Ejemplo n.º 1
0
def pre_process_images(list_folders_scores, recalculate):
    print('Start pre_processing images')

    # Loading instances
    instance_pose = ClassOpenPose()

    for folder, min_score in list_folders_scores:
        for file in os.listdir(folder):
            full_path = os.path.join(folder, file)
            extension = ClassUtils.get_filename_extension(full_path)

            if extension != '.jpg':
                print('Ignoring file {0}'.format(full_path))
                continue

            file_no_ext = ClassUtils.get_filename_no_extension(full_path)
            arr_file_name = os.path.join(folder, '{0}.json'.format(file_no_ext))

            # If image recalculation
            if not recalculate:
                if os.path.isfile(arr_file_name):
                    print('File already processed {0}'.format(full_path))
                    continue

            # Processing file
            print('Processing file {0}'.format(full_path))
            image = cv2.imread(full_path)

            arr, img_draw = instance_pose.recognize_image_tuple(image)

            arr_pass = list()

            # Checking vector integrity for all elements
            # Verify there is at least one arm and one leg
            for elem in arr:
                if ClassUtils.check_vector_integrity_part(elem, min_score):
                    arr_pass.append(elem)

            # If there is more than one person with vector integrity
            if len(arr_pass) != 1:
                for elem in arr_pass:
                    pt1, pt2 = ClassUtils.get_rectangle_bounds(elem, ClassUtils.MIN_POSE_SCORE)
                    cv2.rectangle(img_draw, pt1, pt2, (0, 0, 255), 3)

                cv2.namedWindow('main_window')
                cv2.imshow('main_window', img_draw)
                print(arr)
                print(arr_pass)
                cv2.waitKey(0)
                cv2.destroyAllWindows()
                raise Exception('Invalid len: {0} file {1}'.format(len(arr_pass), full_path))

            person_arr = arr_pass[0]

            arr_str = json.dumps(person_arr.tolist())

            with open(arr_file_name, 'w') as text_file:
                text_file.write(arr_str)

    print('Done!')
def get_poses_seq(folder: str,
                  instance_nn: ClassNN,
                  instance_pose: ClassOpenPose,
                  only_json=False):
    # List all folders
    list_files = []
    for file in os.listdir(folder):
        list_files.append(os.path.join(folder, file))

    # Sorting elements
    list_files.sort()

    # Get elements
    list_desc = list()
    for path in list_files:
        ext = ClassUtils.get_filename_extension(path)
        if only_json:
            if ext != '.json':
                print('Ignoring file: {0}'.format(path))
                continue

            with open(path, 'r') as file:
                person_arr_str = file.read()
                person_arr = json.loads(person_arr_str)
        else:
            if ext != '.jpg':
                print('Ignoring file: {0}'.format(path))
                continue

            print('Processing file {0}'.format(path))
            image = cv2.imread(path)

            arr = instance_pose.recognize_image(image)

            arr_pass = []
            for person_arr in arr:
                if ClassUtils.check_vector_integrity_part(
                        person_arr, min_score):
                    arr_pass.append(person_arr)

            if len(arr_pass) != 1:
                print('Ignoring file {0} - Len arr_pass: {1}'.format(
                    path, len(arr_pass)))
                continue

            person_arr = arr_pass[0]

        result_desc = ClassDescriptors.get_person_descriptors(
            person_arr, min_score)
        list_desc.append(result_desc['fullDesc'])

    list_desc_np = np.asarray(list_desc, np.float)
    results = instance_nn.predict_model_array(list_desc_np)

    list_classes = []
    for result in results:
        list_classes.append(result['classes'])

    return list_classes
def get_sets_folder(base_folder, label, instance_pose: ClassOpenPose):
    list_files = os.listdir(base_folder)

    # Work 70, 30
    total_files = len(list_files)
    training = int(total_files * 70 / 100)

    tr_features = list()
    tr_labels = list()

    eval_features = list()
    eval_labels = list()

    for index, file in enumerate(list_files):
        full_name = os.path.join(base_folder, file)

        image = cv2.imread(full_name)

        if image is None:
            raise Exception('Error reading image: {0}'.format(full_name))

        print('Processing image: {0}'.format(full_name))
        arr = instance_pose.recognize_image(image)

        # Selecting array for list of vectors
        person_array = []
        if len(arr) == 0:
            raise Exception('Invalid len for image {0}: {1}'.format(
                full_name, len(arr)))
        elif len(arr) == 1:
            person_array = arr[0]

            integrity = ClassUtils.check_vector_integrity_part(
                person_array, min_score)

            if not integrity:
                raise Exception(
                    'Invalid integrity for points in image: {0}'.format(
                        full_name))
        else:
            found = False
            for arr_index in arr:
                integrity = ClassUtils.check_vector_integrity_part(
                    arr_index, min_score)

                if integrity:
                    found = True
                    person_array = arr_index
                    break

            if not found:
                raise Exception(
                    'Cant find a valid person array for image {0}'.format(
                        full_name))

        results = ClassDescriptors.get_person_descriptors(
            person_array, min_score)

        if index < training:
            tr_features.append(results['angles'])
            tr_labels.append(label)
        else:
            eval_features.append(results['angles'])
            eval_labels.append(label)

    return tr_features, tr_labels, eval_features, eval_labels
Ejemplo n.º 4
0
def main():
    print('Initializing main function')

    # Initializing instances
    instance_pose = ClassOpenPose()
    instance_net = ClassNN.load_from_params(model_dir)

    # Withdrawing list
    Tk().withdraw()

    # Select directory to process
    init_dir = '/home/mauricio/CNN/Images'
    options = {'initialdir': init_dir}
    dir_name = filedialog.askdirectory(**options)

    if not dir_name:
        print('Directory not selected')
    else:
        # Loading images
        list_files = os.listdir(dir_name)
        list_files.sort()

        desc_list = list()

        for file in list_files:
            full_path = os.path.join(dir_name, file)

            print('Processing image {0}'.format(full_path))
            image = cv2.imread(full_path)
            arr = instance_pose.recognize_image(image)

            arr_pass = list()
            for person_arr in arr:
                if ClassUtils.check_vector_integrity_part(
                        person_arr, min_pose_score):
                    arr_pass.append(person_arr)

            if len(arr_pass) != 1:
                print('Invalid len {0} for image {1}'.format(
                    len(arr_pass), full_path))
                continue
            else:
                result_des = ClassDescriptors.get_person_descriptors(
                    arr_pass[0], min_pose_score)
                descriptor_arr = result_des['fullDesc']

                # Add descriptors to list
                desc_list.append(descriptor_arr)

        # Convert to numpy array
        print('Total poses: {0}'.format(len(desc_list)))

        # Transform list and predict
        desc_list_np = np.asarray(desc_list, dtype=np.float)
        print('ndim pose list: {0}'.format(desc_list_np.ndim))

        list_classes = list()
        predict_results = instance_net.predict_model_array(desc_list_np)
        for result in predict_results:
            list_classes.append(result['classes'])

        print('Predict results: {0}'.format(list_classes))
        print('Classes label: {0}'.format(instance_net.label_names))

        print('Done!')
Ejemplo n.º 5
0
def main():
    print('Initializing main function')

    # Initializing instances
    instance_pose = ClassOpenPose()

    # Withdrawing tkinter
    Tk().withdraw()

    # Loading folder images
    folder_images = '/home/mauricio/PosesProcessed/folder_images'
    folder_images_draw = '/home/mauricio/PosesProcessed/folder_images_draw'
    pose_base_folder = '/home/mauricio/Pictures/PosesNew'

    # Reading all elements in list
    list_files = sorted(os.listdir(folder_images_draw))

    cv2.namedWindow('main_window', cv2.WND_PROP_AUTOSIZE)
    index = 0

    while True:
        file = list_files[index]
        full_path_draw = os.path.join(folder_images_draw, file)

        image_draw = cv2.imread(full_path_draw)
        cv2.imshow('main_window', image_draw)

        key = cv2.waitKey(0)
        print('Key pressed: {0}'.format(key))
        if key == 52:
            # Left arrow
            index -= 1
            if index < 0:
                index = 0
        elif key == 54:
            # Right arrow
            index += 1
            if index == len(list_files):
                index = len(list_files) - 1
        elif key == 27:
            # Esc
            # Ask are you sure question
            result = messagebox.askyesno("Exit", "Are you sure to exit?")
            print(result)

            if result:
                break
        elif key == 115:
            # Check JSON file
            image_full_path = os.path.join(folder_images, file)
            json_path = image_full_path.replace(".jpg", ".json")

            if not os.path.exists(json_path):
                # Generating JSON array
                image = cv2.imread(image_full_path)
                arr = instance_pose.recognize_image(image).tolist()
            else:
                with open(json_path, 'r') as file:
                    arr_str = file.read()
                    arr = json.load(arr_str)

            arr_pass = []
            min_score = 0.05

            # Drawing candidates
            for elem in arr:
                if ClassUtils.check_vector_integrity_part(elem, min_score):
                    arr_pass.append(elem)

            if len(arr_pass) == 0:
                print('Arr pass size equals to zero')
                continue
            elif len(arr_pass) == 1:
                selection_int = 0
                person_arr = arr_pass[0]
                arr_str = json.dumps(person_arr)
            else:
                # Draw rectangles for all candidates
                for index_elem, person_arr in enumerate(arr_pass):
                    pt1, pt2 = ClassUtils.get_rectangle_bounds(person_arr, min_score)
                    cv2.rectangle(image_draw, pt1, pt2, (0, 0, 255), 5)

                    font = cv2.FONT_HERSHEY_SIMPLEX
                    bottom_left_corner = pt2
                    font_scale = 0.6
                    font_color = (255, 255, 255)
                    line_type = 2

                    cv2.putText(image_draw, '{0}'.format(index_elem),
                                bottom_left_corner,
                                font,
                                font_scale,
                                font_color,
                                line_type)

                while True:
                    print('Select image to put')
                    cv2.imshow('main_window', image_draw)
                    wait_key = cv2.waitKey(0)

                    print('Wait Key: {0}'.format(wait_key))
                    selection_int = ClassUtils.key_to_number(wait_key)

                    print('Selection: {0}'.format(selection_int))
                    if 0 <= selection_int < len(arr_pass):
                        break

                person_arr = arr_pass[selection_int]
                arr_str = json.dumps(person_arr)

            # Getting new image using numpy slicing
            pt1, pt2 = ClassUtils.get_rectangle_bounds(person_arr, min_score)
            image_draw = image_draw[pt1[1]:pt2[1], pt1[0]:pt2[0]]

            # Selecting directory after processing image!
            init_dir = '/home/mauricio/Pictures/PosesNew'
            options = {'initialdir': init_dir}
            dir_name = filedialog.askdirectory(**options)

            if not dir_name:
                print('Directory not selected')
            else:
                new_name = ClassUtils.get_filename_no_extension(file)
                new_name = "{0}_{1}.{2}".format(new_name, selection_int, 'jpg')

                new_image_path = os.path.join(dir_name, new_name)
                new_json_path = os.path.join(dir_name, new_name.replace('.jpg', '.json'))

                cv2.imwrite(new_image_path, image_draw)
                with open(new_json_path, 'w') as file:
                    file.write(arr_str)

                print('File copied from {0} to {1}'.format(full_path_draw, new_image_path))
                index += 1
                if index == len(list_files):
                    index = len(list_files) - 1

    cv2.destroyAllWindows()
    print('Done!')