Ejemplo n.º 1
0
 def get_judges(self, node):
     """Parse out the judge string and then look it up in the DB"""
     try:
         s = self.case_details.xpath('%s/text()' % node)[0].strip()
     except IndexError:
         print "  Couldn't get judge for node: %s" % node
         return None, ''
     else:
         judge_names = find_judge_names(s)
         judges = []
         for judge_name in judge_names:
             judges.append(
                 find_person(judge_name,
                             self.court.pk,
                             case_date=self.date_filed))
         judges = [c for c in judges if c is not None]
         if len(judges) == 0:
             print "  No judges found after lookup."
             logger.info("No judge for: %s" %
                         ((s, self.court.pk, self.date_filed), ))
             return None, s
         elif len(judges) == 1:
             return judges[0], s
         elif len(judges) > 1:
             print "  Too many judges found: %s" % len(judges)
             return None, s
Ejemplo n.º 2
0
 def get_judges(self, node):
     """Parse out the judge string and then look it up in the DB"""
     try:
         s = self.case_details.xpath('%s/text()' % node)[0].strip()
     except IndexError:
         print "  Couldn't get judge for node: %s" % node
         return None, ''
     else:
         judge_names = find_judge_names(s)
         judges = []
         for judge_name in judge_names:
             judges.append(find_person(judge_name, self.court.pk,
                                       case_date=self.date_filed))
         judges = [c for c in judges if c is not None]
         if len(judges) == 0:
             print "  No judges found after lookup."
             logger.info("No judge for: %s" % (
                 (s, self.court.pk, self.date_filed),
             ))
             return None, s
         elif len(judges) == 1:
             return judges[0], s
         elif len(judges) > 1:
             print "  Too many judges found: %s" % len(judges)
             return None, s
Ejemplo n.º 3
0
def assign_authors(testing=False):

    clusters = OpinionCluster.objects.exclude(judges='')

    for cluster in clusters:
        print("Processing: %s" % cluster)
        print("  Judge string: %s" % cluster.judges)

        judges = find_judges(cluster.judges)

        if len(judges) == 0:
            continue

        candidates = []
        for judge in judges:
            candidates.append(
                find_person(judge,
                            cluster.docket.court_id,
                            case_date=cluster.date_filed))
        candidates = [c for c in candidates if c is not None]

        opinion = cluster.sub_opinions.all()[0]

        if len(candidates) == 1:
            opinion.author = candidates[0]
            print '  Author assigned: ', candidates[0]
        elif len(candidates) > 1:
            opinion.panel = candidates
            print '  Panel assigned:', candidates
        else:
            print '  No match.'

        if not testing:
            opinion.save()
Ejemplo n.º 4
0
matchcount = 0
panelcount = 0
zerocount = 0

for i, row in df.iterrows():
    #if row.court_id not in cas:
    #    continue
    if pd.isnull(row.judges):
        continue  
    
    judges = find_judges(row.judges)    
    date_filed = dt.strptime(row.date_filed, "%Y-%m-%d")    
    candidates = []
    for judge in judges:        
        candidates.append(find_person(judge, row.court_id, case_date=date_filed))    
    
    candidates = [c for c in candidates if c is not None]
    
    if len(candidates) == 1:
        author = candidates[0]
    if len(candidates) > 1:
        panel = candidates
    
    if len(candidates) == 1:
        matchcount += 1
    if len(candidates) > 1:
        panelcount += 1
    if len(candidates) == 0:
        zerocount += 1
    
Ejemplo n.º 5
0
def make_and_save(item, skipdupes=False, min_dates=None, testing=True):
    """Associates case data from `parse_opinions` with objects. Saves these
    objects.

    min_date: if not none, will skip cases after min_date
    """
    date_filed = date_argued = date_reargued = date_reargument_denied = date_cert_granted = date_cert_denied = None
    unknown_date = None
    for date_cluster in item['dates']:
        for date_info in date_cluster:
            # check for any dates that clearly aren't dates
            if date_info[1].year < 1600 or date_info[1].year > 2020:
                continue
            # check for untagged dates that will be assigned to date_filed
            if date_info[0] is None:
                date_filed = date_info[1]
                continue
            # try to figure out what type of date it is based on its tag string
            if date_info[0] in FILED_TAGS:
                date_filed = date_info[1]
            elif date_info[0] in DECIDED_TAGS:
                if not date_filed:
                    date_filed = date_info[1]
            elif date_info[0] in ARGUED_TAGS:
                date_argued = date_info[1]
            elif date_info[0] in REARGUE_TAGS:
                date_reargued = date_info[1]
            elif date_info[0] in REARGUE_DENIED_TAGS:
                date_reargument_denied = date_info[1]
            elif date_info[0] in CERT_GRANTED_TAGS:
                date_cert_granted = date_info[1]
            elif date_info[0] in CERT_DENIED_TAGS:
                date_cert_denied = date_info[1]
            else:
                unknown_date = date_info[1]
                if date_info[0] not in UNKNOWN_TAGS:
                    print("\nFound unknown date tag '%s' with date '%s'.\n" %
                          date_info)

    # the main date (used for date_filed in OpinionCluster) and panel dates
    # (used for finding judges) are ordered in terms of which type of dates
    # best reflect them
    main_date = (date_filed or date_argued or date_reargued or
                 date_reargument_denied or unknown_date)
    panel_date = (date_argued or date_reargued or date_reargument_denied or
                  date_filed or unknown_date)

    if main_date is None:
        raise Exception("Failed to get a date for " + item['file'])

    if min_dates is not None:
        if min_dates.get(item['court_id']) is not None:
            if main_date >= min_dates[item['court_id']]:
                print(main_date, 'after', min_dates[item['court_id']],
                      ' -- skipping.')
                return

    docket = Docket(
        source=Docket.COLUMBIA,
        date_argued=date_argued,
        date_reargued=date_reargued,
        date_cert_granted=date_cert_granted,
        date_cert_denied=date_cert_denied,
        date_reargument_denied=date_reargument_denied,
        court_id=item['court_id'],
        case_name_short=item['case_name_short'] or '',
        case_name=item['case_name'] or '',
        case_name_full=item['case_name_full'] or '',
        docket_number=item['docket'] or ''
    )

    # get citations in the form of, e.g. {'federal_cite_one': '1 U.S. 1', ...}
    found_citations = []
    for c in item['citations']:
        found = get_citations(c)
        if not found:
            # if the docket number --is-- citation string, we're likely dealing
            # with a somewhat common triplet of (docket number, date,
            # jurisdiction), which isn't a citation at all (so there's no
            # problem)
            if item['docket']:
                docket_no = item['docket'].lower()
                if 'claim no.' in docket_no:
                    docket_no = docket_no.split('claim no.')[0]
                for junk in DOCKET_JUNK:
                    docket_no = docket_no.replace(junk, '')
                docket_no = docket_no.strip('.').strip()
                if docket_no and docket_no in c.lower():
                    continue

            # there are a trivial number of letters (except for months and a few
            # trivial words) in the citation, then it's not a citation at all
            non_trivial = c.lower()
            for trivial in TRIVIAL_CITE_WORDS:
                non_trivial = non_trivial.replace(trivial, '')
            num_letters = sum(non_trivial.count(letter) for letter in string.lowercase)
            if num_letters < 3:
                continue

            # if there is a string that's known to indicate a bad citation, then
            # it's not a citation
            if any(bad in c for bad in BAD_CITES):
                continue
            # otherwise, this is a problem
            raise Exception("Failed to get a citation from the string '%s' in "
                            "court '%s' with docket '%s'." % (
                                c, item['court_id'], item['docket']
                            ))
        else:
            found_citations.extend(found)
    citations_map = map_citations_to_models(found_citations)

    cluster = OpinionCluster(
        judges=item.get('judges', '') or "",
        precedential_status=('Unpublished' if item['unpublished'] else 'Published'),
        date_filed=main_date,
        case_name_short=item['case_name_short'] or '',
        case_name=item['case_name'] or '',
        case_name_full=item['case_name_full'] or '',
        source='Z',
        attorneys=item['attorneys'] or '',
        posture=item['posture'] or '',
        **citations_map
    )
    panel = [find_person(n, item['court_id'], case_date=panel_date) for n in
             item['panel']]
    panel = [x for x in panel if x is not None]

    opinions = []
    for i, opinion_info in enumerate(item['opinions']):
        if opinion_info['author'] is None:
            author = None
        else:
            author = find_person(opinion_info['author'], item['court_id'],
                                 case_date=panel_date)
        converted_text = convert_columbia_html(opinion_info['opinion'])
        opinion_type = OPINION_TYPE_MAPPING[opinion_info['type']]
        if opinion_type == '020lead' and i > 0:
            opinion_type = '050addendum'

        opinion = Opinion(
            author=author,
            per_curiam=opinion_info['per_curiam'],
            type=opinion_type,
            # type=OPINION_TYPE_MAPPING[opinion_info['type']],
            html_columbia=converted_text,
            sha1=opinion_info['sha1'],
            local_path=opinion_info['local_path'],
        )
        joined_by = [find_person(n, item['court_id'], case_date=panel_date) for n in opinion_info['joining']]
        joined_by = [x for x in joined_by if x is not None]
        opinions.append((opinion, joined_by))

    if min_dates is None:
        # check to see if this is a duplicate
        dups = find_dups(docket, cluster, panel, opinions)
        if dups:
            if skipdupes:
                print('Duplicate. skipping.')
            else:
                raise Exception("Found %s duplicate(s)." % len(dups))

    # save all the objects
    if not testing:
        try:
            docket.save()
            cluster.docket = docket
            cluster.save(index=False)
            for member in panel:
                cluster.panel.add(member)
            for opinion, joined_by in opinions:
                opinion.cluster = cluster
                opinion.save(index=False)
                for joiner in joined_by:
                    opinion.joined_by.add(joiner)
            if settings.DEBUG:
                domain = "http://127.0.0.1:8000"
            else:
                domain = "https://www.courtlistener.com"
            print("Created item at: %s%s" % (domain, cluster.get_absolute_url()))
        except:
            # if anything goes wrong, try to delete everything
            try:
                docket.delete()
            except:
                pass
            raise
Ejemplo n.º 6
0
def make_and_save(item):
    """Associates case data from `parse_opinions` with objects. Saves these objects."""
    date_filed = date_argued = date_reargued = date_reargument_denied = date_cert_granted = date_cert_denied = None
    for date_cluster in item['dates']:
        for date_info in date_cluster:
            # check for any dates that clearly aren't dates
            if date_info[1].year < 1600 or date_info[1].year > 2020:
                continue
            # check for untagged dates that will be assigned to date_filed
            if date_info[0] is None:
                date_filed = date_info[1]
                continue
            # try to figure out what type of date it is based on its tag string
            if date_info[0] in FILED_TAGS:
                date_filed = date_info[1]
            elif date_info[0] in DECIDED_TAGS:
                if not date_filed:
                    date_filed = date_info[1]
            elif date_info[0] in ARGUED_TAGS:
                date_argued = date_info[1]
            elif date_info[0] in REARGUE_TAGS:
                date_reargued = date_info[1]
            elif date_info[0] in REARGUE_DENIED_TAGS:
                date_reargument_denied = date_info[1]
            elif date_info[0] in CERT_GRANTED_TAGS:
                date_cert_granted = date_info[1]
            elif date_info[0] in CERT_DENIED_TAGS:
                date_cert_denied = date_info[1]
            else:
                print("Found unknown date tag '%s' with date '%s'." % date_info)

    docket = Docket(
        date_argued=date_argued
        ,date_reargued=date_reargued
        ,date_cert_granted=date_cert_granted
        ,date_cert_denied=date_cert_denied
        ,date_reargument_denied=date_reargument_denied
        ,court_id=item['court_id']
        ,case_name_short=item['case_name_short'] or ''
        ,case_name=item['case_name'] or ''
        ,case_name_full=item['case_name_full'] or ''
        ,docket_number=item['docket'] or ''
    )
    docket.save()

    # get citations in the form of, e.g. {'federal_cite_one': '1 U.S. 1', ...}
    found_citations = []
    for c in item['citations']:
        found = get_citations(c)
        if not found:
            raise Exception("Failed to get a citation from the string '%s'." % c)
        elif len(found) > 1:
            raise Exception("Got multiple citations from string '%s' when there should have been one." % c)
        found_citations.append(found[0])
    citations_map = map_citations_to_models(found_citations)

    cluster = OpinionCluster(
        docket=docket
        ,precedential_status=('Unpublished' if item['unpublished'] else 'Published')
        ,date_filed=date_filed
        ,case_name_short=item['case_name_short'] or ''
        ,case_name=item['case_name'] or ''
        ,case_name_full=item['case_name_full'] or ''
        ,source='Z'
        ,attorneys=item['attorneys'] or ''
        ,posture=item['posture'] or ''
        ,**citations_map
    )
    cluster.save()
    
    if date_argued is not None:
        paneldate = date_argued
    else:
        paneldate = date_filed
    panel = [find_person(n, item['court_id'], paneldate) for n in item['panel']]
    panel = [x for x in panel if x is not None]
    for member in panel:
        cluster.panel.add(member)

    for opinion_info in item['opinions']:
        if opinion_info['author'] is None:
            author = None
        else:
            author = find_person(opinion_info['author'], item['court_id'], date_filed or date_argued)
        opinion = Opinion(
            cluster=cluster
            ,author=author
            ,type=OPINION_TYPE_MAPPING[opinion_info['type']]
            ,html_columbia=opinion_info['opinion']
        )
        opinion.save()
        joined_by = [find_person(n, item['court_id'], paneldate) for n in opinion_info['joining']]
        joined_by = [x for x in joined_by if x is not None]
        for joiner in joined_by:
            opinion.joined_by.add(joiner)
Ejemplo n.º 7
0
def make_and_save(item,
                  skipdupes=False,
                  min_dates=None,
                  start_dates=None,
                  testing=True):
    """Associates case data from `parse_opinions` with objects. Saves these
    objects.

    min_date: if not none, will skip cases after min_date
    """
    date_filed = date_argued = date_reargued = date_reargument_denied = date_cert_granted = date_cert_denied = None
    unknown_date = None
    for date_cluster in item['dates']:
        for date_info in date_cluster:
            # check for any dates that clearly aren't dates
            if date_info[1].year < 1600 or date_info[1].year > 2020:
                continue
            # check for untagged dates that will be assigned to date_filed
            if date_info[0] is None:
                date_filed = date_info[1]
                continue
            # try to figure out what type of date it is based on its tag string
            if date_info[0] in FILED_TAGS:
                date_filed = date_info[1]
            elif date_info[0] in DECIDED_TAGS:
                if not date_filed:
                    date_filed = date_info[1]
            elif date_info[0] in ARGUED_TAGS:
                date_argued = date_info[1]
            elif date_info[0] in REARGUE_TAGS:
                date_reargued = date_info[1]
            elif date_info[0] in REARGUE_DENIED_TAGS:
                date_reargument_denied = date_info[1]
            elif date_info[0] in CERT_GRANTED_TAGS:
                date_cert_granted = date_info[1]
            elif date_info[0] in CERT_DENIED_TAGS:
                date_cert_denied = date_info[1]
            else:
                unknown_date = date_info[1]
                if date_info[0] not in UNKNOWN_TAGS:
                    print("\nFound unknown date tag '%s' with date '%s'.\n" %
                          date_info)

    # the main date (used for date_filed in OpinionCluster) and panel dates
    # (used for finding judges) are ordered in terms of which type of dates
    # best reflect them
    main_date = (date_filed or date_argued or date_reargued
                 or date_reargument_denied or unknown_date)
    panel_date = (date_argued or date_reargued or date_reargument_denied
                  or date_filed or unknown_date)

    if main_date is None:
        raise Exception("Failed to get a date for " + item['file'])

    # special rule for Kentucky
    if item['court_id'] == 'kycourtapp' and main_date <= date(1975, 12, 31):
        item['court_id'] = 'kycourtapphigh'

    if min_dates is not None:
        if min_dates.get(item['court_id']) is not None:
            if main_date >= min_dates[item['court_id']]:
                print(main_date, 'after', min_dates[item['court_id']],
                      ' -- skipping.')
                return
    if start_dates is not None:
        if start_dates.get(item['court_id']) is not None:
            if main_date <= start_dates[item['court_id']]:
                print(main_date, 'before court founding:',
                      start_dates[item['court_id']], ' -- skipping.')
                return

    docket = Docket(source=Docket.COLUMBIA,
                    date_argued=date_argued,
                    date_reargued=date_reargued,
                    date_cert_granted=date_cert_granted,
                    date_cert_denied=date_cert_denied,
                    date_reargument_denied=date_reargument_denied,
                    court_id=item['court_id'],
                    case_name_short=item['case_name_short'] or '',
                    case_name=item['case_name'] or '',
                    case_name_full=item['case_name_full'] or '',
                    docket_number=item['docket'] or '')

    # get citations in the form of, e.g. {'federal_cite_one': '1 U.S. 1', ...}
    found_citations = []
    for c in item['citations']:
        found = get_citations(c)
        if not found:
            # if the docket number --is-- citation string, we're likely dealing
            # with a somewhat common triplet of (docket number, date,
            # jurisdiction), which isn't a citation at all (so there's no
            # problem)
            if item['docket']:
                docket_no = item['docket'].lower()
                if 'claim no.' in docket_no:
                    docket_no = docket_no.split('claim no.')[0]
                for junk in DOCKET_JUNK:
                    docket_no = docket_no.replace(junk, '')
                docket_no = docket_no.strip('.').strip()
                if docket_no and docket_no in c.lower():
                    continue

            # there are a trivial number of letters (except for months and a few
            # trivial words) in the citation, then it's not a citation at all
            non_trivial = c.lower()
            for trivial in TRIVIAL_CITE_WORDS:
                non_trivial = non_trivial.replace(trivial, '')
            num_letters = sum(
                non_trivial.count(letter) for letter in string.lowercase)
            if num_letters < 3:
                continue

            # if there is a string that's known to indicate a bad citation, then
            # it's not a citation
            if any(bad in c for bad in BAD_CITES):
                continue
            # otherwise, this is a problem
            raise Exception("Failed to get a citation from the string '%s' in "
                            "court '%s' with docket '%s'." %
                            (c, item['court_id'], item['docket']))
        else:
            found_citations.extend(found)
    citations_map = map_citations_to_models(found_citations)

    cluster = OpinionCluster(
        judges=item.get('judges', '') or "",
        precedential_status=('Unpublished'
                             if item['unpublished'] else 'Published'),
        date_filed=main_date,
        case_name_short=item['case_name_short'] or '',
        case_name=item['case_name'] or '',
        case_name_full=item['case_name_full'] or '',
        source='Z',
        attorneys=item['attorneys'] or '',
        posture=item['posture'] or '',
        **citations_map)
    panel = [
        find_person(n, item['court_id'], case_date=panel_date)
        for n in item['panel']
    ]
    panel = [x for x in panel if x is not None]

    opinions = []
    for i, opinion_info in enumerate(item['opinions']):
        if opinion_info['author'] is None:
            author = None
        else:
            author = find_person(opinion_info['author'],
                                 item['court_id'],
                                 case_date=panel_date)
        converted_text = convert_columbia_html(opinion_info['opinion'])
        opinion_type = OPINION_TYPE_MAPPING[opinion_info['type']]
        if opinion_type == '020lead' and i > 0:
            opinion_type = '050addendum'

        opinion = Opinion(
            author=author,
            per_curiam=opinion_info['per_curiam'],
            type=opinion_type,
            # type=OPINION_TYPE_MAPPING[opinion_info['type']],
            html_columbia=converted_text,
            sha1=opinion_info['sha1'],
            local_path=opinion_info['local_path'],
        )
        joined_by = [
            find_person(n, item['court_id'], case_date=panel_date)
            for n in opinion_info['joining']
        ]
        joined_by = [x for x in joined_by if x is not None]
        opinions.append((opinion, joined_by))

    if min_dates is None:
        # check to see if this is a duplicate
        dups = find_dups(docket, cluster)
        if dups:
            if skipdupes:
                print('Duplicate. skipping.')
            else:
                raise Exception("Found %s duplicate(s)." % len(dups))

    # save all the objects
    if not testing:
        try:
            docket.save()
            cluster.docket = docket
            cluster.save(index=False)
            for member in panel:
                cluster.panel.add(member)
            for opinion, joined_by in opinions:
                opinion.cluster = cluster
                opinion.save(index=False)
                for joiner in joined_by:
                    opinion.joined_by.add(joiner)
            if settings.DEBUG:
                domain = "http://127.0.0.1:8000"
            else:
                domain = "https://www.courtlistener.com"
            print("Created item at: %s%s" %
                  (domain, cluster.get_absolute_url()))
        except:
            # if anything goes wrong, try to delete everything
            try:
                docket.delete()
            except:
                pass
            raise
matchcount = 0
panelcount = 0
zerocount = 0

for i, row in df.iterrows():
    #if row.court_id not in cas:
    #    continue
    if pd.isnull(row.judges):
        continue

    judges = find_judge_names(row.judges)
    date_filed = dt.strptime(row.date_filed, "%Y-%m-%d")
    candidates = []
    for judge in judges:
        candidates.append(
            find_person(judge, row.court_id, case_date=date_filed))

    candidates = [c for c in candidates if c is not None]

    if len(candidates) == 1:
        author = candidates[0]
        print(author)
    elif len(candidates) > 1:
        panel = candidates
        print(panel)
    else:
        print('No match.', row.judges)

    if len(candidates) == 1:
        matchcount += 1
    if len(candidates) > 1:
Ejemplo n.º 9
0
def assign_authors(testing=False):

    clusters = (OpinionCluster.objects.exclude(judges='').exclude(
        docket__court__jurisdiction='FB').select_related(
            'docket__court__id').only('date_filed', 'judges',
                                      'docket__court_id'))
    total = clusters.count()
    i = 0

    for cluster in clusters:
        i += 1
        print u"(%s/%s): Processing: %s, %s" % (i, total, cluster.pk,
                                                cluster.date_filed)
        #print u"  Judge string: %s".encode('utf-8') % cluster.judges

        judgestr = unidecode(cluster.judges)
        print "  Judge string: %s" % judgestr

        if 'curiam' in judgestr.lower():
            opinion = cluster.sub_opinions.all()[0]
            opinion.per_curiam = True
            print u'  Per Curiam assigned.'
            if not testing:
                opinion.save(index=False)
            continue

        #judges = find_judge_names(cluster.judges)

        judges = find_judge_names(judgestr)

        if len(judges) == 0:
            continue

        candidates = []
        for judge in judges:
            candidates.append(
                find_person(judge,
                            cluster.docket.court_id,
                            case_date=cluster.date_filed))
        candidates = [c for c in candidates if c is not None]

        if len(candidates) == 0:
            # more than one judge token, but no DB matches, continue
            print u'  No match.'
            continue

        if len(candidates) > 1:
            # more than one DB match, assign panel and continue
            print u'  Panel assigned: %s' % candidates
            if not testing:
                for candidate in candidates:
                    cluster.panel.add(candidate)
            continue

        # only one candidate, assign author
        opinion = cluster.sub_opinions.all()[0]
        if len(judges) == 1:
            # one judge token, one DB match
            opinion.author = candidates[0]
            print '  Author assigned: %s' % unidecode(str(candidates[0]))
        else:
            # multiple judge tokens, one DB match
            opinion.author = candidates[0]
            print '  Author assigned: %s (with %d missing tokens)' % (
                unidecode(str(candidates[0])), len(judges) - 1)

        if not testing:
            opinion.save(index=False)
Ejemplo n.º 10
0
def assign_authors(testing=False):

    clusters = (OpinionCluster.objects
                .exclude(judges='')
                .exclude(docket__court__jurisdiction='FB')
                .select_related('docket__court__id')
                .only('date_filed', 'judges', 'docket__court_id'))
    total = clusters.count()
    i = 0

    for cluster in clusters:
        i += 1
        print u"(%s/%s): Processing: %s, %s" % (i, total, cluster.pk,
                                               cluster.date_filed)
        #print u"  Judge string: %s".encode('utf-8') % cluster.judges

        judgestr = unidecode(cluster.judges)
        print "  Judge string: %s" % judgestr

        if 'curiam' in judgestr.lower():
            opinion = cluster.sub_opinions.all()[0]
            opinion.per_curiam = True
            print u'  Per Curiam assigned.'
            if not testing:
                opinion.save(index=False)
            continue

        #judges = find_judge_names(cluster.judges)

        judges = find_judge_names(judgestr)

        if len(judges) == 0:
            continue

        candidates = []
        for judge in judges:
            candidates.append(find_person(judge,
                                          cluster.docket.court_id,
                                          case_date=cluster.date_filed))
        candidates = [c for c in candidates if c is not None]

        if len(candidates) == 0:
            # more than one judge token, but no DB matches, continue
            print u'  No match.'
            continue

        if len(candidates) > 1:
            # more than one DB match, assign panel and continue
            print u'  Panel assigned: %s' % candidates
            if not testing:
                for candidate in candidates:
                    cluster.panel.add(candidate)
            continue

        # only one candidate, assign author
        opinion = cluster.sub_opinions.all()[0]
        if len(judges) == 1:
            # one judge token, one DB match
            opinion.author = candidates[0]
            print '  Author assigned: %s' % unidecode(str(candidates[0]))
        else:
            # multiple judge tokens, one DB match
            opinion.author = candidates[0]
            print '  Author assigned: %s (with %d missing tokens)' % (
                unidecode(str(candidates[0])),
                len(judges)-1
            )

        if not testing:
            opinion.save(index=False)
Ejemplo n.º 11
0
def make_and_save(item,
                  skipdupes=False,
                  min_dates=None,
                  start_dates=None,
                  testing=True):
    """Associates case data from `parse_opinions` with objects. Saves these
    objects.

    min_date: if not none, will skip cases after min_date
    """
    date_filed = (date_argued) = (
        date_reargued
    ) = date_reargument_denied = date_cert_granted = date_cert_denied = None
    unknown_date = None
    for date_cluster in item["dates"]:
        for date_info in date_cluster:
            # check for any dates that clearly aren't dates
            if date_info[1].year < 1600 or date_info[1].year > 2020:
                continue
            # check for untagged dates that will be assigned to date_filed
            if date_info[0] is None:
                date_filed = date_info[1]
                continue
            # try to figure out what type of date it is based on its tag string
            if date_info[0] in FILED_TAGS:
                date_filed = date_info[1]
            elif date_info[0] in DECIDED_TAGS:
                if not date_filed:
                    date_filed = date_info[1]
            elif date_info[0] in ARGUED_TAGS:
                date_argued = date_info[1]
            elif date_info[0] in REARGUE_TAGS:
                date_reargued = date_info[1]
            elif date_info[0] in REARGUE_DENIED_TAGS:
                date_reargument_denied = date_info[1]
            elif date_info[0] in CERT_GRANTED_TAGS:
                date_cert_granted = date_info[1]
            elif date_info[0] in CERT_DENIED_TAGS:
                date_cert_denied = date_info[1]
            else:
                unknown_date = date_info[1]
                if date_info[0] not in UNKNOWN_TAGS:
                    print("\nFound unknown date tag '%s' with date '%s'.\n" %
                          date_info)

    # the main date (used for date_filed in OpinionCluster) and panel dates
    # (used for finding judges) are ordered in terms of which type of dates
    # best reflect them
    main_date = (date_filed or date_argued or date_reargued
                 or date_reargument_denied or unknown_date)
    panel_date = (date_argued or date_reargued or date_reargument_denied
                  or date_filed or unknown_date)

    if main_date is None:
        raise Exception("Failed to get a date for " + item["file"])

    # special rule for Kentucky
    if item["court_id"] == "kycourtapp" and main_date <= date(1975, 12, 31):
        item["court_id"] = "kycourtapphigh"

    if min_dates is not None:
        if min_dates.get(item["court_id"]) is not None:
            if main_date >= min_dates[item["court_id"]]:
                print(
                    main_date,
                    "after",
                    min_dates[item["court_id"]],
                    " -- skipping.",
                )
                return
    if start_dates is not None:
        if start_dates.get(item["court_id"]) is not None:
            if main_date <= start_dates[item["court_id"]]:
                print(
                    main_date,
                    "before court founding:",
                    start_dates[item["court_id"]],
                    " -- skipping.",
                )
                return

    docket = Docket(
        source=Docket.COLUMBIA,
        date_argued=date_argued,
        date_reargued=date_reargued,
        date_cert_granted=date_cert_granted,
        date_cert_denied=date_cert_denied,
        date_reargument_denied=date_reargument_denied,
        court_id=item["court_id"],
        case_name_short=item["case_name_short"] or "",
        case_name=item["case_name"] or "",
        case_name_full=item["case_name_full"] or "",
        docket_number=item["docket"] or "",
    )

    # get citation objects in a list for addition to the cluster
    found_citations = []
    for c in item["citations"]:
        found = get_citations(c, clean=("html", "whitespace"))
        if not found:
            # if the docket number --is-- citation string, we're likely dealing
            # with a somewhat common triplet of (docket number, date,
            # jurisdiction), which isn't a citation at all (so there's no
            # problem)
            if item["docket"]:
                docket_no = item["docket"].lower()
                if "claim no." in docket_no:
                    docket_no = docket_no.split("claim no.")[0]
                for junk in DOCKET_JUNK:
                    docket_no = docket_no.replace(junk, "")
                docket_no = docket_no.strip(".").strip()
                if docket_no and docket_no in c.lower():
                    continue

            # there are a trivial number of letters (except for
            # months and a few trivial words) in the citation,
            # then it's not a citation at all
            non_trivial = c.lower()
            for trivial in TRIVIAL_CITE_WORDS:
                non_trivial = non_trivial.replace(trivial, "")
            num_letters = sum(
                non_trivial.count(letter) for letter in string.lowercase)
            if num_letters < 3:
                continue

            # if there is a string that's known to indicate
            # a bad citation, then it's not a citation
            if any(bad in c for bad in BAD_CITES):
                continue
            # otherwise, this is a problem
            raise Exception("Failed to get a citation from the string '%s' in "
                            "court '%s' with docket '%s'." %
                            (c, item["court_id"], item["docket"]))
        else:
            found_citations.extend(found.to_model())

    cluster = OpinionCluster(
        judges=item.get("judges", "") or "",
        precedential_status=("Unpublished"
                             if item["unpublished"] else "Published"),
        date_filed=main_date,
        case_name_short=item["case_name_short"] or "",
        case_name=item["case_name"] or "",
        case_name_full=item["case_name_full"] or "",
        source="Z",
        attorneys=item["attorneys"] or "",
        posture=item["posture"] or "",
    )
    panel = [
        find_person(n, item["court_id"], case_date=panel_date)
        for n in item["panel"]
    ]
    panel = [x for x in panel if x is not None]

    opinions = []
    for i, opinion_info in enumerate(item["opinions"]):
        if opinion_info["author"] is None:
            author = None
        else:
            author = find_person(opinion_info["author"],
                                 item["court_id"],
                                 case_date=panel_date)
        converted_text = convert_columbia_html(opinion_info["opinion"])
        opinion_type = OPINION_TYPE_MAPPING[opinion_info["type"]]
        if opinion_type == Opinion.LEAD and i > 0:
            opinion_type = Opinion.ADDENDUM

        opinion = Opinion(
            author=author,
            per_curiam=opinion_info["per_curiam"],
            type=opinion_type,
            # type=OPINION_TYPE_MAPPING[opinion_info['type']],
            html_columbia=converted_text,
            sha1=opinion_info["sha1"],
            # This is surely not updated for the new S3 world. If you're
            # reading this, you'll need to update this code.
            local_path=opinion_info["local_path"],
        )
        joined_by = [
            find_person(n, item["court_id"], case_date=panel_date)
            for n in opinion_info["joining"]
        ]
        joined_by = [x for x in joined_by if x is not None]
        opinions.append((opinion, joined_by))

    if min_dates is None:
        # check to see if this is a duplicate
        dups = find_dups(docket, cluster)
        if dups:
            if skipdupes:
                print("Duplicate. skipping.")
            else:
                raise Exception("Found %s duplicate(s)." % len(dups))

    # save all the objects
    if not testing:
        try:
            docket.save()
            cluster.docket = docket
            cluster.save(index=False)
            for citation in found_citations:
                citation.cluster = cluster
                citation.save()
            for member in panel:
                cluster.panel.add(member)
            for opinion, joined_by in opinions:
                opinion.cluster = cluster
                opinion.save(index=False)
                for joiner in joined_by:
                    opinion.joined_by.add(joiner)
            if settings.DEBUG:
                domain = "http://127.0.0.1:8000"
            else:
                domain = "https://www.courtlistener.com"
            print("Created item at: %s%s" %
                  (domain, cluster.get_absolute_url()))
        except:
            # if anything goes wrong, try to delete everything
            try:
                docket.delete()
            except:
                pass
            raise