ = cirq.quantum_state((0, 0, 1, 1), qid_shape=(1, 1, 2, 2))
Ejemplo n.º 2
0
def test_reset_act_on():
    with pytest.raises(TypeError, match="Failed to act"):
        cirq.act_on(cirq.ResetChannel(), object())

    args = cirq.ActOnStateVectorArgs(
        target_tensor=cirq.one_hot(index=(1, 1, 1, 1, 1),
                                   shape=(2, 2, 2, 2, 2),
                                   dtype=np.complex64),
        available_buffer=np.empty(shape=(2, 2, 2, 2, 2)),
        axes=[1],
        prng=np.random.RandomState(),
        log_of_measurement_results={},
    )

    cirq.act_on(cirq.ResetChannel(), args)
    assert args.log_of_measurement_results == {}
    np.testing.assert_allclose(
        args.target_tensor,
        cirq.one_hot(index=(1, 0, 1, 1, 1),
                     shape=(2, 2, 2, 2, 2),
                     dtype=np.complex64),
    )

    cirq.act_on(cirq.ResetChannel(), args)
    assert args.log_of_measurement_results == {}
    np.testing.assert_allclose(
        args.target_tensor,
        cirq.one_hot(index=(1, 0, 1, 1, 1),
                     shape=(2, 2, 2, 2, 2),
                     dtype=np.complex64),
    )
Ejemplo n.º 3
0
def test_reset_act_on():
    with pytest.raises(TypeError, match="Failed to act"):
        cirq.act_on(cirq.ResetChannel(), DummyActOnArgs(), qubits=())

    args = cirq.ActOnStateVectorArgs(
        available_buffer=np.empty(shape=(2, 2, 2, 2, 2), dtype=np.complex64),
        qubits=cirq.LineQubit.range(5),
        prng=np.random.RandomState(),
        log_of_measurement_results={},
        initial_state=cirq.one_hot(index=(1, 1, 1, 1, 1),
                                   shape=(2, 2, 2, 2, 2),
                                   dtype=np.complex64),
        dtype=np.complex64,
    )

    cirq.act_on(cirq.ResetChannel(), args, [cirq.LineQubit(1)])
    assert args.log_of_measurement_results == {}
    np.testing.assert_allclose(
        args.target_tensor,
        cirq.one_hot(index=(1, 0, 1, 1, 1),
                     shape=(2, 2, 2, 2, 2),
                     dtype=np.complex64),
    )

    cirq.act_on(cirq.ResetChannel(), args, [cirq.LineQubit(1)])
    assert args.log_of_measurement_results == {}
    np.testing.assert_allclose(
        args.target_tensor,
        cirq.one_hot(index=(1, 0, 1, 1, 1),
                     shape=(2, 2, 2, 2, 2),
                     dtype=np.complex64),
    )
 def _kraus_(self):
     bottom_right = cirq.one_hot(index=(3, 3),
                                 shape=(4, 4),
                                 dtype=np.complex64)
     top_right = cirq.one_hot(index=(0, 3),
                              shape=(4, 4),
                              dtype=np.complex64)
     return [
         np.eye(4) * np.sqrt(3 / 4),
         (np.eye(4) - bottom_right) * np.sqrt(1 / 4),
         top_right * np.sqrt(1 / 4),
     ]
Ejemplo n.º 5
0
def test_to_valid_density_matrix_from_density_matrix_tensor():
    np.testing.assert_almost_equal(
        cirq.to_valid_density_matrix(cirq.one_hot(shape=(2, 2, 2, 2, 2, 2),
                                                  dtype=np.complex64),
                                     num_qubits=3),
        cirq.one_hot(shape=(8, 8), dtype=np.complex64),
    )
    np.testing.assert_almost_equal(
        cirq.to_valid_density_matrix(cirq.one_hot(shape=(2, 3, 4, 2, 3, 4),
                                                  dtype=np.complex64),
                                     qid_shape=(2, 3, 4)),
        cirq.one_hot(shape=(24, 24), dtype=np.complex64),
    )
Ejemplo n.º 6
0
def test_one_hot():
    result = cirq.one_hot(shape=4, dtype=np.int32)
    assert result.dtype == np.int32
    np.testing.assert_array_equal(result, [1, 0, 0, 0])

    np.testing.assert_array_equal(
        cirq.one_hot(shape=[2, 3], dtype=np.complex64), [[1, 0, 0], [0, 0, 0]])

    np.testing.assert_array_equal(
        cirq.one_hot(shape=[2, 3], dtype=np.complex64, index=(0, 2)),
        [[0, 0, 1], [0, 0, 0]])

    np.testing.assert_array_equal(
        cirq.one_hot(shape=5, dtype=np.complex128, index=3), [0, 0, 0, 1, 0])
Ejemplo n.º 7
0
def test_quantum_state():
    state_vector_1 = cirq.one_hot(shape=(4,), dtype=np.complex128)
    state_tensor_1 = np.reshape(state_vector_1, (2, 2))
    density_matrix_1 = np.outer(state_vector_1, np.conj(state_vector_1))

    state = cirq.QuantumState(state_vector_1, qid_shape=(2, 2))
    assert state.data is state_vector_1
    assert state.qid_shape == (2, 2)
    assert state.dtype == np.complex128
    np.testing.assert_array_equal(state.state_vector(), state_vector_1)
    np.testing.assert_array_equal(state.state_tensor(), state_tensor_1)
    np.testing.assert_array_equal(state.density_matrix(), density_matrix_1)
    np.testing.assert_array_equal(state.state_vector_or_density_matrix(), state_vector_1)

    state = cirq.QuantumState(state_tensor_1, qid_shape=(2, 2))
    assert state.data is state_tensor_1
    assert state.qid_shape == (2, 2)
    assert state.dtype == np.complex128
    np.testing.assert_array_equal(state.state_vector(), state_vector_1)
    np.testing.assert_array_equal(state.state_tensor(), state_tensor_1)
    np.testing.assert_array_equal(state.density_matrix(), density_matrix_1)
    np.testing.assert_array_equal(state.state_vector_or_density_matrix(), state_vector_1)

    state = cirq.QuantumState(density_matrix_1, qid_shape=(2, 2))
    assert state.data is density_matrix_1
    assert state.qid_shape == (2, 2)
    assert state.dtype == np.complex128
    assert state.state_vector() is None
    assert state.state_tensor() is None
    np.testing.assert_array_equal(state.density_matrix(), density_matrix_1)
    np.testing.assert_array_equal(state.state_vector_or_density_matrix(), density_matrix_1)
Ejemplo n.º 8
0
def test_with_registers():
    circuit = quirk_url_to_circuit(
        'https://algassert.com/quirk#circuit={"cols":'
        '['
        '[{"id":"setA","arg":3}],'
        '["+=AB3",1,1,"inputB2"]'
        ']}')
    op = cast(cirq.ArithmeticOperation, circuit[0].operations[0])

    with pytest.raises(ValueError, match='number of registers'):
        _ = op.with_registers()

    with pytest.raises(ValueError, match='first register.*mutable target'):
        _ = op.with_registers(1, 2, 3)

    op2 = op.with_registers([], 5, 5)
    np.testing.assert_allclose(cirq.unitary(cirq.Circuit(op2)),
                               np.array([[1]]),
                               atol=1e-8)

    op2 = op.with_registers([*cirq.LineQubit.range(3)], 5, 5)
    np.testing.assert_allclose(cirq.final_state_vector(cirq.Circuit(op2),
                                                       initial_state=0),
                               cirq.one_hot(index=25 % 8,
                                            shape=8,
                                            dtype=np.complex64),
                               atol=1e-8)
def test_decomposed_fallback():
    class Composite(cirq.Gate):
        def num_qubits(self) -> int:
            return 1

        def _decompose_(self, qubits):
            yield cirq.X(*qubits)

    qid_shape = (2, )
    tensor = cirq.to_valid_density_matrix(0,
                                          len(qid_shape),
                                          qid_shape=qid_shape,
                                          dtype=np.complex64)
    args = cirq.ActOnDensityMatrixArgs(
        target_tensor=tensor,
        available_buffer=[np.empty_like(tensor) for _ in range(3)],
        qubits=cirq.LineQubit.range(1),
        prng=np.random.RandomState(),
        log_of_measurement_results={},
        qid_shape=qid_shape,
    )

    cirq.act_on(Composite(), args, cirq.LineQubit.range(1))
    np.testing.assert_allclose(
        args.target_tensor,
        cirq.one_hot(index=(1, 1), shape=(2, 2), dtype=np.complex64))
Ejemplo n.º 10
0
def test_act_on_state_vector():
    a, b = [cirq.LineQubit(3), cirq.LineQubit(1)]
    m = cirq.measure(a,
                     b,
                     key='out',
                     invert_mask=(True, ),
                     confusion_map={(1, ): np.array([[0, 1], [1, 0]])})

    args = cirq.StateVectorSimulationState(
        available_buffer=np.empty(shape=(2, 2, 2, 2, 2)),
        qubits=cirq.LineQubit.range(5),
        prng=np.random.RandomState(),
        initial_state=cirq.one_hot(shape=(2, 2, 2, 2, 2), dtype=np.complex64),
        dtype=np.complex64,
    )
    cirq.act_on(m, args)
    assert args.log_of_measurement_results == {'out': [1, 1]}

    args = cirq.StateVectorSimulationState(
        available_buffer=np.empty(shape=(2, 2, 2, 2, 2)),
        qubits=cirq.LineQubit.range(5),
        prng=np.random.RandomState(),
        initial_state=cirq.one_hot(index=(0, 1, 0, 0, 0),
                                   shape=(2, 2, 2, 2, 2),
                                   dtype=np.complex64),
        dtype=np.complex64,
    )
    cirq.act_on(m, args)
    assert args.log_of_measurement_results == {'out': [1, 0]}

    args = cirq.StateVectorSimulationState(
        available_buffer=np.empty(shape=(2, 2, 2, 2, 2)),
        qubits=cirq.LineQubit.range(5),
        prng=np.random.RandomState(),
        initial_state=cirq.one_hot(index=(0, 1, 0, 1, 0),
                                   shape=(2, 2, 2, 2, 2),
                                   dtype=np.complex64),
        dtype=np.complex64,
    )
    cirq.act_on(m, args)
    datastore = cast(cirq.ClassicalDataDictionaryStore, args.classical_data)
    out = cirq.MeasurementKey('out')
    assert args.log_of_measurement_results == {'out': [0, 0]}
    assert datastore.records[out] == [(0, 0)]
    cirq.act_on(m, args)
    assert args.log_of_measurement_results == {'out': [0, 0]}
    assert datastore.records[out] == [(0, 0), (0, 0)]
Ejemplo n.º 11
0
def test_act_on_qutrit():
    a, b = [cirq.LineQid(3, dimension=3), cirq.LineQid(1, dimension=3)]
    m = cirq.measure(
        a,
        b,
        key='out',
        invert_mask=(True, ),
        confusion_map={(1, ): np.array([[0, 1, 0], [0, 0, 1], [1, 0, 0]])},
    )

    args = cirq.StateVectorSimulationState(
        available_buffer=np.empty(shape=(3, 3, 3, 3, 3)),
        qubits=cirq.LineQid.range(5, dimension=3),
        prng=np.random.RandomState(),
        initial_state=cirq.one_hot(index=(0, 2, 0, 2, 0),
                                   shape=(3, 3, 3, 3, 3),
                                   dtype=np.complex64),
        dtype=np.complex64,
    )
    cirq.act_on(m, args)
    assert args.log_of_measurement_results == {'out': [2, 0]}

    args = cirq.StateVectorSimulationState(
        available_buffer=np.empty(shape=(3, 3, 3, 3, 3)),
        qubits=cirq.LineQid.range(5, dimension=3),
        prng=np.random.RandomState(),
        initial_state=cirq.one_hot(index=(0, 1, 0, 2, 0),
                                   shape=(3, 3, 3, 3, 3),
                                   dtype=np.complex64),
        dtype=np.complex64,
    )
    cirq.act_on(m, args)
    assert args.log_of_measurement_results == {'out': [2, 2]}

    args = cirq.StateVectorSimulationState(
        available_buffer=np.empty(shape=(3, 3, 3, 3, 3)),
        qubits=cirq.LineQid.range(5, dimension=3),
        prng=np.random.RandomState(),
        initial_state=cirq.one_hot(index=(0, 2, 0, 1, 0),
                                   shape=(3, 3, 3, 3, 3),
                                   dtype=np.complex64),
        dtype=np.complex64,
    )
    cirq.act_on(m, args)
    assert args.log_of_measurement_results == {'out': [0, 0]}
Ejemplo n.º 12
0
def test_act_on_gate():
    args = ccq.mps_simulator.MPSState(qubits=cirq.LineQubit.range(3),
                                      prng=np.random.RandomState(0))

    cirq.act_on(cirq.X, args, [cirq.LineQubit(1)])
    np.testing.assert_allclose(
        args.state_vector().reshape((2, 2, 2)),
        cirq.one_hot(index=(0, 1, 0), shape=(2, 2, 2), dtype=np.complex64),
    )
Ejemplo n.º 13
0
def test_act_on():
    a, b = cirq.LineQubit.range(2)
    m = cirq.measure(a, b, key='out', invert_mask=(True, ))

    with pytest.raises(TypeError, match="Failed to act"):
        cirq.act_on(m, object())

    args = cirq.ActOnStateVectorArgs(
        target_tensor=cirq.one_hot(shape=(2, 2, 2, 2, 2), dtype=np.complex64),
        available_buffer=np.empty(shape=(2, 2, 2, 2, 2)),
        axes=[3, 1],
        prng=np.random.RandomState(),
        log_of_measurement_results={},
    )
    cirq.act_on(m, args)
    assert args.log_of_measurement_results == {'out': [1, 0]}

    args = cirq.ActOnStateVectorArgs(
        target_tensor=cirq.one_hot(index=(0, 1, 0, 0, 0),
                                   shape=(2, 2, 2, 2, 2),
                                   dtype=np.complex64),
        available_buffer=np.empty(shape=(2, 2, 2, 2, 2)),
        axes=[3, 1],
        prng=np.random.RandomState(),
        log_of_measurement_results={},
    )
    cirq.act_on(m, args)
    assert args.log_of_measurement_results == {'out': [1, 1]}

    args = cirq.ActOnStateVectorArgs(
        target_tensor=cirq.one_hot(index=(0, 1, 0, 1, 0),
                                   shape=(2, 2, 2, 2, 2),
                                   dtype=np.complex64),
        available_buffer=np.empty(shape=(2, 2, 2, 2, 2)),
        axes=[3, 1],
        prng=np.random.RandomState(),
        log_of_measurement_results={},
    )
    cirq.act_on(m, args)
    assert args.log_of_measurement_results == {'out': [0, 1]}

    with pytest.raises(ValueError, match="already logged to key"):
        cirq.act_on(m, args)
Ejemplo n.º 14
0
def test_decomposed_fallback():
    class Composite(cirq.Gate):
        def num_qubits(self) -> int:
            return 1

        def _decompose_(self, qubits):
            yield cirq.X(*qubits)

    args = cirq.ActOnStateVectorArgs(
        target_tensor=cirq.one_hot(shape=(2, 2, 2), dtype=np.complex64),
        available_buffer=np.empty((2, 2, 2), dtype=np.complex64),
        axes=[1],
        prng=np.random.RandomState(),
        log_of_measurement_results={})

    cirq.act_on(Composite(), args)
    np.testing.assert_allclose(
        args.target_tensor,
        cirq.one_hot(index=(0, 1, 0), shape=(2, 2, 2), dtype=np.complex64))
def test_decomposed_fallback():
    class Composite(cirq.Gate):
        def num_qubits(self) -> int:
            return 1

        def _decompose_(self, qubits):
            yield cirq.X(*qubits)

    args = cirq.StateVectorSimulationState(
        available_buffer=np.empty((2, 2, 2), dtype=np.complex64),
        qubits=cirq.LineQubit.range(3),
        prng=np.random.RandomState(),
        initial_state=cirq.one_hot(shape=(2, 2, 2), dtype=np.complex64),
        dtype=np.complex64,
    )

    cirq.act_on(Composite(), args, [cirq.LineQubit(1)])
    np.testing.assert_allclose(
        args.target_tensor,
        cirq.one_hot(index=(0, 1, 0), shape=(2, 2, 2), dtype=np.complex64))
Ejemplo n.º 16
0
def test_density_matrix():
    density_matrix_1 = np.eye(4, dtype=np.complex64) / 4
    state_vector_1 = cirq.one_hot(shape=(4,), dtype=np.complex64)

    state = cirq.density_matrix(density_matrix_1)
    assert state.data is density_matrix_1
    assert state.qid_shape == (2, 2)
    assert state.dtype == np.complex64

    with pytest.raises(ValueError, match='square'):
        _ = cirq.density_matrix(state_vector_1)
def test_default_parameter():
    dtype = np.complex64
    tensor = cirq.one_hot(shape=(2, 2, 2), dtype=np.complex64)
    qubits = cirq.LineQubit.range(3)
    args = cirq.StateVectorSimulationState(qubits=qubits,
                                           initial_state=tensor,
                                           dtype=dtype)
    qid_shape = cirq.protocols.qid_shape(qubits)
    tensor = np.reshape(tensor, qid_shape)
    np.testing.assert_almost_equal(args.target_tensor, tensor)
    assert args.available_buffer.shape == tensor.shape
    assert args.available_buffer.dtype == tensor.dtype
Ejemplo n.º 18
0
def test_quantum_state_state_vector_state_tensor():
    state_vector_1 = cirq.one_hot(shape=(4,), dtype=np.complex128)
    state_tensor_1 = np.reshape(state_vector_1, (2, 2))

    state = cirq.quantum_state(state_vector_1, dtype=np.complex64, qid_shape=(2, 2))
    np.testing.assert_array_equal(state.data, state_vector_1)
    assert state.qid_shape == (2, 2)
    assert state.dtype == np.complex64

    state = cirq.quantum_state(state_tensor_1, qid_shape=(2, 2))
    assert state.data is state_tensor_1
    assert state.qid_shape == (2, 2)
    assert state.dtype == np.complex128
Ejemplo n.º 19
0
def test_cannot_act():
    class NoDetails:
        pass

    args = cirq.ActOnStateVectorArgs(
        target_tensor=cirq.one_hot(shape=(2, 2, 2), dtype=np.complex64),
        available_buffer=np.empty((2, 2, 2), dtype=np.complex64),
        axes=[1],
        prng=np.random.RandomState(),
        log_of_measurement_results={})

    with pytest.raises(TypeError, match="Failed to act"):
        cirq.act_on(NoDetails(), args)
Ejemplo n.º 20
0
def test_act_on_qutrit():
    a, b = cirq.LineQid.range(2, dimension=3)
    m = cirq.measure(a, b, key='out', invert_mask=(True, ))

    args = cirq.ActOnStateVectorArgs(
        target_tensor=cirq.one_hot(index=(0, 2, 0, 2, 0),
                                   shape=(3, 3, 3, 3, 3),
                                   dtype=np.complex64),
        available_buffer=np.empty(shape=(3, 3, 3, 3, 3)),
        axes=[3, 1],
        prng=np.random.RandomState(),
        log_of_measurement_results={},
    )
    cirq.act_on(m, args)
    assert args.log_of_measurement_results == {'out': [2, 2]}

    args = cirq.ActOnStateVectorArgs(
        target_tensor=cirq.one_hot(index=(0, 1, 0, 2, 0),
                                   shape=(3, 3, 3, 3, 3),
                                   dtype=np.complex64),
        available_buffer=np.empty(shape=(3, 3, 3, 3, 3)),
        axes=[3, 1],
        prng=np.random.RandomState(),
        log_of_measurement_results={},
    )
    cirq.act_on(m, args)
    assert args.log_of_measurement_results == {'out': [2, 1]}

    args = cirq.ActOnStateVectorArgs(
        target_tensor=cirq.one_hot(index=(0, 2, 0, 1, 0),
                                   shape=(3, 3, 3, 3, 3),
                                   dtype=np.complex64),
        available_buffer=np.empty(shape=(3, 3, 3, 3, 3)),
        axes=[3, 1],
        prng=np.random.RandomState(),
        log_of_measurement_results={},
    )
    cirq.act_on(m, args)
    assert args.log_of_measurement_results == {'out': [0, 2]}
def test_cannot_act():
    class NoDetails:
        pass

    args = cirq.ActOnStateVectorArgs(
        target_tensor=cirq.one_hot(shape=(2, 2, 2), dtype=np.complex64),
        available_buffer=np.empty((2, 2, 2), dtype=np.complex64),
        qubits=cirq.LineQubit.range(3),
        prng=np.random.RandomState(),
        log_of_measurement_results={},
    )

    with pytest.raises(TypeError, match="Can't simulate operations"):
        cirq.act_on(NoDetails(), args, qubits=())
def test_cannot_act():
    class NoDetails:
        pass

    args = cirq.StateVectorSimulationState(
        available_buffer=np.empty((2, 2, 2), dtype=np.complex64),
        qubits=cirq.LineQubit.range(3),
        prng=np.random.RandomState(),
        initial_state=cirq.one_hot(shape=(2, 2, 2), dtype=np.complex64),
        dtype=np.complex64,
    )

    with pytest.raises(TypeError, match="Can't simulate operations"):
        cirq.act_on(NoDetails(), args, qubits=())
Ejemplo n.º 23
0
def test_monte_carlo_on_unknown_channel():
    class Reset11To00(cirq.Gate):
        def num_qubits(self) -> int:
            return 2

        def _kraus_(self):
            return [
                np.eye(4) - cirq.one_hot(index=(3, 3), shape=(4, 4), dtype=np.complex64),
                cirq.one_hot(index=(0, 3), shape=(4, 4), dtype=np.complex64),
            ]

    for k in range(4):
        out = cirq.Simulator().simulate(
            cirq.Circuit(Reset11To00().on(*cirq.LineQubit.range(2))), initial_state=k
        )
        np.testing.assert_allclose(
            out.state_vector(), cirq.one_hot(index=k % 3, shape=4, dtype=np.complex64), atol=1e-8
        )
Ejemplo n.º 24
0
def test_quantum_state_state_vector_state_tensor():
    state_vector_1 = cirq.one_hot(shape=(4, ), dtype=np.complex128)
    state_tensor_1 = np.reshape(state_vector_1, (2, 2))

    state = cirq.quantum_state(state_vector_1, dtype=np.complex64)
    np.testing.assert_array_equal(state.data, state_vector_1)
    assert state.qid_shape == (2, 2)
    assert state.dtype == np.complex64

    state = cirq.quantum_state(state_tensor_1, qid_shape=(2, 2))
    assert state.data is state_tensor_1
    assert state.qid_shape == (2, 2)
    assert state.dtype == np.complex128

    with pytest.raises(ValueError, match='ambiguous'):
        _ = cirq.quantum_state(state_tensor_1)

    with pytest.raises(ValueError, match='not compatible'):
        _ = cirq.quantum_state(state_tensor_1, qid_shape=(2, 3))
def test_decomposed_fallback():
    class Composite(cirq.Gate):
        def num_qubits(self) -> int:
            return 1

        def _decompose_(self, qubits):
            yield cirq.X(*qubits)

    args = cirq.DensityMatrixSimulationState(
        qubits=cirq.LineQubit.range(1),
        prng=np.random.RandomState(),
        initial_state=0,
        dtype=np.complex64,
    )

    cirq.act_on(Composite(), args, cirq.LineQubit.range(1))
    np.testing.assert_allclose(
        args.target_tensor,
        cirq.one_hot(index=(1, 1), shape=(2, 2), dtype=np.complex64))
Ejemplo n.º 26
0
def test_quantum_state_quantum_state():
    state_vector_1 = cirq.one_hot(shape=(4,), dtype=np.complex128)
    quantum_state = cirq.QuantumState(state_vector_1, qid_shape=(2, 2))

    state = cirq.quantum_state(quantum_state)
    assert state is quantum_state
    assert state.data is quantum_state.data
    assert state.dtype == np.complex128

    state = cirq.quantum_state(quantum_state, copy=True)
    assert state is not quantum_state
    assert state.data is not quantum_state.data
    assert state.dtype == np.complex128

    state = cirq.quantum_state(quantum_state, dtype=np.complex64)
    assert state is not quantum_state
    assert state.data is not quantum_state.data
    assert state.dtype == np.complex64

    with pytest.raises(ValueError, match='qid shape'):
        state = cirq.quantum_state(quantum_state, qid_shape=(4,))
Ejemplo n.º 27
0
def test_infer_qid_shape():
    computational_basis_state_1 = [0, 0, 0, 1]
    computational_basis_state_2 = [0, 1, 2, 3]
    computational_basis_state_3 = [0, 1, 2, 4]
    computational_basis_state_4 = 9
    computational_basis_state_5 = [0, 1, 2, 4, 5]
    state_vector_1 = cirq.one_hot(shape=(4, ), dtype=np.complex64)
    state_vector_2 = cirq.one_hot(shape=(24, ), dtype=np.complex64)
    state_tensor_1 = np.reshape(state_vector_1, (2, 2))
    state_tensor_2 = np.reshape(state_vector_2, (1, 2, 3, 4))
    density_matrix_1 = np.eye(4, dtype=np.complex64) / 4
    density_matrix_2 = np.eye(24, dtype=np.complex64) / 24
    q0, q1 = cirq.LineQubit.range(2)
    product_state_1 = cirq.KET_PLUS(q0) * cirq.KET_PLUS(q1)

    assert cirq.qis.infer_qid_shape(
        computational_basis_state_1,
        state_vector_1,
        state_tensor_1,
        density_matrix_1,
        product_state_1,
    ) == (2, 2)

    assert cirq.qis.infer_qid_shape(
        product_state_1,
        density_matrix_1,
        state_tensor_1,
        state_vector_1,
        computational_basis_state_1,
    ) == (2, 2)

    assert cirq.qis.infer_qid_shape(
        computational_basis_state_1,
        computational_basis_state_2,
        computational_basis_state_4,
        state_tensor_2,
    ) == (1, 2, 3, 4)

    assert cirq.qis.infer_qid_shape(state_vector_2, density_matrix_2,
                                    computational_basis_state_4) == (24, )

    assert cirq.qis.infer_qid_shape(state_tensor_2,
                                    density_matrix_2) == (1, 2, 3, 4)

    assert cirq.qis.infer_qid_shape(computational_basis_state_4) == (10, )
    assert cirq.qis.infer_qid_shape(15, 7, 22, 4) == (23, )

    with pytest.raises(ValueError, match='No states were specified'):
        _ = cirq.qis.infer_qid_shape()

    with pytest.raises(ValueError, match='Failed'):
        _ = cirq.qis.infer_qid_shape(computational_basis_state_1,
                                     computational_basis_state_5)

    with pytest.raises(ValueError, match='ambiguous'):
        _ = cirq.qis.infer_qid_shape(computational_basis_state_1)

    with pytest.raises(ValueError, match='ambiguous'):
        _ = cirq.qis.infer_qid_shape(state_tensor_1)

    with pytest.raises(ValueError, match='ambiguous'):
        _ = cirq.qis.infer_qid_shape(density_matrix_1)

    with pytest.raises(ValueError, match='ambiguous'):
        _ = cirq.qis.infer_qid_shape(computational_basis_state_1,
                                     computational_basis_state_2)

    with pytest.raises(ValueError, match='Failed'):
        _ = cirq.qis.infer_qid_shape(state_vector_1,
                                     computational_basis_state_4)

    with pytest.raises(ValueError, match='Failed to infer'):
        _ = cirq.qis.infer_qid_shape(state_vector_1, state_vector_2)

    with pytest.raises(ValueError, match='Failed to infer'):
        _ = cirq.qis.infer_qid_shape(computational_basis_state_3,
                                     state_tensor_2)
def test_act_using_adaptive_two_qubit_channel():
    class Decay11(cirq.Gate):
        def num_qubits(self) -> int:
            return 2

        def _kraus_(self):
            bottom_right = cirq.one_hot(index=(3, 3),
                                        shape=(4, 4),
                                        dtype=np.complex64)
            top_right = cirq.one_hot(index=(0, 3),
                                     shape=(4, 4),
                                     dtype=np.complex64)
            return [
                np.eye(4) * np.sqrt(3 / 4),
                (np.eye(4) - bottom_right) * np.sqrt(1 / 4),
                top_right * np.sqrt(1 / 4),
            ]

    mock_prng = mock.Mock()

    def get_result(state: np.ndarray, sample: float):
        mock_prng.random.return_value = sample
        args = cirq.ActOnStateVectorArgs(
            target_tensor=np.copy(state),
            available_buffer=np.empty_like(state),
            qubits=cirq.LineQubit.range(4),
            prng=mock_prng,
            log_of_measurement_results={},
        )
        cirq.act_on(Decay11(), args, [cirq.LineQubit(1), cirq.LineQubit(3)])
        return args.target_tensor

    def assert_not_affected(state: np.ndarray, sample: float):
        np.testing.assert_allclose(get_result(state, sample), state, atol=1e-8)

    all_zeroes = cirq.one_hot(index=(0, 0, 0, 0),
                              shape=(2, ) * 4,
                              dtype=np.complex128)
    all_ones = cirq.one_hot(index=(1, 1, 1, 1),
                            shape=(2, ) * 4,
                            dtype=np.complex128)
    decayed_all_ones = cirq.one_hot(index=(1, 0, 1, 0),
                                    shape=(2, ) * 4,
                                    dtype=np.complex128)

    # Decays the 11 state to 00.
    np.testing.assert_allclose(get_result(all_ones, 3 / 4 - 1e-8), all_ones)
    np.testing.assert_allclose(get_result(all_ones, 3 / 4 + 1e-8),
                               decayed_all_ones)

    # Decoheres the 11 subspace from other subspaces as sample rises.
    superpose = all_ones * np.sqrt(1 / 2) + all_zeroes * np.sqrt(1 / 2)
    np.testing.assert_allclose(get_result(superpose, 3 / 4 - 1e-8), superpose)
    np.testing.assert_allclose(get_result(superpose, 3 / 4 + 1e-8), all_zeroes)
    np.testing.assert_allclose(get_result(superpose, 7 / 8 - 1e-8), all_zeroes)
    np.testing.assert_allclose(get_result(superpose, 7 / 8 + 1e-8),
                               decayed_all_ones)

    # Always acts like identity when sample < p=3/4.
    for _ in range(10):
        assert_not_affected(
            cirq.testing.random_superposition(dim=16).reshape((2, ) * 4),
            sample=3 / 4 - 1e-8,
        )

    # Acts like identity on superpositions of first three states.
    for _ in range(10):
        mock_prng.random.return_value = 3 / 4 + 1e-6
        projected_state = cirq.testing.random_superposition(dim=16).reshape(
            (2, ) * 4)
        projected_state[cirq.slice_for_qubits_equal_to([1, 3], 3)] = 0
        projected_state /= np.linalg.norm(projected_state)
        assert abs(np.linalg.norm(projected_state) - 1) < 1e-8
        assert_not_affected(
            projected_state,
            sample=3 / 4 + 1e-8,
        )
Ejemplo n.º 29
0
def test_fidelity_fail_inference():
    state_vector = cirq.one_hot(shape=(4,), dtype=np.complex128)
    state_tensor = np.reshape(state_vector, (2, 2))
    with pytest.raises(ValueError, match='Please specify'):
        _ = cirq.fidelity(state_tensor, 4)
Ejemplo n.º 30
0
 def _channel_(self):
     return [
         np.eye(4) -
         cirq.one_hot(index=(3, 3), shape=(4, 4), dtype=np.complex64),
         cirq.one_hot(index=(0, 3), shape=(4, 4), dtype=np.complex64),
     ]