def main():
	gnb = GNB()
	with open('train.json', 'rb') as f:
		j = json.load(f)

	#print j.keys()
	X = j['states']
	Y = j['labels']

	#print len(X), len(Y)
	print "-----start training-------"
	gnb.train(X, Y)

	with open('test.json', 'rb') as f:
		j = json.load(f)

	X = j['states']
	Y = j['labels']
	score = 0
	for coords, label in zip(X,Y):
		predicted = gnb.predict(coords)
		if predicted == label:
			score += 1
	fraction_correct = float(score) / len(X)
	print "You got {} percent correct".format(100 * fraction_correct)
Ejemplo n.º 2
0
def person_test():
    # Create an empty dataframe
    data = pd.DataFrame()

    # Create our target variable
    data['Gender'] = [
        'male', 'male', 'male', 'male', 'female', 'female', 'female', 'female'
    ]

    # Create our feature variables
    data['Height'] = [6, 5.92, 5.58, 5.92, 5, 5.5, 5.42, 5.75]
    data['Weight'] = [180, 190, 170, 165, 100, 150, 130, 150]
    data['Foot_Size'] = [12, 11, 12, 10, 6, 8, 7, 9]

    # Create an empty dataframe
    person = pd.DataFrame()

    # Create some feature values for this single row
    person['Height'] = [6]
    person['Weight'] = [130]
    person['Foot_Size'] = [8]

    gnb = GNB()
    gnb.train(data, "Gender")

    for idx, row in person.iterrows():
        prob_label, prob = gnb.predict(row)
        print("Probability Label: %s --> Probability: %s" % (prob_label, prob))
Ejemplo n.º 3
0
def main():
    gnb = GNB()
    with open('train.json', 'r') as f:
        j = json.load(f)
    print(j.keys())
    X = j['states']
    Y = j['labels']
    gnb.train(X, Y)

    skl_nb = GaussianNB()
    LE = LabelEncoder()
    skl_nb.fit(X, LE.fit_transform(Y))

    with open('test.json', 'r') as f:
        j = json.load(f)

    X = j['states']
    Y = j['labels']
    score = 0
    for coords, label in zip(X, Y):
        predicted = gnb.predict(coords)
        if predicted == label:
            score += 1
        fraction_correct = float(score) / len(X)
    print("You got {0:3.2f} percent correct".format(100 * fraction_correct))

    Y_test = LE.transform(Y)
    Y_pred = skl_nb.predict(X)
    skl_fraction_correct = sum([1 for a, b in zip(Y_test, Y_pred) if a == b
                                ]) / float(len(Y_test))
    print("Sklearn got {0:3.2f} percent correct".format(100 *
                                                        skl_fraction_correct))
Ejemplo n.º 4
0
def main():

    # Load training data
    with open('train.json', 'r') as f:
        j = json.load(f)

    X = j['states']
    Y = j['labels']

    # Train classifier
    gnb = GNB()
    gnb.train(X, Y)

    # Open test data
    with open('test.json', 'r') as f:
        j = json.load(f)

    X = j['states']
    Y = j['labels']

    # Evaluate classifier
    score = 0
    for coords, label in zip(X, Y):
        predicted = gnb.predict(coords)
        if predicted == label:
            score += 1
    fraction_correct = float(score) / len(X)
    print("You got {} percent correct".format(100 * fraction_correct))
def main():

   gnb = GNB()

   with open('train.json', encoding='utf-8') as f:
       j = json.load(f)

   print(j.keys())

   X = j['states']
   Y = j['labels']

   gnb.train(X, Y)

   with open('test.json', encoding='utf-8') as f:
       j = json.load(f)

   X = j['states']
   Y = j['labels']

   score = 0

   for coords, label in zip(X,Y):
       predicted = gnb.predict(coords)

       if predicted == label:
           score += 1

   percent_correct = 100 * float(score) / len(X)
   print(str(percent_correct) + " percent correct.")
Ejemplo n.º 6
0
def main():
    gnb = GNB()
    train_df = convert_to_labels(pd.read_json('train.json'))
    test_df = convert_to_labels(pd.read_json('test.json'))

    gnb.train(train_df, 'labels')

    for idx, row in test_df.iterrows():
        prediction_label, prob = gnb.predict(row)
        print("Predicted: %s Actual: %s" % (prediction_label, row['labels']))
Ejemplo n.º 7
0
def main():
    gnb = GNB()
    with open('train.json', 'r') as f:
        j = json.load(f)
    X = j['states']
    Y = j['labels']
    gnb.train(X, Y)

    with open('test.json', 'r') as f:
        j = json.load(f)

    X = j['states']
    Y = j['labels']
    score = 0
    for coords, label in zip(X, Y):
        predicted = gnb.predict(coords)
        if predicted == label:
            score += 1
    fraction_correct = float(score) / len(X)
    print("You got %.2f percent correct" % (100 * fraction_correct))
Ejemplo n.º 8
0
def main():
    # TRAINING
    gnb = GNB()
    with open('train.json', 'r') as f:
        j = json.load(f)
    #print(j.keys())
    '''
   	X - array of N observations
		  - Each observation is a tuple with 4 values: s, d, 
		    s_dot and d_dot.
	'''
    X = j['states']
    X = np.array(X)
    Y = j['labels']
    Y = np.array(Y)
    # d-values seem biased where 0 is the center of the left lane.
    X[:, 1] = X[:, 1] + 2

    # just feed delta d to classifier
    #X = np.array([X[:,3]]).T
    # feed d and delta_d into classifier
    X = np.vstack((X[:, 2], X[:, 3])).T
    gnb.train(X, Y)

    # CLASSIFICATION
    with open('test.json', 'r') as f:
        j = json.load(f)
    X = j['states']
    X = np.array(X)
    Y = j['labels']
    Y = np.array(Y)
    X[:, 1] = X[:, 1] + 2
    #X = np.array([X[:,3]]).T
    X = np.vstack((X[:, 2], X[:, 3])).T
    score = 0
    for coords, label in zip(X, Y):
        predicted = gnb.predict(coords)
        if predicted == label:
            score += 1
    fraction_correct = float(score) / len(X)
    print("You got {} percent correct".format(100 * fraction_correct))
def main():
    clf = GNB()
    with open('train.json', encoding='utf-8') as f:
        j = json.load(f)
    print(j.keys())
    X = j['states']
    Y = j['labels']
    clf.train(X, Y)

    with open('test.json', encoding='utf-8') as f:
        j = json.load(f)

    X = j['states']
    Y = j['labels']
    score = 0
    for coords, label in zip(X, Y):
        predicted = clf.predict(coords)
        if predicted == label:
            score += 1
    fraction_correct = float(score) / len(X)
    print("You got {} percent correct".format(100 * fraction_correct))
Ejemplo n.º 10
0
def main():
	gnb = GNB()
	with open('train.json', 'rb') as f:
		j = json.load(f)
	print("JSON file keys =", j.keys())
	X = j['states']
	Y = j['labels']
	gnb.train(X, Y)

	with open('test.json', 'rb') as f:
		j = json.load(f)
	X = j['states']
	Y = j['labels']
    
	score = 0
	for coords, label in zip(X,Y):
		predicted = gnb.predict(coords)
		print('pred=',predicted,' label=',label)
		if predicted == label:
			score += 1
	fraction_correct = float(score) / len(X)
	print("You got {} percent correct".format(100 * fraction_correct))