def __init__(self): """ Set up algorithm environment. Load: Global variables Underlying data for algorithm: List of hospitals Patients by LSOA Travel matrix from all LSOA to all hospitals """ # Set up class instances (one instance per class) self.data = Data() self.pop = Pop() self.time_of_last_save = 0 return
def main(): from classes.request import Request from classes.data import Data import sys name = sys.argv[1] req = Request(name=name) json = req.get_json_by_name() d = Data(json) d.parse_json() print d.get_needed_data()
def main(): from classes.request import Request from classes.data import Data import sys from datetime import datetime import time try: lat = sys.argv[1] lon = sys.argv[2] except: # Default NYC coordinates. lat = 40 lon = -74 req = Request(lat=lat, lon=lon) print "Uploading coordinates.." while True: now = datetime.now() hour = now.hour minute = now.minute if not hour % 3 and not minute: # If 0, 3, 6, 9, 12 hours and 0 minute res = req.get_json_by_coords() data = Data(json=res) data.parse_json() print data.get_needed_data() else: print "Waiting for next data.." time.sleep(60)
def get_all_season(url): headers = { "User-Agent": "Mozilla/5.0 (Macintosh; Intel Mac OS X 10_15_4) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/83.0.4103.97 Safari/537.36" } html = requests.get(url, headers=headers) soup = bs(html.content, features="html.parser") player = soup.select('.dataMain > .dataTop > .dataName > h1')[0].text player = f"name:{player}" table = soup.select( '.responsive-table > .grid-view > .items > tbody')[0] profile = soup.select('.dataContent > .dataBottom > .dataDaten') ribbon = soup.select('.dataRibbon > a') if len(ribbon) > 0: ribbon = ribbon[0]['title'] player_bio = [] country = [] for items in profile: for p in items.find_all('p'): for datavalue in p.find_all( True, {"class": re.compile("^(dataValue)$")}): if len(datavalue.find_all('img')) > 0: country.append(datavalue.find_all('img')[0]['title']) bio_data = Text.format_text(p.text) player_bio.append(bio_data) player_bio.append(player) bio = Data.get_bio(player_bio, country) stats = [] try: for cells in table.find_all(True, {"class": re.compile("^(even|odd)$")}): season = cells.find_all('td')[0].text league = cells.find_all( 'td')[1].img['title'] if cells.find_all( 'td')[1].img else '' club = cells.find_all('td')[3].img['alt'] squad = cells.find_all('td')[4].text apps = cells.find_all('td')[5].a.text goals = cells.find_all('td')[7].text assists = cells.find_all('td')[8].text stats_item = { 'season': season, 'league': league, 'club': club, 'squad': squad, 'apps': apps, 'goals': goals, 'assists': assists, } stats.append(stats_item) except IndexError: pass return stats, bio, ribbon
'photo': 'https://s3.amazonaws.com/charitycdn/cache/resizedcrop-75af4d5fd8443d70b4a3d1334d544466-800x800.jpg', 'profile': 'https://www.transfermarkt.com.br/kylian-mbappe/leistungsdaten/spieler/342229/plus/0?saison=2018', 'text': '2018/2019 Season', 'filter': 'Ligue 1', 'club': [ 'https://tmssl.akamaized.net/images/wappen/head/583.png?lm=1472229265' ] }, { 'photo': 'https://bolavip.com/__export/1586720363168/sites/bolavip/img/2020/04/12/edinson-cavani-psg-bordeaux-ligue-1-09022019_defwkc58a8t61ipd1wlkohwji_crop1586720344691.jpg_423682103.jpg', 'profile': 'https://www.transfermarkt.com/edinson-cavani/leistungsdaten/spieler/48280/plus/0?saison=2017', 'text': '2017/2018 Season', 'filter': 'Ligue 1', 'club': [ 'https://tmssl.akamaized.net/images/wappen/head/583.png?lm=1472229265' ] }, ] for player in players: Data.set_data(player) Playerstats.save(player['photo'], player['profile'], player['text'], player['filter'], player['club'], 'liga_1_scorers')
from classes.chain import Chain from classes.block import Block from classes.data import Data from datetime import datetime chain = Chain() data = Data("senderKey", "receiverKey", 123456, datetime) block = Block(1, None, data) chain.addNewBlock(block) print(chain.isChainValid())
from classes.human import Human from classes.data import Data from classes.controller import Controller from sys import argv from matplotlib import pyplot if __name__ == '__main__': if argv[1] != "--help" and argv[1] != "-h": name = "spolki/" + argv[1] data = Data(name) human = Human(data) stock = None if len(argv) == 3: stock = Controller(data, human, int(argv[2])) # Jesli argv[3] = 1 to Controller uzyje uzyje lekko # ulepszonej wersji wskaźnika a jesli argv[3] > 1 to ulepszonej wersji else: stock = Controller(data, human) stock.stock() date = data.getDate() # pyplot.figure("Project") # pyplot.subplot(2, 1, 1) # pyplot.plot(date, data.getClose(), label="Price", color="green") # pyplot.ylabel("Price in USD") # pyplot.xlabel("Date in yyyy-mm-dd format") # pyplot.title("Price") # pyplot.legend() # pyplot.grid(True) # pyplot.subplot(2, 1, 2)
def main(): while True: table = Table(title="Menu") table.add_column("Selection", justify="center", style="white", no_wrap=True) table.add_column("Action", justify="left", style="yellow") table.add_row("1.", "Load data") table.add_row("2.", "Explore data") table.add_row("3.", "Predict future") table.add_row("4.", "Display results") table.add_row("5.", "Predict without backtesting") table.add_row("0.", "Exit") console = Console() console.print(table) __choose_menu = int(input("Enter your choice: ")) if __choose_menu == 1: user = input("Enter Stock ticker: ") start_date = input("Enter start date yyyy-mm-dd: ") end_date = input("Enter end date yyyy-mm-dd: ") ratio = float( input( "Percentage of how much data should be predicted (0-1), \ne.g. 0.95 indicates that 5% of provided data will be predicted: " )) dataset = Data(f'{user}', f'{start_date}', f'{end_date}', ratio) dataset.load_data() elif __choose_menu == 2: explore = Explore(dataset.original_data()['Adj Close']) explore.time_series_decomposition(3) elif __choose_menu == 3: future = Prophesy(dataset.load_data(), dataset.get_periods()) future.predict_future() elif __choose_menu == 4: results = Backtest(dataset.get_all_returns(), future.get_predictions()) results.print_graph() results.error_graph() elif __choose_menu == 5: user = input("Enter Stock ticker: ") future_days = int(input("Enter days to predict: ")) start_date = input("Enter start date yyyy-mm-dd: ") end_date = input("Enter end date yyyy-mm-dd: ") dataset = Data(f'{user}', f'{start_date}', f'{end_date}', 1) dataset.load_data() future = Prophesy(dataset.get_prepared_data(), future_days) results = future.predict_future() future.plot_result(results) future.plot_only_predictions(results, future_days) elif __choose_menu == 0: exit(0) else: print("Invalid Choice")