Ejemplo n.º 1
0
def main(args):
    if not args.extra:
        train_set, train_labels, dev_set, dev_labels = reader.load_dataset(
            args.dataset_file)

        pred_p = c.classifyPerceptron(train_set, train_labels, dev_set,
                                      args.lrate, args.max_iter)
        print("Perceptron")
        accuracy, f1, precision, recall = compute_accuracies(
            pred_p, dev_set, dev_labels)

        pred_lr = c.classifyLR(train_set, train_labels, dev_set, args.lrate,
                               args.max_iter)
        print("\nLogistic Regression")
        accuracy, f1, precision, recall = compute_accuracies(
            pred_lr, dev_set, dev_labels)

    else:
        train_set, train_labels, dev_set, dev_labels = reader.load_dataset(
            args.dataset_file, extra=True)
        predicted_labels = c.classifyEC(train_set, train_labels, dev_set,
                                        args.k)
        print("kNN, k = {}".format(args.k))
        accuracy, f1, precision, recall = compute_accuracies(
            predicted_labels, dev_set, dev_labels)
Ejemplo n.º 2
0
def main(args):
    if args.method == 'perceptron':
        train_set, train_labels, dev_set,dev_labels = reader.load_dataset(args.dataset_file)
        pred_p = c.classifyPerceptron(train_set, train_labels, dev_set, args.lrate, args.max_iter)
        print("Perceptron")
        accuracy,f1,precision,recall = compute_accuracies(pred_p, dev_labels)
    elif args.method == 'knn':
        train_set, train_labels, dev_set,dev_labels = reader.load_dataset(args.dataset_file, extra=True)
        predicted_labels = c.classifyKNN(train_set, train_labels, dev_set, args.k)
        print("kNN, k = {}".format(args.k))
        accuracy,f1,precision,recall = compute_accuracies(predicted_labels, dev_labels)
    else:
        print("Method must be either perceptron or knn!")