Ejemplo n.º 1
0
def entropy_condition_is_valid(cd,t,outdir,dx):

    index_t = t
    if index_t>0 :
        #entropy at t=0 doesn't exist
        (x,) = np.nonzero(np.all([h_1(cd)>dry_tolerance, h_2(cd)>dry_tolerance],axis=0))
        len_x = len(x)
        delta_t = Solution(index_t, path=outdir,read_aux=True).t - Solution(index_t-1, path=outdir,read_aux=True).t
        delta_x = dx
        entropy_cond = np.zeros(min(h_1(cd).shape, h_2(cd).shape))
        for index_x in range(len_x-1):
            index_x_next = index_x + 1
            entropy_flux_actual = entropy_flux(cd)[index_x]
            entropy_flux_prev = entropy_flux(cd)[index_x_next]
            entropy_next=entropy(cd)[index_x]
            entropy_actual=entropy(Solution(index_t-1, path=outdir,read_aux=True))[index_x]

            entropy_cond[index_x]= entropy_next-entropy_actual + (delta_t/delta_x)*(entropy_flux_actual-entropy_flux_prev)


        #print(eigenspace_velocity(cd))

        return entropy_cond
    else :
        return([0]*500)
Ejemplo n.º 2
0
def test_forestclaw_input():
    """Simple test to read in a ForestClaw ASCII file"""

    # Create test solution
    x = geometry.Dimension(0.0, 1.0, 100, name='x')
    state = State(geometry.Patch(x), 1)
    state.q = numpy.zeros((1, x.num_cells))
    sol = Solution(state, geometry.Domain(x))

    # Test specific extensions to Patch
    sol.domain.patches[0].block_number = 2
    sol.domain.patches[0].mpi_rank = 2

    # Create temporary directory to write to and read from
    try:
        temp_path = tempfile.mkdtemp()

        # Real test
        sol.write(0, path=temp_path)
        read_sol = Solution(0, path=temp_path,
                                       file_format='forestclaw')
        nose.tools.assert_equal(sol, read_sol,
                                "ForestClaw IO read/write test failed, " +
                                "solutions are not equal.")
    except:
        shutil.copy(os.path.join(temp_path, 'fort.q0000'), os.getcwd())
    finally:
        shutil.rmtree(temp_path)
Ejemplo n.º 3
0
def create_resolution_plot(base_path,
                           method=2,
                           resolutions=[64, 128, 256, 512]):

    # Extract data from plot settings dict
    x_limits = plot_settings[base_path]["xlim"]
    y_limits = plot_settings[base_path]["ylim"]
    frame = plot_settings[base_path]["frame"]
    locations = plot_settings[base_path]["locs"]

    # Create figures and axes
    fig_list = [plt.figure() for n in xrange(3)]
    axes_list = [fig.add_subplot(111) for fig in fig_list]

    for (n, resolution) in enumerate(resolutions):
        # Load solution and extract data
        path = os.path.join(data_path, base_path,
                            'ml_e%s_n%s_output' % (method, resolution))
        x, b, h, eta, u = extract_data(
            Solution(frame, path=path, read_aux=True))

        # Plot data
        axes_list[0].plot(x, eta[0], styles[n], label='_nolegend_')
        axes_list[0].plot(x, eta[1], styles[n], label="N = %s" % resolution)
        axes_list[1].plot(x, u[0], styles[n], label="N = %s" % resolution)
        axes_list[2].plot(x, u[1], styles[n], label="N = %s" % resolution)

    # Plot reference solutions
    path = os.path.join(data_path, base_path,
                        'ml_e%s_n%s_output' % (base_method, base_resolution))
    x, b, h, eta, u = extract_data(Solution(frame, path=path, read_aux=True))
    axes_list[0].plot(x, eta[0], 'k', label='_nolegend_')
    axes_list[0].plot(x, eta[1], 'k', label='Base')
    # axes_list[0].plot(x,b,'k:',label="bathymetry")
    axes_list[1].plot(x, u[0], 'k', label='Base')
    axes_list[2].plot(x, u[1], 'k', label='Base')

    # Set legend, title and axis labels
    for (n, axes) in enumerate(axes_list):
        axes.set_xlim(x_limits)
        axes.set_ylim(y_limits[n])
        axes.set_title("Comparison using the %s method" %
                       eigen_labels[method - 1])
        axes.set_xlabel('x')
        axes.set_ylabel(y_labels[n])
        axes.legend(loc=locations[n])

    out_path = os.path.join(os.curdir, 'comparison_plots', base_path)
    if not os.path.exists(out_path):
        os.makedirs(out_path)
    fig_list[0].savefig(os.path.join(out_path, 'surfaces_m%s.pdf' % method))
    fig_list[1].savefig(os.path.join(out_path, 'u_top_m%s.pdf' % method))
    fig_list[2].savefig(os.path.join(out_path, 'u_bottom_m%s.pdf' % method))
Ejemplo n.º 4
0
def error(out1, out2):

    frame1 = frame(out1)
    frame2 = frame(out2)

    sol1 = Solution()
    read(sol1, frame1, path=out1)

    sol2 = Solution()
    read(sol2, frame2, path=out2)

    return abs(sol2.q[0, :] - sol1.q[0, :]).max()
Ejemplo n.º 5
0
    def entropy_condition_is_valid(cd):

        index_t = int(cd.frameno)
        if index_t > 0:
            #entropy at t=0 doesn't exist
            (x, ) = np.nonzero(
                np.all([h_1(cd) > dry_tolerance,
                        h_2(cd) > dry_tolerance],
                       axis=0))
            len_x = len(x)
            delta_t = Solution(
                index_t, path=plotdata.outdir, read_aux=True).t - Solution(
                    index_t - 1, path=plotdata.outdir, read_aux=True).t
            delta_x = cd.dx
            entropy_cond = np.zeros(min(h_1(cd).shape, h_2(cd).shape))
            for index_x in range(len_x - 1):
                index_x_next = index_x + 1
                entropy_flux_actual = entropy_flux(cd)[index_x]
                entropy_flux_prev = entropy_flux(cd)[index_x_next]
                entropy_next = entropy(cd)[index_x]
                entropy_actual = entropy(
                    Solution(index_t - 1, path=plotdata.outdir,
                             read_aux=True))[index_x]

                entropy_cond[index_x] = entropy_next - entropy_actual + (
                    delta_t / delta_x) * (entropy_flux_actual -
                                          entropy_flux_prev)
                # if index_t == 67 or index_t==68 or index_t==69 or index_t==70 :
                #     print('=======================================')
                #     print(entropy_flux_actual)
                #     print(entropy_flux_prev)
                #     print(delta_t/delta_x)
                #     print(entropy)
                #     print(entropy_prev)
                #     print(entropy_cond)
            return entropy_cond
        else:
            return ([0] * 500)
Ejemplo n.º 6
0
def create_convergence_plot(base_path,
                            eigen_methods=[1, 2, 3, 4],
                            resolutions=[64],
                            table_file=None,
                            latex_tables=False):
    r"""Create plots comparing each eigenspace method 

    """

    # Parameters
    fields = 4
    plot_titles = [
        "Top Layer Depths", "Top Layer Velocities", "Bottom Layer Depths",
        "Bottom Layer Velocities"
    ]
    file_names = [
        'convergence_top_surface', 'convergence_bot_surface',
        'convergence_top_velocity', 'convergence_bot_velocity'
    ]

    # Extract data from plot settings dict
    frame = plot_settings[base_path]["frame"]

    # Calculate error
    # error[field,eigen_method,resolution]
    error = np.zeros((fields, len(eigen_methods), len(resolutions)))

    # Extract base solution
    path = os.path.join(data_path, base_path,
                        'ml_e%s_n%s_output' % (4, base_resolution))
    x_base,b_base,h_base,eta_base,u_base = \
                        extract_data(Solution(frame,path=path,read_aux=True))

    # Calculate errors
    for (m, method) in enumerate(eigen_methods):
        for (n, resolution) in enumerate(resolutions):

            # Load solution and extract data
            path = os.path.join(data_path, base_path,
                                'ml_e%s_n%s_output' % (method, resolution))
            x, b, h, eta, u = extract_data(
                Solution(frame, path=path, read_aux=True))

            error[0, m, n] = norm(h[0][:] - np.interp(x, x_base, h_base[0][:]))
            error[1, m, n] = norm(h[1][:] - np.interp(x, x_base, h_base[1][:]))
            error[2, m, n] = norm(u[0][:] - np.interp(x, x_base, u_base[0][:]))
            error[3, m, n] = norm(u[1][:] - np.interp(x, x_base, u_base[1][:]))

    # Calculate order
    order = [[] for i in xrange(fields)]
    for field in xrange(fields):
        for (m, method) in enumerate(eigen_methods):
            order[field].append(-polyfit(np.log(resolutions),
                                         np.log(error[field, m, :]), 1)[1])

    # Create figures and axes
    figs_list = [plt.figure() for n in xrange(fields)]
    axes_list = [fig.add_subplot(111) for fig in figs_list]

    # Plot errors
    for (m, method) in enumerate(eigen_methods):
        for i in xrange(fields):
            # import pdb; pdb.set_trace()
            axes_list[i].loglog(resolutions,
                                error[i, m, :],
                                styles[m],
                                label=eigen_labels[m])

    # Set plot characteristics
    for (i, axes) in enumerate(axes_list):
        axes.legend()
        axes.set_title(plot_titles[i])
        axes.set_xlim([resolutions[0] - 8, resolutions[-1] + 32])
        axes.set_xlabel("Number of Cells")
        axes.set_ylabel("L^2 Error")
        axes.set_xticks(resolutions)
        axes.set_xticklabels(resolutions)

    # Save figures
    out_path = os.path.join(os.curdir, 'comparison_plots', base_path)
    if not os.path.exists(out_path):
        os.makedirs(out_path)
    for (i, fig) in enumerate(figs_list):
        fig.savefig(os.path.join(out_path, '.'.join((file_names[i], 'pdf'))))

    # Make table, latex is saved to a file
    if table_file:
        table_file.write(
            make_table(eigen_labels, plot_titles, order, base_path,
                       latex_tables))
        table_file.write("\n" * 2)
    else:
        print make_table(eigen_labels, plot_titles, order, base_path,
                         latex_tables)
Ejemplo n.º 7
0
def plot_all(values_to_plot,nb_test,nb_frames,format='ascii',msgfile='',**kargs):

    # ============================
    # = Create Initial Condition =
    # ============================
    # Construct output and plot directory paths
    name = 'multilayer/dry_state_rarefaction_test'
    prefix = 'ml_e%s_m%s_fix_m%s_vel' % (2, 500, values_to_plot[0])
    prefix = "".join((prefix, "F"))
    outdir,plotdir,log_path = runclaw.create_output_paths(name, prefix, **kargs)

    script_dir = os.path.dirname(__file__)
    plots_dir = os.path.join(script_dir, 'All_plots/')
    if not os.path.isdir(plots_dir):
        os.makedirs(plots_dir)

    # Set physics data
    global g
    g=Solution(0, path=outdir,read_aux=True).state.problem_data['g']
    global manning
    manning=Solution(0, path=outdir,read_aux=True).state.problem_data['manning']
    global rho_air
    rho_air=Solution(0, path=outdir,read_aux=True).state.problem_data['rho_air']
    global rho
    rho=Solution(0, path=outdir,read_aux=True).state.problem_data['rho']
    global r
    r=Solution(0, path=outdir,read_aux=True).state.problem_data['r']
    global one_minus_r
    one_minus_r=Solution(0, path=outdir,read_aux=True).state.problem_data['one_minus_r']
    global num_layers
    num_layers=Solution(0, path=outdir,read_aux=True).state.problem_data['num_layers']
    global b
    b = Solution(0, path=outdir,read_aux=True).state.aux[bathy_index,:]

    # Set method parameters, this ensures it gets to the Fortran routines
    eigen_method=Solution(0, path=outdir,read_aux=True).state.problem_data['eigen_method']
    dry_tolerance=Solution(0, path=outdir,read_aux=True).state.problem_data['dry_tolerance']
    inundation_method=Solution(0, path=outdir,read_aux=True).state.problem_data['inundation_method']
    entropy_fix=Solution(0, path=outdir,read_aux=True).state.problem_data['entropy_fix']
    #num_cells=Solution(0,path=outdir,read_aux=True).state.problem_data['num_cells'] #does not work
    num_cells=500

    plt.clf()
    # Load bathymetery
    #b = Solution(0, path=outdir,read_aux=True).state.aux[bathy_index,:]
    # Load gravitation
    #g = Solution(0, path=outdir,read_aux=True).state.problem_data['g']
    # Load one minus r
    #one_minus_r=Solution(0, path=outdir,read_aux=True).state.problem_data['one_minus_r']

    xlimits=[]

    for t in range(nb_frames):
        #Depths
        plotdata=ClawPlotData()

        plotfigure_depths = plotdata.new_plotfigure(name='Depths')
        plotfigure_depths.show=True
        plotaxes_depths = plotfigure_depths.new_plotaxes()
        plotaxes_depths.title = "Depths"
        plotaxes_depths.xlimits = xlimits
        plotaxes_depths.ylimits = 'auto'
        # fig2 = plt.figure(num=2)
        # plt.xlabel('x(m)')
        # plt.ylabel('Depths')
        # plt.title('Solution at t = %3.5f' % t)
        # plt.ylim(-1.1, 0.1)

        #Entropy
        fig7 = plt.figure(num=2)
        plt.xlabel('x(m)')
        plt.ylabel('Entropy')
        plt.title('Entropy as t = %3.5f' % t)

        #Composite Froude number
        fig12 = plt.figure(num=12)
        plt.xlabel('x(m)')
        plt.ylabel('Composite Froude number')
        plt.title('Composite Froude number at t = %3.5f' % t)
        plotdata.outdir = outdir
        plotdata.plotdir = plots_dir
        print(plotdir)

        Solutions_=[]
        x = [k/1000 for k in range(0,1000,2)]
        print('Plot the figures at frame %s' % t)
        for i in range(nb_test):
            # Construct output and plot directory paths
            name = 'multilayer/dry_state_rarefaction_test'
            prefix = 'ml_e%s_m%s_fix_m%s_vel' % (eigen_method, num_cells, values_to_plot[i])

            if entropy_fix:
                prefix = "".join((prefix, "T"))
            else:
                prefix = "".join((prefix, "F"))
            outdir,plotdir,log_path = runclaw.create_output_paths(name, prefix, **kargs)

            #exec("cd_"+str(i)+"='"Solution(t,path=outdir,read_aux=True)+"'")
            cd = Solution(t,path=outdir,read_aux=True)
            Solutions_ += [Solution(t,path=outdir,read_aux=True)]

            #=====Plotting=====
            plot_color='g'
            plot_style='-'
            if values_to_plot[i] >= 3.9 :
                if values_to_plot[i] >= 8.0 :
                    plot_color = 'r'
                    plot_style = ':'
                else :
                    plot_color = 'b'
                    plot_style = '-.'
            #depth
            #plotdata.setplot = setplot
            plotdata.format = format
            plotdata.msgfile = msgfile
            plotitem_depths = plotaxes_depths.new_plotitem(plot_type='1d')
            plotitem_depths.plot_var = eta_1
            plotitem_depths.plotstyle='k'
            plotitem_depths.color=plot_color
            plotitem_depths.show=True
            # plt.figure(num=2)
            # plt.plot(bathy(cd),'k')
            # plt.plot(eta_1(cd),'k',color=plot_color,linestyle=plot_style)
            # plt.plot(eta_2(cd),'k',color=plot_color,linestyle=plot_style)
            # depthname = 'frame00%sfig1002.png' % t
            # plt.savefig(plots_dir + depthname)
            #plt.close()

            #Entropy
            # plt.figure(num=7)
            # plt.plot(entropy(cd),'k',color=plot_color,linestyle=plot_style)
            # entropyname = 'frame00%sfig1007.png' % t
            # plt.savefig(plots_dir + entropyname)
            #
            # #Composite Froude number
            # plt.figure(num=12)
            # plt.plot(composite_Froude_nb(cd),'k',color=plot_color,linestyle=plot_style)
            # froudename = 'frame00%sfig1012.png' % ( t )
            # plt.savefig(plots_dir + froudename)
            #plt.close()

        plt.close('all')
Ejemplo n.º 8
0
def kappa(cd):
    return Solution(cd.frameno,path=outdir,read_aux=True).state.aux[kappa_index,:]
Ejemplo n.º 9
0
def plot_contour(data_dir="./_output",
                 out_dir='./',
                 num_layers=2,
                 num_frames=1000,
                 ref_lines=[-130e3, -30e3],
                 color=True):
    """Plot a contour plot of a shelf based simluation"""

    # Create plot data
    plot_data = data.ClawPlotData()
    plot_data.outdir = data_dir

    # Read in bathymetry
    sol = [Solution(0, path=data_dir, read_aux=True)]
    b = sol[0].state.aux[0, :]

    # Extract x coordinates, this assumes that these do not change through the
    # simluation (they should not)
    x = sol[0].state.grid.dimensions[0].centers

    # Read in all solutions
    print "Reading in solutions..."
    for frame in xrange(1, num_frames):
        try:
            sol.append(Solution(frame, path=data_dir))
        except IOError:
            # We have reached the last frame before given num_frames reached
            num_frames = frame - 1
            break
    print "Found %s frames to plot." % num_frames

    # Create plotting arrays
    print "Constructing plotting variables..."
    eta = np.ndarray((num_frames, num_layers, len(x)))
    t = np.ndarray((num_frames))
    for frame in xrange(num_frames):
        # Append data to eta and t lists
        t[frame] = sol[frame].t / 3600.0

        # Calculate from the bottom up
        layer_index = 2 * (num_layers - 1)
        eta[frame,
            num_layers - 1, :] = sol[frame].q[layer_index, :] / rho[-1] + b

        # Calculate the rest of the layers
        for layer in xrange(num_layers - 2, -1, -1):
            layer_index = 2 * layer
            eta[frame,
                layer, :] = sol[frame].q[layer_index, :] / rho[layer] + eta[
                    frame, layer + 1, :]

    # Create mesh grid for plot
    X, T = np.meshgrid(x, t)

    # Plot the contours of each layer
    clines = np.linspace(.025, .4, 8)
    title = ['top', 'internal']
    print "Creating plots..."
    fig = plt.figure(figsize=[10, 8])
    for layer in xrange(num_layers):
        axes = fig.add_subplot(1, num_layers, layer + 1)

        # Plot positive and negative contours
        eta_plot = eta[:, layer, :] - eta_init[layer]
        plot = axes.contour(X, T, eta_plot, clines, colors='r')
        plot = axes.contour(X, T, eta_plot, -clines, colors='b')

        for ref_line in ref_lines:
            axes.plot([ref_line, ref_line], [0, 2], 'k:')

        # X ticks and labels
        axes.set_xticks([-300e3, -200e3, -100e3, -30e3])
        axes.set_xticklabels([300, 200, 100, 30], fontsize=15)
        axes.set_xlabel("Kilometers offshore", fontsize=15)
        axes.set_xlim([-200e3, 0.0])

        # First plot from left to right, write y ticks
        if layer == 0:
            plt.yticks(fontsize=15)
            axes.set_ylabel("Hours", fontsize=20)
        else:
            # Remove tick labels
            axes.set_yticklabels(['' for label in axes.get_yticklabels()])

        axes.set_title("Contours of %s surface" % title[layer], fontsize=15)

    file_name = os.path.join(out_dir, "contour.png")
    print "Writing out to %s" % file_name
    plt.savefig(file_name)
Ejemplo n.º 10
0
def setplot(plotdata,rho,dry_tolerance):
#--------------------------
    
    """ 
    Specify what is to be plotted at each frame.
    Input:  plotdata, an instance of pyclaw.plotters.data.ClawPlotData.
    Output: a modified version of plotdata.
    
    """
    
    
    # Load bathymetry
    b = Solution(0,path=plotdata.outdir,read_aux=True).state.aux[bathy_index,:]

    def bathy(cd):
        return b
    
    def kappa(cd):
        return Solution(cd.frameno,path=plotdata.outdir,read_aux=True).state.aux[kappa_index,:]

    def wind(cd):
        return Solution(cd.frameno,path=plotdata.outdir,read_aux=True).state.aux[wind_index,:]
    
    def h_1(cd):
        return cd.q[0,:] / rho[0]
    
    def h_2(cd):
        return cd.q[2,:] / rho[1]
        
    def eta_2(cd):
        return h_2(cd) + bathy(cd)
        
    def eta_1(cd):
        return h_1(cd) + eta_2(cd)
        
    def u_1(cd):
        index = np.nonzero(h_1(cd) > dry_tolerance)
        u_1 = np.zeros(h_1(cd).shape)
        u_1[index] = cd.q[1,index] / cd.q[0,index]
        return u_1
        
    def u_2(cd):
        index = np.nonzero(h_2(cd) > dry_tolerance)
        u_2 = np.zeros(h_2(cd).shape)
        u_2[index] = cd.q[3,index] / cd.q[2,index]
        return u_2
    
    
    def jump_afteraxes(current_data):
        # Plot position of jump on plot
        mpl.hold(True)
        mpl.plot([0.5,0.5],[-10.0,10.0],'k--')
        mpl.plot([0.0,1.0],[0.0,0.0],'k--')
        mpl.hold(False)
        mpl.title('')

    plotdata.clearfigures()  # clear any old figures,axes,items data
    
    # Window Settings
    xlimits = [0.0,10.0]
    ylimits_depth = [-10.5,0.5]
    
    # ========================================================================
    #  Function for doing depth drawing
    # ========================================================================
    def fill_items(plotaxes):
        # Top layer
        plotitem = plotaxes.new_plotitem(plot_type='1d_fill_between')
        plotitem.plot_var = eta_1
        plotitem.plot_var2 = eta_2
        plotitem.color = plot.top_color
        plotitem.plotstyle = plot.surface_linestyle
        plotitem.show = True
    
        # Bottom Layer
        plotitem = plotaxes.new_plotitem(plot_type='1d_fill_between')
        plotitem.plot_var = eta_2
        plotitem.plot_var2 = bathy
        plotitem.color = plot.bottom_color
        plotitem.plotstyle = plot.internal_linestyle
        plotitem.show = True
    
        # Plot bathy
        plotitem = plotaxes.new_plotitem(plot_type='1d_plot')
        plotitem.plot_var = bathy
        plotitem.plotstyle = plot.bathy_linestyle
        plotitem.show = True
            
        # Plot line in between layers
        plotitem = plotaxes.new_plotitem(plot_type='1d_plot')
        plotitem.plot_var = eta_2
        plotitem.color = 'k'
        plotitem.plotstyle = plot.internal_linestyle
        plotitem.show = True
    
        # Plot line on top layer
        plotitem = plotaxes.new_plotitem(plot_type='1d_plot')
        plotitem.plot_var = eta_1
        plotitem.color = 'k'
        plotitem.plotstyle = plot.surface_linestyle
        plotitem.show = True


    # ========================================================================
    #  Full Depths
    # ========================================================================
    plotfigure = plotdata.new_plotfigure(name='Full Depths',figno=102)
    plotfigure.show = True
    
    def bathy_axes(cd):
        # km_labels(cd)
        mpl.xlabel('Depth (m)')
        mpl.ylabel('x (m)')
        mpl.title("Depths at t=%2.1f" % cd.t)
        # mpl.xticks([-300e3,-200e3,-100e3,-30e3],[300,200,100,30],fontsize=15)
        # mpl.xlabel('km')
    
    plotaxes = plotfigure.new_plotaxes()
    plotaxes.title = 'Full Depths'
    plotaxes.xlimits = xlimits
    plotaxes.ylimits = ylimits_depth
    plotaxes.afteraxes = bathy_axes
    
    fill_items(plotaxes)

    # Parameters used only when creating html and/or latex hardcopy
    # e.g., via pyclaw.plotters.frametools.printframes:

    plotdata.printfigs = True                # print figures
    plotdata.print_format = 'png'            # file format
    # plotdata.print_framenos = [0,25,50]      # list of frames to print
    plotdata.print_framenos = 'all'          # list of frames to print
    plotdata.print_fignos = 'all'            # list of figures to print
    plotdata.html = True                     # create html files of plots?
    plotdata.html_homelink = '../README.html'   # pointer for top of index
    plotdata.latex = True                    # create latex file of plots?
    plotdata.latex_figsperline = 2           # layout of plots
    plotdata.latex_framesperline = 1         # layout of plots
    plotdata.latex_makepdf = False           # also run pdflatex?

    return plotdata
Ejemplo n.º 11
0
def plot_all(values_to_plot,nb_test,nb_frames,**kargs):

    # ============================
    # = Create Initial Condition =
    # ============================
    # Construct output and plot directory paths
    name = 'multilayer/dry_state_rarefaction_test'
    prefix = 'ml_e%s_m%s_fix_m%s_vel' % (2, 500, values_to_plot[0])
    prefix = "".join((prefix, "F"))
    outdir,plotdir,log_path = runclaw.create_output_paths(name, prefix, **kargs)

    script_dir = os.path.dirname(__file__)
    plots_dir = os.path.join(script_dir, 'All_plots/')
    if not os.path.isdir(plots_dir):
        os.makedirs(plots_dir)

    # Set physics data
    global g
    g=Solution(0, path=outdir,read_aux=True).state.problem_data['g']
    global manning
    manning=Solution(0, path=outdir,read_aux=True).state.problem_data['manning']
    global rho_air
    rho_air=Solution(0, path=outdir,read_aux=True).state.problem_data['rho_air']
    global rho
    rho=Solution(0, path=outdir,read_aux=True).state.problem_data['rho']
    global r
    r=Solution(0, path=outdir,read_aux=True).state.problem_data['r']
    global one_minus_r
    one_minus_r=Solution(0, path=outdir,read_aux=True).state.problem_data['one_minus_r']
    global num_layers
    num_layers=Solution(0, path=outdir,read_aux=True).state.problem_data['num_layers']
    global b
    b = Solution(0, path=outdir,read_aux=True).state.aux[bathy_index,:]


    # Set method parameters, this ensures it gets to the Fortran routines
    eigen_method=Solution(0, path=outdir,read_aux=True).state.problem_data['eigen_method']
    dry_tolerance=Solution(0, path=outdir,read_aux=True).state.problem_data['dry_tolerance']
    inundation_method=Solution(0, path=outdir,read_aux=True).state.problem_data['inundation_method']
    entropy_fix=Solution(0, path=outdir,read_aux=True).state.problem_data['entropy_fix']
    #num_cells=Solution(0,path=outdir,read_aux=True).state.problem_data['num_cells'] #does not work
    num_cells=500

    import clawpack.pyclaw as pyclaw
    global x
    x = pyclaw.Dimension(0.0, 1.0, num_cells)
    print()

    plt.clf()
    # Load bathymetery
    #b = Solution(0, path=outdir,read_aux=True).state.aux[bathy_index,:]
    # Load gravitation
    #g = Solution(0, path=outdir,read_aux=True).state.problem_data['g']
    # Load one minus r
    #one_minus_r=Solution(0, path=outdir,read_aux=True).state.problem_data['one_minus_r']

    xlimits_zoom=(200, 300) #Little problem, need to check that
    ylimits=(-1.1,0.1)

    for t in range(nb_frames):
        #Depths
        # plotfigure_depths = cpd.new_plotfigure(name='Depths')
        # plotfigure_depths.show=True
        # plotaxes_depths = plotfigure_depths.new_plotaxes()
        # plotaxes_depths.title = "Depths"
        # plotaxes_depths.xlimis = xlimits
        # plotaxes_depths.ylimits = 'auto'
        fig2 = plt.figure(num=2)
        plt.xlabel('x(m)')
        plt.ylabel('Depths')
        plt.title('Solution at t = %3.5f' % t)
        plt.ylim(ylimits)

        #Depth zoom
        fig3 = plt.figure(num=3)
        plt.xlabel('x(m)')
        plt.ylabel('Depths')
        plt.title('Solution zoomed at t = %3.5f' % t )
        plt.xlim(xlimits_zoom)
        plt.ylim(ylimits)

        #Entropy
        fig7 = plt.figure(num=7)
        plt.xlabel('x(m)')
        plt.ylabel('Entropy')
        plt.title('Entropy as t = %3.5f' % t)

        #Entropy flux
        fig8 = plt.figure(num=8)
        plt.xlabel('x(m)')
        plt.ylabel('Entropy flux')
        plt.title('Entropy flux at t = %3.5f' % t)

        #Entropy condition
        fig9 = plt.figure(num=9)
        plt.xlabel('x(m)')
        plt.ylabel('Value similar to entropy')
        plt.title('Entropy condition at t = %3.5f' % t)

        #Composite Froude number
        fig12 = plt.figure(num=12)
        plt.xlabel('x(m)')
        plt.ylabel('Composite Froude number')
        plt.title('Composite Froude number at t = %3.5f' % t)

        print('Plot the figures at frame %s' % t)
        for i in range(nb_test):
            # Construct output and plot directory paths
            name = 'multilayer/dry_state_rarefaction_test'
            prefix = 'ml_e%s_m%s_fix_m%s_vel' % (eigen_method, num_cells, values_to_plot[i])

            if entropy_fix:
                prefix = "".join((prefix, "T"))
            else:
                prefix = "".join((prefix, "F"))
            outdir,plotdir,log_path = runclaw.create_output_paths(name, prefix, **kargs)
            cd = Solution(t,path=outdir,read_aux=True)

            #=====Plotting=====
            plot_color='g'
            plot_style='-'
            if values_to_plot[i] >= 3.9 :
                if values_to_plot[i] >= 8.0 :
                    plot_color = 'r'
                    plot_style = ':'
                else :
                    plot_color = 'b'
                    plot_style = '-.'            #plt.close()

            #legend_to_show='velocity: ' + str(values_to_plot[i])
            legend_to_show='Velocity: ' + str(values_to_plot[i])
            #Depth
            # plotitem_depths = plotaxes_depths.new_plotitem(plot_type='1d')
            # plotitem_depths.plot_var = Solutions_[i]
            # plotitem_depths.plotstyle='k'
            # plotitem_depths.color=plot_color
            # plotitem_depths.show=True
            plt.figure(num=2)
            plt.plot(bathy(cd),'k')
            plt.plot(eta_1(cd),'k',color=plot_color,linestyle=plot_style,label=legend_to_show )
            plt.plot(eta_2(cd),'k',color=plot_color,linestyle=plot_style)
            depthname = 'frame00%sfig1002.png' % t
            plt.legend()
            plt.savefig(plots_dir + depthname)

            #Depth zoom
            plt.figure(num=3)
            plt.plot(bathy(cd),'k')
            plt.plot(eta_1(cd),'k',color=plot_color,linestyle=plot_style,label=legend_to_show)
            plt.plot(eta_2(cd),'k',color=plot_color,linestyle=plot_style)
            depthzoomname = 'frame00%sfig1003.png' % t
            plt.legend()
            plt.savefig(plots_dir + depthzoomname)

            #Entropy
            plt.figure(num=7)
            plt.plot(entropy(cd),'k',color=plot_color,linestyle=plot_style,label=legend_to_show)
            entropyname = 'frame00%sfig1007.png' % t
            plt.legend()
            plt.savefig(plots_dir + entropyname)

            #Entropy flux
            plt.figure(num=8)
            plt.plot(entropy_flux(cd),'k',color=plot_color,linestyle=plot_style,label=legend_to_show)
            entropyfluxname='frame00%sfig1008.png' % t
            plt.legend()
            plt.savefig(plots_dir + entropyfluxname)

            #Entropy condition
            plt.figure(num=9)
            plt.plot(entropy_condition_is_valid(cd,t,outdir,x.delta),'k',color=plot_color,linestyle=plot_style,label=legend_to_show)
            entropycondname='frame00%sfig1009.png' % t
            plt.legend()
            plt.savefig(plots_dir + entropycondname)

            #Composite Froude number
            plt.figure(num=12)
            plt.plot(composite_Froude_nb(cd),'k',color=plot_color,linestyle=plot_style,label=legend_to_show)
            froudename = 'frame00%sfig1012.png' % ( t )
            plt.legend()
            plt.savefig(plots_dir + froudename)
            #plt.close()

        plt.close('all')
Ejemplo n.º 12
0
def setplot(plotdata, xlower, xupper, rho, dry_tolerance):
    #--------------------------
    """ 
    Specify what is to be plotted at each frame.
    Input:  plotdata, an instance of pyclaw.plotters.data.ClawPlotData.
    Output: a modified version of plotdata.
    
    """

    # Load bathymetry
    b = Solution(0, path=plotdata.outdir,
                 read_aux=True).state.aux[bathy_index, :]

    def hurricane_afterframe(current_data):
        # Draw line for eye of hurricane
        pass

    def bathy(cd):
        return b

    def kappa(cd):
        return Solution(cd.frameno, path=plotdata.outdir,
                        read_aux=True).state.aux[kappa_index, :]

    def wind(cd):
        return Solution(cd.frameno, path=plotdata.outdir,
                        read_aux=True).state.aux[wind_index, :]

    def h_1(cd):
        return cd.q[0, :] / rho[0]

    def h_2(cd):
        return cd.q[2, :] / rho[1]

    def eta_2(cd):
        return h_2(cd) + bathy(cd)

    def eta_1(cd):
        return h_1(cd) + eta_2(cd)

    def u_1(cd):
        index = np.nonzero(h_1(cd) > dry_tolerance)
        u_1 = np.zeros(h_1(cd).shape)
        u_1[index] = cd.q[1, index] / cd.q[0, index]
        return u_1

    def u_2(cd):
        index = np.nonzero(h_2(cd) > dry_tolerance)
        u_2 = np.zeros(h_2(cd).shape)
        u_2[index] = cd.q[3, index] / cd.q[2, index]
        return u_2

    plotdata.clearfigures()  # clear any old figures,axes,items data

    xlimits = [xlower, xupper]
    ylimits_velocities = (-0.15, 0.15)
    ylimits_depth = [-1.0, 0.1]
    ylimits_wind = [-5, 5]
    ylimits_kappa = [0.0, 1.2]

    # ========================================================================
    #  Depth, Momenta, and Kappa
    # ========================================================================
    plotfigure = plotdata.new_plotfigure(name='Depth, Momenta, and Kappa',
                                         figno=14)

    def twin_axes(cd):
        fig = mpl.gcf()
        fig.clf()

        # Get x coordinate values
        x = cd.patch.dimensions[0].centers

        # Draw fill plot
        depth_axes = fig.add_subplot(211)
        vel_axes = fig.add_subplot(212,
                                   sharex=depth_axes)  # the velocity scale
        kappa_axes = vel_axes.twinx()

        # Bottom layer
        depth_axes.fill_between(x,
                                bathy(cd),
                                eta_1(cd),
                                color=plot.bottom_color)
        # Top Layer
        depth_axes.fill_between(x, eta_1(cd), eta_2(cd), color=plot.top_color)
        # Plot bathy
        depth_axes.plot(x, bathy(cd), 'k', linestyle=plot.bathy_linestyle)
        # Plot internal layer
        depth_axes.plot(x, eta_2(cd), 'k', linestyle=plot.internal_linestyle)
        # Plot surface
        depth_axes.plot(x, eta_1(cd), 'k', linestyle=plot.surface_linestyle)

        # Remove ticks from top plot
        locs, labels = mpl.xticks()
        labels = ['' for i in xrange(len(locs))]
        mpl.xticks(locs, labels)

        depth_axes.set_title('Oscillatory Wind at t = %3.2f' % cd.t)
        depth_axes.set_xlim(xlimits)
        depth_axes.set_ylim(ylimits_depth)
        depth_axes.set_ylabel('Depth (m)')

        # Draw velocity and kappa plot

        # Bottom layer velocity
        bottom_layer = vel_axes.plot(cd.x,
                                     u_2(cd),
                                     'k-',
                                     label="Bottom Layer Velocity")
        # Top Layer velocity
        top_layer = vel_axes.plot(cd.x,
                                  u_1(cd),
                                  'b--',
                                  label="Top Layer velocity")

        # Kappa
        kappa_line = kappa_axes.plot(cd.x, kappa(cd), 'r-.')
        kappa_axes.plot(cd.x, np.ones(cd.x.shape), 'r:')

        plot.add_legend(vel_axes,
                        'Kappa',
                        color='r',
                        linestyle='-.',
                        location=4)
        vel_axes.set_xlim(xlimits)
        vel_axes.set_ylim(ylimits_velocities)
        kappa_axes.set_ylim(ylimits_kappa)
        vel_axes.set_title('')
        # vel_axes.set_title('Layer Velocities and Kappa')
        vel_axes.set_ylabel('Velocities (m/s)')
        kappa_axes.set_ylabel('Kappa')

        # This does not work on all versions of matplotlib
        try:
            mpl.subplots_adjust(hspace=0.1)
        except:
            pass

    plotaxes = plotfigure.new_plotaxes()
    plotaxes.afteraxes = twin_axes

    # ========================================================================
    #  Plot Wind Velocity
    # ========================================================================
    plotfigure = plotdata.new_plotfigure(name='Wind Field', figno=2)
    plotfigure.show = True

    plotaxes = plotfigure.new_plotaxes()
    plotaxes.title = "Wind Velocity"
    plotaxes.xlimits = xlimits
    plotaxes.ylimits = ylimits_wind

    def wind_afteraxes(cd):
        plt.xlabel("x (m)")
        plt.ylabel("Velocity (m/s)")

    plotaxes.afteraxes = wind_afteraxes

    plotitem = plotaxes.new_plotitem(plot_type='1d_plot')
    plotitem.plot_var = wind
    plotitem.color = 'r'
    plotitem.show = True

    # Parameters used only when creating html and/or latex hardcopy
    # e.g., via pyclaw.plotters.frametools.printframes:

    plotdata.printfigs = True  # print figures
    plotdata.print_format = 'png'  # file format
    plotdata.print_framenos = 'all'  # list of frames to print
    plotdata.print_fignos = 'all'  # list of figures to print
    plotdata.html = True  # create html files of plots?
    plotdata.html_homelink = '../README.html'  # pointer for top of index
    plotdata.latex = True  # create latex file of plots?
    plotdata.latex_figsperline = 2  # layout of plots
    plotdata.latex_framesperline = 1  # layout of plots
    plotdata.latex_makepdf = False  # also run pdflatex?

    return plotdata
Ejemplo n.º 13
0
def setplot(plotdata,
            eta=[0.0, -300.0],
            rho=[1025.0, 1045.0],
            g=9.81,
            dry_tolerance=1e-3,
            bathy_ref_lines=[-30e3]):
    """ 
    Specify what is to be plotted at each frame.
    Input:  plotdata, an instance of pyclaw.plotters.data.ClawPlotData.
    Output: a modified version of plotdata.
    
    """

    # Fetch bathymetry once
    b = Solution(0, path=plotdata.outdir,
                 read_aux=True).state.aux[bathy_index, :]

    # ========================================================================
    #  Plot variable functions
    def bathy(cd):
        return b

    def kappa(cd):
        return Solution(cd.frameno, path=plotdata.outdir,
                        read_aux=True).state.aux[kappa_index, :]

    def wind(cd):
        return Solution(cd.frameno, path=plotdata.outdir,
                        read_aux=True).state.aux[wind_index, :]

    def h_1(cd):
        return cd.q[0, :] / rho[0]

    def h_2(cd):
        return cd.q[2, :] / rho[1]

    def eta_2(cd):
        return h_2(cd) + bathy(cd)

    def eta_1(cd):
        return h_1(cd) + eta_2(cd)

    def u_1(cd):
        index = np.nonzero(h_1(cd) > dry_tolerance)
        u_1 = np.zeros(h_1(cd).shape)
        u_1[index] = cd.q[1, index] / cd.q[0, index]
        return u_1

    def u_2(cd):
        index = np.nonzero(h_2(cd) > dry_tolerance)
        u_2 = np.zeros(h_2(cd).shape)
        u_2[index] = cd.q[3, index] / cd.q[2, index]
        return u_2

    def hu_1(cd):
        index = np.nonzero(h_1(cd) > dry_tolerance)
        hu_1 = np.zeros(h_1(cd).shape)
        hu_1[index] = cd.q[1, index] / rho[0]
        return hu_1

    def hu_2(cd):
        index = np.nonzero(h_2(cd) > dry_tolerance)
        hu_2 = np.zeros(h_2(cd).shape)
        hu_2[index] = cd.q[3, index] / rho[1]
        return hu_2

    # ========================================================================
    #  Labels
    def add_bathy_dashes(current_data):
        mpl.hold(True)
        for ref_line in bathy_ref_lines:
            mpl.plot([ref_line, ref_line], [-10, 10], 'k--')
        mpl.hold(False)

    def add_horizontal_dashes(current_data):
        mpl.hold(True)
        mpl.plot([-400e3, 0.0], [0.0, 0.0], 'k--')
        mpl.hold(False)

    def km_labels(current_data):
        r"""Flips xaxis and labels with km"""
        mpl.xlabel('km')
        locs, labels = mpl.xticks()
        labels = np.flipud(locs) / 1.e3
        mpl.xticks(locs, labels)

    def time_labels(current_data):
        r"""Convert time to hours"""
        pass

    # ========================================================================
    # Limit Settings
    xlimits = [-400e3, 0.0]
    ylimits_depth = [-4000.0, 100.0]
    xlimits_zoomed = [-30e3 - 1e3, -30e3 + 1e3]
    ylimits_surface_zoomed = [eta[0] - 0.5, eta[0] + 0.5]
    ylimits_internal_zoomed = [eta[1] - 2.5, eta[1] + 2.5]
    ylimits_momentum = [-40, 10]
    # ylimits_velocities = [-1.0,1.0]
    ylimits_velocities = [-0.04, 0.04]
    ylimits_kappa = [0.0, 1.2]

    # Create data object
    plotdata.clearfigures()  # clear any old figures,axes,items data

    # ========================================================================
    #  Function for doing depth drawing
    # ========================================================================
    def fill_items(plotaxes):
        # Top layer
        plotitem = plotaxes.new_plotitem(plot_type='1d_fill_between')
        plotitem.plot_var = eta_1
        plotitem.plot_var2 = eta_2
        plotitem.color = plot.top_color
        plotitem.plotstyle = plot.surface_linestyle
        plotitem.show = True

        # Bottom Layer
        plotitem = plotaxes.new_plotitem(plot_type='1d_fill_between')
        plotitem.plot_var = eta_2
        plotitem.plot_var2 = bathy
        plotitem.color = plot.bottom_color
        plotitem.plotstyle = plot.internal_linestyle
        plotitem.show = True

        # Plot bathy
        plotitem = plotaxes.new_plotitem(plot_type='1d_plot')
        plotitem.plot_var = bathy
        plotitem.plotstyle = plot.bathy_linestyle
        plotitem.show = True

        # Plot line in between layers
        plotitem = plotaxes.new_plotitem(plot_type='1d_plot')
        plotitem.plot_var = eta_2
        plotitem.color = 'k'
        plotitem.plotstyle = plot.internal_linestyle
        plotitem.show = True

        # Plot line on top layer
        plotitem = plotaxes.new_plotitem(plot_type='1d_plot')
        plotitem.plot_var = eta_1
        plotitem.color = 'k'
        plotitem.plotstyle = plot.surface_linestyle
        plotitem.show = True

    # ========================================================================
    #  Full Depths
    # ========================================================================
    plotfigure = plotdata.new_plotfigure(name='Full Depths', figno=102)
    plotfigure.show = True

    def bathy_axes(cd):
        km_labels(cd)
        mpl.xticks([-300e3, -200e3, -100e3, -30e3], [300, 200, 100, 30],
                   fontsize=15)
        mpl.xlabel('km')

    plotaxes = plotfigure.new_plotaxes()
    plotaxes.title = 'Full Depths'
    plotaxes.xlimits = xlimits
    plotaxes.ylimits = [-4100, 100]
    plotaxes.afteraxes = bathy_axes

    fill_items(plotaxes)

    # ========================================================================
    #  Momentum
    # ========================================================================
    plotfigure = plotdata.new_plotfigure(name="momentum")
    plotfigure.show = True

    def momentum_axes(cd):
        km_labels(cd)
        mpl.xticks([-300e3, -200e3, -100e3, -30e3], [300, 200, 100, 30],
                   fontsize=15)
        mpl.xlabel('km')
        mpl.title("Layer Momenta at t = %4.1f s" % cd.t)

        mpl.legend(['Top Layer Momentum', 'Bottom Layer Momentum'], loc=4)

    def inset_momentum_axes(cd):
        r"""This does not refresh correctly..."""
        fig = mpl.figure(cd.plotfigure.figno)
        axes = fig.add_subplot(111)

        # Plot main figure
        axes.plot(cd.x, hu_1(cd), 'b-')
        axes.plot(cd.x, hu_2(cd), 'k--')
        axes.set_xlim(xlimits)
        axes.set_ylim(ylimits_momentum)
        momentum_axes(cd)

        # Create inset plot
        from mpl_toolkits.axes_grid1.inset_locator import zoomed_inset_axes
        from mpl_toolkits.axes_grid1.inset_locator import mark_inset
        inset_axes = zoomed_inset_axes(axes, 0.5, loc=3)
        inset_axes.plot(cd.x, hu_1(cd), 'b-')
        inset_axes.plot(cd.x, hu_2(cd), 'k--')
        inset_axes.set_xticklabels([])
        inset_axes.set_yticklabels([])
        x_zoom = [-120e3, -30e3]
        y_zoom = [-10, 10]
        inset_axes.set_xlim(x_zoom)
        inset_axes.set_ylim(y_zoom)
        mark_inset(axes, inset_axes, loc1=2, loc2=4, fc='none', ec="0.5")
        # mpl.ion()
        mpl.draw()
        # mpl.show()

    plotaxes = plotfigure.new_plotaxes()
    plotaxes.title = "Momentum"
    plotaxes.xlimits = xlimits
    plotaxes.ylimits = ylimits_momentum
    plotaxes.afteraxes = inset_momentum_axes

    # Top layer
    plotitem = plotaxes.new_plotitem(plot_type='1d')
    plotitem.plot_var = hu_1
    plotitem.plotstyle = 'b-'
    plotitem.show = True

    # Bottom layer
    plotitem = plotaxes.new_plotitem(plot_type='1d')
    plotitem.plot_var = hu_2
    plotitem.plotstyle = 'k--'
    plotitem.show = True

    # ========================================================================
    #  Velocities with Kappa
    # ========================================================================
    include_kappa = False
    if include_kappa:
        plotfigure = plotdata.new_plotfigure(name='Velocity and Kappa',
                                             figno=14)
    else:
        plotfigure = plotdata.new_plotfigure(name='Velocities', figno=14)
    plotfigure.show = True

    # plotfigure.kwargs = {'figsize':(7,6)}

    def twin_axes(cd):
        fig = mpl.gcf()
        fig.clf()

        # Get x coordinate values
        x = cd.patch.dimensions[0].centers

        # Draw velocity and kappa plot
        vel_axes = fig.add_subplot(111)  # the velocity scale
        # kappa_axes = vel_axes.twinx()              # the kappa scale

        # Bottom layer velocity
        bottom_layer = vel_axes.plot(x,
                                     u_2(cd),
                                     'k-',
                                     label="Bottom Layer Velocity")
        # Top Layer velocity
        top_layer = vel_axes.plot(x,
                                  u_1(cd),
                                  'b--',
                                  label="Top Layer velocity")

        if include_kappa:
            # Kappa
            kappa_line = kappa_axes.plot(x, kappa(cd), 'r-.', label="Kappa")
            kappa_axes.plot(x, np.ones(x.shape), 'r:')

        vel_axes.set_xlabel('km')
        mpl.xticks([-300e3, -200e3, -100e3, -30e3], [300, 200, 100, 30],
                   fontsize=15)

        for ref_line in bathy_ref_lines:
            vel_axes.plot([ref_line, ref_line], ylimits_velocities, 'k:')
        if include_kappa:
            vel_axes.set_title("Layer Velocities and Kappa at t = %4.1f s" %
                               cd.t)
        else:
            vel_axes.set_title("Layer Velocities at t = %4.1f s" % cd.t)
        vel_axes.set_ylabel('Velocities (m/s)')
        vel_axes.set_xlim(xlimits)
        vel_axes.set_ylim(ylimits_velocities)

        if include_kappa:
            plot.add_legend(vel_axes,
                            'Kappa',
                            location=3,
                            color='r',
                            linestyle='-.')
            kappa_axes.set_ylabel('Kappa')
            kappa_axes.set_ylim(ylimits_kappa)
        else:
            vel_axes.legend(loc=3)
        try:
            mpl.subplots_adjust(hspace=0.1)
        except:
            pass

    plotaxes = plotfigure.new_plotaxes()
    plotaxes.afteraxes = twin_axes

    # ========================================================================
    #  Combined Top and Internal Surface
    # ========================================================================
    plotfigure = plotdata.new_plotfigure(name='Zoomed Depths', figno=13)
    plotfigure.show = True
    plotfigure.kwargs = {'figsize': (6, 6)}

    # Top surface
    plotaxes = plotfigure.new_plotaxes()
    plotaxes.axescmd = 'subplot(2,1,1)'
    plotaxes.title = 'Surfaces'
    plotaxes.xlimits = xlimits
    plotaxes.ylimits = ylimits_surface_zoomed

    def top_afteraxes(cd):
        mpl.xlabel('')
        locs, labels = mpl.xticks()
        # labels = np.flipud(locs)/1.e3
        labels = ['' for i in xrange(len(locs))]
        mpl.xticks(locs, labels)
        add_bathy_dashes(cd)
        mpl.ylabel('m')
        mpl.title("Surfaces t = %4.1f s" % cd.t)

    plotaxes.afteraxes = top_afteraxes
    plotaxes = fill_items(plotaxes)

    # Internal surface
    plotaxes = plotfigure.new_plotaxes()
    plotaxes.axescmd = 'subplot(2,1,2)'
    plotaxes.title = ''
    plotaxes.xlimits = xlimits
    plotaxes.ylimits = ylimits_internal_zoomed

    def internal_surf_afteraxes(cd):
        km_labels(cd)
        mpl.title('')
        mpl.ylabel('m')
        mpl.subplots_adjust(hspace=0.05)
        mpl.xticks([-300e3, -200e3, -100e3, -30e3], [300, 200, 100, 30],
                   fontsize=15)
        mpl.xlabel('km')

    plotaxes.afteraxes = internal_surf_afteraxes
    plotaxes = fill_items(plotaxes)

    # Parameters used only when creating html and/or latex hardcopy
    # e.g., via pyclaw.plotters.frametools.printframes:

    plotdata.printfigs = True  # print figures
    plotdata.print_format = 'png'  # file format
    # plotdata.print_framenos = 'all'          # list of frames to print
    plotdata.print_framenos = [0, 30, 100, 200, 300]
    plotdata.print_fignos = 'all'  # list of figures to print
    plotdata.html = True  # create html files of plots?
    plotdata.html_homelink = '../README.html'  # pointer for top of index
    plotdata.latex = True  # create latex file of plots?
    plotdata.latex_figsperline = 2  # layout of plots
    plotdata.latex_framesperline = 1  # layout of plots
    plotdata.latex_makepdf = False  # also run pdflatex?

    return plotdata
Ejemplo n.º 14
0
def setplot(plotdata, rho, dry_tolerance):
    #--------------------------
    """ 
    Specify what is to be plotted at each frame.
    Input:  plotdata, an instance of pyclaw.plotters.data.ClawPlotData.
    Output: a modified version of plotdata.
    
    """
    def jump_afteraxes(current_data):
        # Plot position of jump on plot
        mpl.hold(True)
        mpl.plot([0.5, 0.5], [-10.0, 10.0], 'k--')
        mpl.plot([0.0, 1.0], [0.0, 0.0], 'k--')
        mpl.hold(False)
        mpl.title('Layer Velocities')

    # Load bathymetery
    b = Solution(0, path=plotdata.outdir,
                 read_aux=True).state.aux[bathy_index, :]

    def bathy(cd):
        return b

    def kappa(cd):
        return Solution(cd.frameno, path=plotdata.outdir,
                        read_aux=True).state.aux[kappa_index, :]

    def wind(cd):
        return Solution(cd.frameno, path=plotdata.outdir,
                        read_aux=True).state.aux[wind_index, :]

    def h_1(cd):
        return cd.q[0, :] / rho[0]

    def h_2(cd):
        return cd.q[2, :] / rho[1]

    def eta_2(cd):
        return h_2(cd) + bathy(cd)

    def eta_1(cd):
        return h_1(cd) + eta_2(cd)

    def u_1(cd):
        index = np.nonzero(h_1(cd) > dry_tolerance)
        u_1 = np.zeros(h_1(cd).shape)
        u_1[index] = cd.q[1, index] / cd.q[0, index]
        return u_1

    def u_2(cd):
        index = np.nonzero(h_2(cd) > dry_tolerance)
        u_2 = np.zeros(h_2(cd).shape)
        u_2[index] = cd.q[3, index] / cd.q[2, index]
        return u_2

    plotdata.clearfigures()  # clear any old figures,axes,items data

    # Window Settings
    xlimits = [0.0, 1.0]
    xlimits_zoomed = [0.45, 0.55]
    ylimits_momentum = [-0.004, 0.004]
    ylimits_depth = [-1.0, 0.2]
    ylimits_depth_zoomed = ylimits_depth
    ylimits_velocities = [-0.75, 0.75]
    ylimits_velocities_zoomed = ylimits_velocities

    # ========================================================================
    #  Depth and Momentum Plot
    # ========================================================================
    plotfigure = plotdata.new_plotfigure(name='Depth and Momentum')
    plotfigure.show = True

    def twin_axes(cd, xlimits):
        fig = mpl.gcf()
        fig.clf()

        # Get x coordinate values
        x = cd.patch.dimensions[0].centers

        # Create axes for each plot, sharing x axis
        ax1 = fig.add_subplot(211)
        ax2 = fig.add_subplot(212, sharex=ax1)  # the velocity scale

        # Bottom layer
        ax1.fill_between(x, bathy(cd), eta_1(cd), color=plot.bottom_color)
        # Top Layer
        ax1.fill_between(x, eta_1(cd), eta_2(cd), color=plot.top_color)
        # Plot bathy
        ax1.plot(x, bathy(cd), 'k', linestyle=plot.bathy_linestyle)
        # Plot internal layer
        ax1.plot(x, eta_2(cd), 'k', linestyle=plot.internal_linestyle)
        # Plot surface
        ax1.plot(x, eta_1(cd), 'k', linestyle=plot.surface_linestyle)

        # Remove ticks from top plot
        locs, labels = mpl.xticks()
        labels = ['' for i in xrange(len(locs))]
        mpl.xticks(locs, labels)

        # ax1.set_title('')
        ax1.set_title('Solution at t = %3.2f' % cd.t)
        ax1.set_xlim(xlimits)
        ax1.set_ylim(ylimits_depth)
        # ax1.set_xlabel('x')
        ax1.set_ylabel('Depth (m)')

        # Bottom layer velocity
        bottom_layer = ax2.plot(x,
                                u_2(cd),
                                'k',
                                linestyle=plot.internal_linestyle,
                                label="Bottom Layer Velocity")
        # Top Layer velocity
        top_layer = ax2.plot(x,
                             u_1(cd),
                             'b',
                             linestyle=plot.surface_linestyle,
                             label="Top Layer velocity")

        # Add legend
        ax2.legend(loc=4)
        ax2.set_title('')
        # ax1.set_title('Layer Velocities')
        ax2.set_ylabel('Velocities (m/s)')
        ax2.set_xlabel('x (m)')
        ax2.set_xlim(xlimits)
        ax2.set_ylim(ylimits_velocities)

        # This does not work on all versions of matplotlib
        try:
            mpl.subplots_adjust(hspace=0.1)
        except:
            pass

    plotaxes = plotfigure.new_plotaxes()
    plotaxes.afteraxes = lambda cd: twin_axes(cd, xlimits)

    # ========================================================================
    #  Fill plot zoom
    # ========================================================================
    plotfigure = plotdata.new_plotfigure(name='full_zoom')

    plotaxes = plotfigure.new_plotaxes()
    plotaxes.afteraxes = lambda cd: twin_axes(cd, xlimits_zoomed)

    # ========================================================================
    #  Momentum
    # ========================================================================
    plotfigure = plotdata.new_plotfigure(name="momentum")
    plotfigure.show = True

    plotaxes = plotfigure.new_plotaxes()
    plotaxes.title = "Momentum"
    plotaxes.xlimits = xlimits
    plotaxes.ylimits = ylimits_momentum

    # Top layer
    plotitem = plotaxes.new_plotitem(plot_type='1d')
    plotitem.plot_var = 1
    plotitem.plotstyle = 'b-'
    plotitem.show = True

    # Bottom layer
    plotitem = plotaxes.new_plotitem(plot_type='1d')
    plotitem.plot_var = 3
    plotitem.plotstyle = 'k--'
    plotitem.show = True

    # ========================================================================
    #  h-values
    # ========================================================================
    plotfigure = plotdata.new_plotfigure(name='depths')
    plotfigure.show = False

    plotaxes = plotfigure.new_plotaxes()
    plotaxes.axescmd = 'subplot(2,1,1)'
    plotaxes.title = 'Depths'
    plotaxes.xlimits = xlimits
    plotaxes.afteraxes = jump_afteraxes
    # plotaxes.ylimits = [-1.0,0.5]
    # plotaxes.xlimits = [0.45,0.55]
    # plotaxes.xlimits = [0.0,2000.0]
    # plotaxes.ylimits = [-2000.0,100.0]

    # Top layer
    plotitem = plotaxes.new_plotitem(plot_type='1d')
    plotitem.plot_var = 0
    plotitem.plotstyle = '-'
    plotitem.color = (0.2, 0.8, 1.0)
    plotitem.show = True

    # Bottom layer
    plotitem = plotaxes.new_plotitem(plot_type='1d')
    plotitem.plot_var = 2
    plotitem.color = 'b'
    plotitem.plotstyle = '-'
    plotitem.show = True

    plotaxes = plotfigure.new_plotaxes()
    plotaxes.axescmd = 'subplot(2,1,2)'
    plotaxes.title = 'Depths Zoomed'
    plotaxes.afteraxes = jump_afteraxes
    # plotaxes.xlimits = [0.0,1.0]
    # plotaxes.ylimits = [-1.0,0.5]
    plotaxes.xlimits = [0.45, 0.55]
    # plotaxes.xlimits = [0.0,2000.0]
    # plotaxes.ylimits = [-2000.0,100.0]

    # Top layer
    plotitem = plotaxes.new_plotitem(plot_type='1d')
    plotitem.plot_var = 0
    plotitem.plotstyle = 'x'
    plotitem.color = (0.2, 0.8, 1.0)
    plotitem.show = True

    # Bottom layer
    plotitem = plotaxes.new_plotitem(plot_type='1d')
    plotitem.plot_var = 2
    plotitem.color = 'b'
    plotitem.plotstyle = '+'
    plotitem.show = True

    # ========================================================================
    #  Plot Layer Velocities
    # ========================================================================
    plotfigure = plotdata.new_plotfigure(name='velocities')
    plotfigure.show = False

    plotaxes = plotfigure.new_plotaxes()
    plotaxes.axescmd = 'subplot(1,2,1)'
    plotaxes.title = "Layer Velocities"
    plotaxes.xlimits = 'auto'
    plotaxes.ylimits = 'auto'

    # Top layer
    plotitem = plotaxes.new_plotitem(plot_type='1d_plot')
    plotitem.plot_var = u_1
    plotitem.color = 'b'
    plotitem.show = True

    # Bottom layer
    plotitem = plotaxes.new_plotitem(plot_type='1d_plot')
    plotitem.color = (0.2, 0.8, 1.0)
    plotitem.plot_var = u_2
    plotitem.show = True

    # Parameters used only when creating html and/or latex hardcopy
    # e.g., via pyclaw.plotters.frametools.printframes:

    plotdata.printfigs = True  # print figures
    plotdata.print_format = 'png'  # file format
    plotdata.print_framenos = 'all'  # list of frames to print
    plotdata.print_fignos = 'all'  # list of figures to print
    plotdata.html = True  # create html files of plots?
    plotdata.html_homelink = '../README.html'  # pointer for top of index
    plotdata.latex = True  # create latex file of plots?
    plotdata.latex_figsperline = 2  # layout of plots
    plotdata.latex_framesperline = 1  # layout of plots
    plotdata.latex_makepdf = False  # also run pdflatex?

    return plotdata
Ejemplo n.º 15
0
def setplot(plotdata, rho, dry_tolerance):
    #--------------------------
    """
    Specify what is to be plotted at each frame.
    Input:  plotdata, an instance of pyclaw.plotters.data.ClawPlotData.
    Output: a modified version of plotdata.

    """
    def jump_afteraxes(current_data):
        # Plot position of jump on plot
        mpl.hold(True)
        mpl.plot([0.5, 0.5], [-10.0, 10.0], 'k--')
        mpl.plot([0.0, 1.0], [0.0, 0.0], 'k--')
        mpl.hold(False)
        mpl.title('Layer Velocities')

    # Load bathymetery
    b = Solution(0, path=plotdata.outdir,
                 read_aux=True).state.aux[bathy_index, :]

    # Load gravitation
    g = Solution(0, path=plotdata.outdir,
                 read_aux=True).state.problem_data['g']

    def bathy(cd):
        return b

    def kappa(cd):
        return Solution(cd.frameno, path=plotdata.outdir,
                        read_aux=True).state.aux[kappa_index, :]

    def wind(cd):
        return Solution(cd.frameno, path=plotdata.outdir,
                        read_aux=True).state.aux[wind_index, :]

    def h_1(cd):
        return cd.q[0, :] / rho[0]

    def h_2(cd):
        return cd.q[2, :] / rho[1]

    def eta_2(cd):
        return h_2(cd) + bathy(cd)

    def eta_1(cd):
        return h_1(cd) + eta_2(cd)

    def u_1(cd):
        index = np.nonzero(h_1(cd) > dry_tolerance)
        u_1 = np.zeros(h_1(cd).shape)
        u_1[index] = cd.q[1, index] / cd.q[0, index]
        index_max = np.where(u_1 > 0.5)
        u_1[index_max] = 0.5
        return u_1

    def u_2(cd):
        index = np.nonzero(h_2(cd) > dry_tolerance)
        u_2 = np.zeros(h_2(cd).shape)
        u_2[index] = cd.q[3, index] / cd.q[2, index]

        #limit the velocity
        index_max = np.where(u_2 > 0.5)
        u_2[index_max] = 0.5
        return u_2

    # def entropy_at_x(q, index):
    #     h_1i=q[0,index] / rho[0]
    #     h_2i=q[2,index] / rho[1]
    #     u_1i=q[1,index] / q[0,index]
    #     u_2i=q[3,index] / q[2,index]
    #     entropy_at_x = rho[0]*1/2*(h_1i*(u_1i)**2+g*(h_1i)**2) + rho[1]*1/2*(h_2i*(u_2i)**2+g*(h_2i)**2) + rho[0]*g*h_1i*h_2i + g*b[index]*(rho[0]*h_1i+rho[1]*h_2i)
    #     return entropy_at_x

    def entropy(cd):
        index = np.nonzero(
            np.all([h_1(cd) > dry_tolerance,
                    h_2(cd) > dry_tolerance], axis=0))
        entropy = np.zeros(min(h_1(cd).shape, h_2(cd).shape))
        h_1i = cd.q[0, index] / rho[0]
        h_2i = cd.q[2, index] / rho[1]
        u_1i = cd.q[1, index] / cd.q[0, index]
        u_2i = cd.q[3, index] / cd.q[2, index]
        entropy[index] = rho[0] * 1 / 2 * (
            h_1i * (u_1i)**2 + g * (h_1i)**2) + rho[1] * 1 / 2 * (
                h_2i * (u_2i)**2 + g *
                (h_2i)**2) + rho[0] * g * h_1i * h_2i + g * b[index] * (
                    rho[0] * h_1i + rho[1] * h_2i)
        return entropy

    # def entropy_flux_at_x(q, index):
    #     h_1i=q[0,index] / rho[0]
    #     h_2i=q[2,index] / rho[1]
    #     u_1i=q[1,index] / q[0,index]
    #     u_2i=q[3,index] / q[2,index]
    #     entropy_flux_at_x = rho[0]*(h_1i*(u_1i**2)/2+g*(h_1i**2))*u_1i + rho[1]*(h_2i*(u_2i**2)/2+g*(h_2i**2))*u_2i + rho[0]*g*h_1i*h_2i*(u_1i+u_2i) + g*b[index]*(rho[0]*h_1i*u_1i
    #      + rho[1]*h_2i*u_2i)
    #     #print(entropy_flux_at_x)
    #     return entropy_flux_at_x

    def entropy_flux(cd):
        index = np.nonzero(
            np.all([h_1(cd) > dry_tolerance,
                    h_2(cd) > dry_tolerance], axis=0))
        entropy_flux = np.zeros(min(h_1(cd).shape, h_2(cd).shape))
        h_1i = cd.q[0, index] / rho[0]
        h_2i = cd.q[2, index] / rho[1]
        u_1i = cd.q[1, index] / cd.q[0, index]
        u_2i = cd.q[3, index] / cd.q[2, index]
        entropy_flux[index] = rho[0] * (
            h_1i * (u_1i**2) / 2 + g * (h_1i**2)) * u_1i + rho[1] * (
                h_2i * (u_2i**2) / 2 + g *
                (h_2i**2)) * u_2i + rho[0] * g * h_1i * h_2i * (
                    u_1i + u_2i) + g * b[index] * (rho[0] * h_1i * u_1i +
                                                   rho[1] * h_2i * u_2i)
        return entropy_flux

    def entropy_condition_is_valid(cd):

        index_t = int(cd.frameno)
        if index_t > 0:
            #entropy at t=0 doesn't exist
            (x, ) = np.nonzero(
                np.all([h_1(cd) > dry_tolerance,
                        h_2(cd) > dry_tolerance],
                       axis=0))
            len_x = len(x)
            delta_t = Solution(
                index_t, path=plotdata.outdir, read_aux=True).t - Solution(
                    index_t - 1, path=plotdata.outdir, read_aux=True).t
            delta_x = cd.dx
            entropy_cond = np.zeros(min(h_1(cd).shape, h_2(cd).shape))
            for index_x in range(len_x - 1):
                index_x_next = index_x + 1
                entropy_flux_actual = entropy_flux(cd)[index_x]
                entropy_flux_prev = entropy_flux(cd)[index_x_next]
                entropy_next = entropy(cd)[index_x]
                entropy_actual = entropy(
                    Solution(index_t - 1, path=plotdata.outdir,
                             read_aux=True))[index_x]

                entropy_cond[index_x] = entropy_next - entropy_actual + (
                    delta_t / delta_x) * (entropy_flux_actual -
                                          entropy_flux_prev)
                # if index_t == 67 or index_t==68 or index_t==69 or index_t==70 :
                #     print('=======================================')
                #     print(entropy_flux_actual)
                #     print(entropy_flux_prev)
                #     print(delta_t/delta_x)
                #     print(entropy)
                #     print(entropy_prev)
                #     print(entropy_cond)
            return entropy_cond
        else:
            return ([0] * 500)

    def dry_tolerance_(cd):
        return ([dry_tolerance] * (len(cd.q[1])))

    plotdata.clearfigures()  # clear any old figures,axes,items data

    # Window Settings
    xlimits = [0.0, 1.0]
    xlimits_zoomed = [0.45, 0.55]
    ylimits_momentum = [-0.004, 0.004]
    ylimits_depth = [-1.0, 0.2]
    ylimits_depth_zoomed = ylimits_depth
    ylimits_velocities = [-0.75, 0.75]
    ylimits_velocities_zoomed = ylimits_velocities
    y_limits_entropy = [-5.0, 0.5]
    y_limits_entropy_flux = [-0.023, 0.013]
    y_limits_entropy_condition = y_limits_entropy_flux
    y_limits_entropy_shared = y_limits_entropy_flux

    # ========================================================================
    #  Depth and Momentum Plot
    # ========================================================================
    plotfigure = plotdata.new_plotfigure(name='Depth and Momentum')
    plotfigure.show = True

    def twin_axes(cd, xlimits):
        fig = mpl.gcf()
        fig.clf()

        # Get x coordinate values
        x = cd.patch.dimensions[0].centers

        # Create axes for each plot, sharing x axis
        ax1 = fig.add_subplot(211)
        ax2 = fig.add_subplot(212, sharex=ax1)  # the velocity scale

        # Bottom layer
        ax1.fill_between(x, bathy(cd), eta_1(cd), color=plot.bottom_color)
        # Top Layer
        ax1.fill_between(x, eta_1(cd), eta_2(cd), color=plot.top_color)
        # Plot bathy
        ax1.plot(x, bathy(cd), 'k', linestyle=plot.bathy_linestyle)
        # Plot internal layer
        ax1.plot(x, eta_2(cd), 'k', linestyle=plot.internal_linestyle)
        # Plot surface
        ax1.plot(x, eta_1(cd), 'k', linestyle=plot.surface_linestyle)

        # Remove ticks from top plot
        locs, labels = mpl.xticks()
        labels = ['' for i in xrange(len(locs))]
        mpl.xticks(locs, labels)

        # ax1.set_title('')
        ax1.set_title('Solution at t = %3.2f' % cd.t)
        ax1.set_xlim(xlimits)
        ax1.set_ylim(ylimits_depth)
        # ax1.set_xlabel('x')
        ax1.set_ylabel('Depth (m)')

        # Bottom layer velocity
        bottom_layer = ax2.plot(x,
                                u_2(cd),
                                'k',
                                linestyle=plot.internal_linestyle,
                                label="Bottom Layer Velocity")
        # Top Layer velocity
        top_layer = ax2.plot(x,
                             u_1(cd),
                             'b',
                             linestyle=plot.surface_linestyle,
                             label="Top Layer velocity")

        # Add legend
        ax2.legend(loc=4)
        ax2.set_title('')
        # ax1.set_title('Layer Velocities')
        ax2.set_ylabel('Velocities (m/s)')
        ax2.set_xlabel('x (m)')
        ax2.set_xlim(xlimits)
        ax2.set_ylim(ylimits_velocities)

        # This does not work on all versions of matplotlib
        try:
            mpl.subplots_adjust(hspace=0.1)
        except:
            pass

    plotaxes = plotfigure.new_plotaxes()
    plotaxes.afteraxes = lambda cd: twin_axes(cd, xlimits)

    # ========================================================================
    #  Fill plot zoom
    # ========================================================================
    plotfigure = plotdata.new_plotfigure(name='full_zoom')

    plotaxes = plotfigure.new_plotaxes()
    plotaxes.afteraxes = lambda cd: twin_axes(cd, xlimits_zoomed)

    # ========================================================================
    #  Momentum
    # ========================================================================
    plotfigure = plotdata.new_plotfigure(name="momentum")
    plotfigure.show = True

    plotaxes = plotfigure.new_plotaxes()
    plotaxes.title = "Momentum"
    plotaxes.xlimits = xlimits
    plotaxes.ylimits = ylimits_momentum

    # Top layer
    plotitem = plotaxes.new_plotitem(plot_type='1d')
    plotitem.plot_var = 1
    plotitem.plotstyle = 'b-'
    plotitem.show = True

    # Bottom layer
    plotitem = plotaxes.new_plotitem(plot_type='1d')
    plotitem.plot_var = 3
    plotitem.plotstyle = 'k--'
    plotitem.show = True

    # ========================================================================
    #  h-valuesplot
    # ========================================================================
    plotfigure = plotdata.new_plotfigure(name='depths')
    plotfigure.show = False

    plotaxes = plotfigure.new_plotaxes()
    plotaxes.axescmd = 'subplot(2,1,1)'
    plotaxes.title = 'Depths'
    plotaxes.xlimits = xlimits
    plotaxes.afteraxes = jump_afteraxes
    # plotaxes.ylimits = [-1.0,0.5]
    # plotaxes.xlimits = [0.45,0.55]
    # plotaxes.xlimits = [0.0,2000.0]
    # plotaxes.ylimits = [-2000.0,100.0]

    # Top layer
    plotitem = plotaxes.new_plotitem(plot_type='1d')
    plotitem.plot_var = 0
    plotitem.plotstyle = '-'
    plotitem.color = (0.2, 0.8, 1.0)
    plotitem.show = True

    # Bottom layer
    plotitem = plotaxes.new_plotitem(plot_type='1d')
    plotitem.plot_var = 2
    plotitem.color = 'b'
    plotitem.plotstyle = '-'
    plotitem.show = True

    plotaxes = plotfigure.new_plotaxes()
    plotaxes.axescmd = 'subplot(2,1,2)'
    plotaxes.title = 'Depths Zoomed'
    plotaxes.afteraxes = jump_afteraxes
    # plotaxes.xlimits = [0.0,1.0]
    # plotaxes.ylimits = [-1.0,0.5]
    plotaxes.xlimits = [0.45, 0.55]
    # plotaxes.xlimits = [0.0,2000.0]
    # plotaxes.ylimits = [-2000.0,100.0]

    # Top layer
    plotitem = plotaxes.new_plotitem(plot_type='1d')
    plotitem.plot_var = 0
    plotitem.plotstyle = 'x'
    plotitem.color = (0.2, 0.8, 1.0)
    plotitem.show = True

    # Bottom layer
    plotitem = plotaxes.new_plotitem(plot_type='1d')
    plotitem.plot_var = 2
    plotitem.color = 'b'
    plotitem.plotstyle = '+'
    plotitem.show = True

    # ========================================================================
    #  Plot Layer Velocities
    # ========================================================================
    plotfigure = plotdata.new_plotfigure(name='velocities')
    plotfigure.show = False

    plotaxes = plotfigure.new_plotaxes()
    #plotaxes.axescmd = 'subplot(1,2,1)'
    plotaxes.title = "Layer Velocities"
    plotaxes.xlimits = 'auto'
    plotaxes.ylimits = 'auto'

    # Top layer
    plotitem = plotaxes.new_plotitem(plot_type='1d_plot')
    plotitem.plot_var = u_1
    plotitem.color = 'b'
    plotitem.show = True

    # Bottom layer
    plotitem = plotaxes.new_plotitem(plot_type='1d_plot')
    plotitem.color = (0.2, 0.8, 1.0)
    plotitem.plot_var = u_2
    plotitem.show = True

    # Parameters used only when creating html and/or latex hardcopy
    # e.g., via pyclaw.plotters.frametools.printframes:

    plotdata.printfigs = True  # print figures
    plotdata.print_format = 'png'  # file format
    plotdata.print_framenos = 'all'  # list of frames to print
    plotdata.print_fignos = 'all'  # list of figures to print
    plotdata.html = True  # create html files of plots?
    plotdata.html_homelink = '../README.html'  # pointer for top of index
    plotdata.latex = True  # create latex file of plots?
    plotdata.latex_figsperline = 2  # layout of plots
    plotdata.latex_framesperline = 1  # layout of plots
    plotdata.latex_makepdf = False  # also run pdflatex?

    # ========================================================================
    #  h-values
    # ========================================================================
    plotfigure = plotdata.new_plotfigure(name="Depths and dry tolerance")
    plotfigure.show = True

    def depths_same_plot(cd, xlimits):
        fig = mpl.gcf()
        fig.clf()

        # Get x coordinate values
        x = cd.patch.dimensions[0].centers

        # Create axes for each plot, sharing x axis
        ax1 = fig.add_subplot(111)

        # Bottom layer
        ax1.fill_between(x, bathy(cd), eta_1(cd), color=plot.bottom_color)
        # Top Layer
        ax1.fill_between(x, eta_1(cd), eta_2(cd), color=plot.top_color)
        # Plot bathy
        ax1.plot(x, bathy(cd), 'k', linestyle=plot.bathy_linestyle)
        # Plot internal layer
        ax1.plot(x, eta_2(cd), 'k', linestyle=plot.internal_linestyle)
        # Plot surface
        ax1.plot(x, eta_1(cd), 'k', linestyle=plot.surface_linestyle)
        # Plot dry tolerance
        ax1.plot(x, dry_tolerance_(cd), 'k', linestyle=':', color='red')

        # Remove ticks from top plot
        locs, labels = mpl.xticks()
        labels = ['' for i in xrange(len(locs))]
        mpl.xticks(locs, labels)

        # ax1.set_title('')
        ax1.set_title('Solution at t = %3.2f' % cd.t)
        ax1.set_xlim(xlimits)
        ax1.set_ylim(ylimits_depth)
        # ax1.set_xlabel('x')
        ax1.set_ylabel('Depth (m)')

        # # This does not work on all versions of matplotlib
        # try:
        #     mpl.subplots_adjust(hspace=0.1)
        # except:
        #     pass

    plotaxes = plotfigure.new_plotaxes()
    plotaxes.afteraxes = lambda cd: depths_same_plot(cd, xlimits)

    # ====================================================
    # Plot Entropy
    # ====================================================

    plotfigure = plotdata.new_plotfigure(name="entropy")
    plotfigure.show = True

    plotaxes = plotfigure.new_plotaxes()
    plotaxes.title = "Entropy"
    plotaxes.xlimits = xlimits
    plotaxes.ylimits = 'auto'

    # Entropy
    plotitem = plotaxes.new_plotitem(plot_type='1d')
    plotitem.plot_var = entropy
    plotitem.color = 'b'
    plotitem.show = True

    # Parameters used only when creating html and/or latex hardcopy
    # e.g., via pyclaw.plotters.frametools.printframes:

    plotdata.printfigs = True  # print figures
    plotdata.print_format = 'png'  # file format
    plotdata.print_framenos = 'all'  # list of frames to print
    plotdata.print_fignos = 'all'  # list of figures to print
    plotdata.html = True  # create html files of plots?
    plotdata.html_homelink = '../README.html'  # pointer for top of index
    plotdata.latex = True  # create latex file of plots?
    plotdata.latex_figsperline = 2  # layout of plots
    plotdata.latex_framesperline = 1  # layout of plots
    plotdata.latex_makepdf = False  # also run pdflatex?

    # ====================================================
    # Plot Entropy flux
    # ====================================================

    plotfigure = plotdata.new_plotfigure(name="entropy flux")
    plotfigure.show = True

    plotaxes = plotfigure.new_plotaxes()
    plotaxes.title = "Entropy flux"
    plotaxes.xlimits = xlimits
    plotaxes.ylimits = y_limits_entropy_flux

    # Entropy
    plotitem = plotaxes.new_plotitem(plot_type='1d_plot')
    plotitem.plot_var = entropy_flux
    plotitem.color = 'b'
    plotitem.show = True

    # Parameters used only when creating html and/or latex hardcopy
    # e.g., via pyclaw.plotters.frametools.printframes:

    plotdata.printfigs = True  # print figures
    plotdata.print_format = 'png'  # file format
    plotdata.print_framenos = 'all'  # list of frames to print
    plotdata.print_fignos = 'all'  # list of figures to print
    plotdata.html = True  # create html files of plots?
    plotdata.html_homelink = '../README.html'  # pointer for top of index
    plotdata.latex = True  # create latex file of plots?
    plotdata.latex_figsperline = 2  # layout of plots
    plotdata.latex_framesperline = 1  # layout of plots
    plotdata.latex_makepdf = False  # also run pdflatex?

    # ====================================================
    # Plot Entropy Condition
    # ====================================================

    plotfigure = plotdata.new_plotfigure(name="entropy condition")
    plotfigure.show = True

    plotaxes = plotfigure.new_plotaxes()
    plotaxes.title = "Entropy Condition"
    plotaxes.xlimits = xlimits
    plotaxes.ylimits = y_limits_entropy_condition

    # Entropy
    plotitem = plotaxes.new_plotitem(plot_type='1d_plot')
    plotitem.plot_var = entropy_condition_is_valid
    plotitem.color = 'b'
    plotitem.show = True

    # Parameters used only when creating html and/or latex hardcopy
    # e.g., via pyclaw.plotters.frametools.printframes:

    plotdata.printfigs = True  # print figures
    plotdata.print_format = 'png'  # file format
    plotdata.print_framenos = 'all'  # list of frames to print
    plotdata.print_fignos = 'all'  # list of figures to print
    plotdata.html = True  # create html files of plots?
    plotdata.html_homelink = '../README.html'  # pointer for top of index
    plotdata.latex = True  # create latex file of plots?
    plotdata.latex_figsperline = 2  # layout of plots
    plotdata.latex_framesperline = 1  # layout of plots
    plotdata.latex_makepdf = False  # also run pdflatex?

    return plotdata
Ejemplo n.º 16
0
def setplot(plotdata, wave_family, rho, dry_tolerance):
    #--------------------------
    """ 
    Specify what is to be plotted at each frame.
    Input:  plotdata, an instance of pyclaw.plotters.data.ClawPlotData.
    Output: a modified version of plotdata.
    
    """

    # Load bathymetry
    b = Solution(0, path=plotdata.outdir,
                 read_aux=True).state.aux[bathy_index, :]

    def bathy(cd):
        return b

    def kappa(cd):
        return Solution(cd.frameno, path=plotdata.outdir,
                        read_aux=True).state.aux[kappa_index, :]

    def wind(cd):
        return Solution(cd.frameno, path=plotdata.outdir,
                        read_aux=True).state.aux[wind_index, :]

    def h_1(cd):
        return cd.q[0, :] / rho[0]

    def h_2(cd):
        return cd.q[2, :] / rho[1]

    def eta_2(cd):
        return h_2(cd) + bathy(cd)

    def eta_1(cd):
        return h_1(cd) + eta_2(cd)

    def u_1(cd):
        index = np.nonzero(h_1(cd) > dry_tolerance)
        u_1 = np.zeros(h_1(cd).shape)
        u_1[index] = cd.q[1, index] / cd.q[0, index]
        return u_1

    def u_2(cd):
        index = np.nonzero(h_2(cd) > dry_tolerance)
        u_2 = np.zeros(h_2(cd).shape)
        u_2[index] = cd.q[3, index] / cd.q[2, index]
        return u_2

    def jump_afteraxes(current_data):
        # Plot position of jump on plot
        mpl.hold(True)
        mpl.plot([0.5, 0.5], [-10.0, 10.0], 'k--')
        mpl.plot([0.0, 1.0], [0.0, 0.0], 'k--')
        mpl.hold(False)
        mpl.title('')

    plotdata.clearfigures()  # clear any old figures,axes,items data

    # Window Settings
    xlimits = [0.0, 1.0]
    xlimits_zoomed = [0.45, 0.55]
    ylimits_momentum = [-0.004, 0.004]

    # External wave
    if wave_family == 4:
        ylimits_velocities = [-0.8, 0.8]
        ylimits_depth = [-1.0, 0.3]
        ylimits_depth_zoomed = [-1.0, 0.4]
        ylimits_velocities_zoomed = [-0.1, 0.75]
    # internal wave
    elif wave_family == 3:
        ylimits_velocities = [-0.15, 0.15]
        ylimits_velocities_zoomed = ylimits_velocities
        ylimits_depth = [-1.0, 0.2]
        ylimits_depth_zoomed = ylimits_depth

    # ========================================================================
    #  Depth and Momentum Plot
    # ========================================================================
    plotfigure = plotdata.new_plotfigure(name='Depth and Momentum', figno=14)
    plotfigure.show = True

    def twin_axes(cd):
        fig = mpl.gcf()
        fig.clf()

        # Get x coordinate values
        x = cd.patch.dimensions[0].centers

        # Create axes for each plot, sharing x axis
        depth_axes = fig.add_subplot(211)
        vel_axes = fig.add_subplot(
            212)  #,sharex=depth_axes)     # the velocity scale

        # Bottom layer
        depth_axes.fill_between(x,
                                bathy(cd),
                                eta_1(cd),
                                color=plot.bottom_color)
        # Top Layer
        depth_axes.fill_between(x, eta_1(cd), eta_2(cd), color=plot.top_color)
        # Plot bathy
        depth_axes.plot(x, bathy(cd), 'k', linestyle=plot.bathy_linestyle)
        # Plot internal layer
        depth_axes.plot(x, eta_2(cd), 'k', linestyle=plot.internal_linestyle)
        # Plot surface
        depth_axes.plot(x, eta_1(cd), 'k', linestyle=plot.surface_linestyle)

        # Remove ticks from top plot
        num_ticks = len(depth_axes.xaxis.get_ticklocs())
        depth_axes.xaxis.set_ticklabels(["" for n in xrange(num_ticks)])

        # ax1.set_title('')
        depth_axes.set_title('Wave Family %s Perturbation at t = %3.2f' %
                             (wave_family, cd.t))
        depth_axes.set_xlim(xlimits)
        depth_axes.set_ylim(ylimits_depth)
        # depth_axes.set_xlabel('x')
        depth_axes.set_ylabel('Depth (m)')

        # Bottom layer velocity
        bottom_layer = vel_axes.plot(x,
                                     u_2(cd),
                                     'k',
                                     linestyle=plot.internal_linestyle,
                                     label="Bottom Layer Velocity")
        # Top Layer velocity
        top_layer = vel_axes.plot(x,
                                  u_1(cd),
                                  'b',
                                  linestyle=plot.surface_linestyle,
                                  label="Top Layer velocity")

        # Add legend
        vel_axes.legend(loc=4)
        vel_axes.set_title('')
        # vel_axes.set_title('Layer Velocities')
        vel_axes.set_ylabel('Velocities (m/s)')
        vel_axes.set_xlabel('x (m)')
        vel_axes.set_xlim(xlimits)
        vel_axes.set_ylim(ylimits_velocities)

        # Add axis labels (not sure why this needs to be done)
        locs = vel_axes.xaxis.get_ticklocs()
        vel_axes.xaxis.set_ticklabels([str(loc) for loc in locs])

        # This does not work on all versions of matplotlib
        try:
            mpl.subplots_adjust(hspace=0.1)
        except:
            pass

    plotaxes = plotfigure.new_plotaxes()
    plotaxes.afteraxes = twin_axes

    # ========================================================================
    #  Fill plot zoom
    # ========================================================================
    plotfigure = plotdata.new_plotfigure(name='Depth and Momentum Zoomed',
                                         figno=1)
    plotfigure.show = True

    def twin_axes_zoomed(cd):
        fig = mpl.gcf()
        fig.clf()

        # Get x coordinate values
        x = cd.patch.dimensions[0].centers

        # Create axes for each plot, sharing x axis
        depth_axes = fig.add_subplot(211)
        vel_axes = fig.add_subplot(
            212)  #,sharex=depth_axes)     # the velocity scale

        # Bottom layer
        depth_axes.fill_between(x,
                                bathy(cd),
                                eta_1(cd),
                                color=plot.bottom_color)
        # Top Layer
        depth_axes.fill_between(x, eta_1(cd), eta_2(cd), color=plot.top_color)
        # Plot bathy
        depth_axes.plot(x,
                        bathy(cd),
                        color='k',
                        linestyle=plot.bathy_linestyle)
        # Plot internal layer
        depth_axes.plot(x, eta_2(cd), 'kx')
        # Plot surface
        depth_axes.plot(x, eta_1(cd), 'k+')

        # Remove ticks from top plot
        num_ticks = len(depth_axes.xaxis.get_ticklocs())
        depth_axes.xaxis.set_ticklabels(["" for n in xrange(num_ticks)])

        # ax1.set_title('')
        depth_axes.set_title('Wave Family %s Perturbation at t = %3.2f' %
                             (wave_family, cd.t))
        depth_axes.set_xlim(xlimits_zoomed)
        depth_axes.set_ylim(ylimits_depth_zoomed)
        # depth_axes.set_xlabel('x')
        depth_axes.set_ylabel('Depth (m)')

        # Bottom layer velocity
        bottom_layer = vel_axes.plot(x,
                                     u_2(cd),
                                     'k+',
                                     label="Bottom Layer Velocity")
        # Top Layer velocity
        top_layer = vel_axes.plot(x, u_1(cd), 'bx', label="Top Layer velocity")

        # Add legend
        vel_axes.legend(loc=4)
        vel_axes.set_title('')
        # vel_axes.set_title('Layer Velocities')
        vel_axes.set_ylabel('Velocities (m/s)')
        vel_axes.set_xlabel('x (m)')
        vel_axes.set_xlim(xlimits_zoomed)
        vel_axes.set_ylim(ylimits_velocities_zoomed)

        # Add axis labels (not sure why this needs to be done)
        locs = vel_axes.xaxis.get_ticklocs()
        vel_axes.xaxis.set_ticklabels([str(loc) for loc in locs])

        # This does not work on all versions of matplotlib
        try:
            mpl.subplots_adjust(hspace=0.1)
        except:
            pass

    plotaxes = plotfigure.new_plotaxes()
    plotaxes.afteraxes = twin_axes_zoomed

    # ========================================================================
    #  Momentum
    # ========================================================================
    plotfigure = plotdata.new_plotfigure(name="momentum", figno=134)
    plotfigure.show = True

    plotaxes = plotfigure.new_plotaxes()
    plotaxes.title = "Momentum"
    plotaxes.xlimits = xlimits
    plotaxes.ylimits = ylimits_momentum

    # Top layer
    plotitem = plotaxes.new_plotitem(plot_type='1d')
    plotitem.plot_var = 1
    plotitem.plotstyle = 'b-'
    plotitem.show = True

    # Bottom layer
    plotitem = plotaxes.new_plotitem(plot_type='1d')
    plotitem.plot_var = 3
    plotitem.plotstyle = 'k-'
    plotitem.show = True

    # Parameters used only when creating html and/or latex hardcopy
    # e.g., via pyclaw.plotters.frametools.printframes:

    plotdata.printfigs = True  # print figures
    plotdata.print_format = 'png'  # file format
    plotdata.print_framenos = [0, 20, 25, 30, 50]  # list of frames to print
    # plotdata.print_framenos = 'all'          # list of frames to print
    plotdata.print_fignos = 'all'  # list of figures to print
    plotdata.html = True  # create html files of plots?
    plotdata.html_homelink = '../README.html'  # pointer for top of index
    plotdata.latex = True  # create latex file of plots?
    plotdata.latex_figsperline = 2  # layout of plots
    plotdata.latex_framesperline = 1  # layout of plots
    plotdata.latex_makepdf = False  # also run pdflatex?

    return plotdata
Ejemplo n.º 17
0
 def wind(cd):
     return Solution(cd.frameno, path=plotdata.outdir,
                     read_aux=True).state.aux[wind_index, :]
def setplot(plotdata,rho,dry_tolerance):
#--------------------------

    """
    Specify what is to be plotted at each frame.
    Input:  plotdata, an instance of pyclaw.plotters.data.ClawPlotData.
    Output: a modified version of plotdata.

    """

    def jump_afteraxes(current_data):
        # Plot position of jump on plot
        mpl.hold(True)
        mpl.plot([0.5,0.5],[-10.0,10.0],'k--')
        mpl.plot([0.0,1.0],[0.0,0.0],'k--')
        mpl.hold(False)
        mpl.title('Layer Velocities')

    # Load bathymetery
    b = Solution(0, path=plotdata.outdir,read_aux=True).state.aux[bathy_index,:]

	# Load gravitation
    g = Solution(0, path=plotdata.outdir,read_aux=True).state.problem_data['g']

    # Load one minus r
    one_minus_r=Solution(0, path=plotdata.outdir,read_aux=True).state.problem_data['one_minus_r']


    def bathy(cd):
        return b

    def kappa(cd):
        return Solution(cd.frameno,path=plotdata.outdir,read_aux=True).state.aux[kappa_index,:]

    def wind(cd):
        return Solution(cd.frameno,path=plotdata.outdir,read_aux=True).state.aux[wind_index,:]

    def h_1(cd):
        return cd.q[0,:] / rho[0]

    def h_2(cd):
        return cd.q[2,:] / rho[1]

    def eta_2(cd):
        return h_2(cd) + bathy(cd)

    def eta_1(cd):
        return h_1(cd) + eta_2(cd)

    def u_1(cd):
        index = np.nonzero(h_1(cd) > dry_tolerance)
        u_1 = np.zeros(h_1(cd).shape)
        u_1[index] = cd.q[1,index] / cd.q[0,index]
        return u_1

    def u_2(cd):
        index = np.nonzero(h_2(cd) > dry_tolerance)
        u_2 = np.zeros(h_2(cd).shape)
        u_2[index] = cd.q[3,index] / cd.q[2,index]
        return u_2

    def froude_number(u,h):
        Fr=abs(u)/((g*h)**(1/2))
        return Fr

    def Richardson_number(cd):
        index=np.nonzero(h_1(cd)+h_2(cd)>0)
        Ri=np.zeros(h_1(cd).shape)
        Ri[index]=(u_1(cd)[index]-u_2(cd)[index])**2/(g* one_minus_r *(h_1(cd)[index]+h_2(cd)[index]))
        return(Ri)


    def eigenspace_velocity(cd):
        #Problem for left and right
        total_depth_l = h_1(cd)+h_2(cd)
        total_depth_r = h_1(cd)+h_2(cd)
        mult_depth_l = h_1(cd)*h_2(cd)
        mult_depth_r = h_1(cd)*h_2(cd)
        s = np.zeros((4, len(h_1(cd))))
        s[0,:]=(h_1(cd)[:]*u_1(cd)[:] + h_2(cd)[:]*u_2(cd)[:]) / total_depth_l - np.sqrt(g*total_depth_l)
        s[1,:]=(h_2(cd)[:]*u_1(cd)[:] + h_1(cd)[:]*u_2(cd)[:]) / total_depth_l - np.sqrt(g*one_minus_r*mult_depth_l/total_depth_l * (1-(u_1(cd)[:]-u_2(cd)[:])**2/(g*one_minus_r*total_depth_l)))
        s[2,:]=(h_2(cd)[:]*u_1(cd)[:] + h_1(cd)[:]*u_2(cd)[:]) / total_depth_l + np.sqrt(g*one_minus_r*mult_depth_l/total_depth_l * (1-(u_1(cd)[:]-u_2(cd)[:])**2/(g*one_minus_r*total_depth_l)))
        s[3,:]=(h_1(cd)[:]*u_1(cd)[:] + h_2(cd)[:]*u_2(cd)[:]) / total_depth_l - np.sqrt(g*total_depth_l)
        if isinstance(s[1,:], complex) or isinstance(s[2,:], complex):
            print("Hyperbolicity lost for the speed at %s", cd.frameno)

        alpha=np.zeros((4,len(h_1(cd))))
        alpha[0:1,:]=((s[0:1,:]-u_1(cd)[:])**2 - g*h_1(cd)[:])/(g*h_1(cd)[:])
        alpha[2:3,:]=((s[2:3,:]-u_1(cd)[:])**2 - g*h_1(cd)[:])/(g*h_1(cd)[:])

        eig_vec = np.zeros((4,4,len(h_1(cd))))
        eig_vec[0,:,:] = 1.0
        eig_vec[1,:,:] = s[:,:]
        eig_vec[2,:,:] = alpha[:,:]
        eig_vec[3,:,:] = s[:,:]*alpha[:,:]
        return(eig_vec)

    def eigenspace_velocity_3(cd):
        total_depth_l = h_1(cd)+h_2(cd)
        total_depth_r = h_1(cd)+h_2(cd)
        mult_depth_l = h_1(cd)*h_2(cd)
        mult_depth_r = h_1(cd)*h_2(cd)

        s = np.zeros(h_1(cd).shape)
        s = (h_2(cd)*u_1(cd) + h_1(cd)[:]*u_2(cd) / total_depth_l) + np.sqrt(g*one_minus_r*mult_depth_l/total_depth_l * (1-(u_1(cd)-u_2(cd))**2/(g*one_minus_r*total_depth_l)))
        alpha=np.zeros(h_1(cd).shape)
        alpha=((s-u_1(cd))**2 - g*h_1(cd))/(g*h_1(cd))

        eig_vec=alpha*s
        return(eig_vec)

    def eigenspace_velocity_4(cd):
        total_depth_l = h_1(cd)+h_2(cd)
        total_depth_r = h_1(cd)+h_2(cd)
        mult_depth_l = h_1(cd)*h_2(cd)
        mult_depth_r = h_1(cd)*h_2(cd)

        s = np.zeros(h_1(cd).shape)
        s=(h_1(cd)*u_1(cd) + h_2(cd)*u_2(cd)) / total_depth_l - np.sqrt(g*total_depth_l)

        alpha=np.zeros(h_1(cd).shape)
        alpha=((s-u_1(cd))**2 - g*h_1(cd))/(g*h_1(cd))

        eig_vec=s*alpha
        return(eig_vec)

    def eigenvalues(cd):
        index = np.nonzero(np.all([h_1(cd) > dry_tolerance, h_2(cd)>dry_tolerance], axis=0))
        eigenvalues1 = np.zeros(min(h_1(cd).shape, h_2(cd).shape))
        eigenvalues2 = np.zeros(min(h_1(cd).shape, h_2(cd).shape))
        eigenvalues3 = np.zeros(min(h_1(cd).shape, h_2(cd).shape))
        eigenvalues4 = np.zeros(min(h_1(cd).shape, h_2(cd).shape))

        frac = np.zeros(min(h_1(cd).shape, h_2(cd).shape))
        sqrt1 = np.zeros(min(h_1(cd).shape, h_2(cd).shape))
        sqrt2 = np.zeros(min(h_1(cd).shape, h_2(cd).shape))
        frac[index] = (h_1(cd)[index]*u_2(cd)[index] + h_2(cd)[index]*u_1(cd)[index])/(h_1(cd)[index] + h_2(cd)[index])
        sqrt1[index] = np.sqrt(g*(h_1(cd)[index] + h_2(cd)[index]))
        sqrt2[index] = np.sqrt(one_minus_r*g*h_1(cd)[index]*h_2(cd)[index]/(h_1(cd)[index] + h_2(cd)[index])*(1-(u_1(cd)[index]-u_2(cd)[index])**2/(one_minus_r*g*(h_1(cd)[index] + h_2(cd)[index]))))
        eigenvalues1[index] = frac[index]-sqrt1[index]
        eigenvalues2[index] = frac[index]-sqrt2[index]
        eigenvalues3[index] = frac[index]+sqrt2[index]
        eigenvalues4[index] = frac[index]+sqrt1[index]
        return([eigenvalues1, eigenvalues2, eigenvalues3, eigenvalues4])


    def entropy(cd):
        index = np.nonzero(np.all([h_1(cd) > dry_tolerance, h_2(cd)>dry_tolerance], axis=0))
        entropy = np.zeros(min(h_1(cd).shape, h_2(cd).shape))
        h_1i=cd.q[0,index] / rho[0]
        h_2i=cd.q[2,index] / rho[1]
        u_1i=cd.q[1,index] / cd.q[0,index]
        u_2i=cd.q[3,index] / cd.q[2,index]
        entropy[index] = rho[0]*1/2*(h_1i*(u_1i)**2+g*(h_1i)**2) + rho[1]*1/2*(h_2i*(u_2i)**2+g*(h_2i)**2) + rho[0]*g*h_1i*h_2i + g*b[index]*(rho[0]*h_1i+rho[1]*h_2i)
        return entropy



    def entropy_flux(cd):
        index = np.nonzero(np.all([h_1(cd)>dry_tolerance, h_2(cd)>dry_tolerance], axis=0))
        entropy_flux = np.zeros(min(h_1(cd).shape, h_2(cd).shape))
        h_1i=cd.q[0,index] / rho[0]
        h_2i=cd.q[2,index] / rho[1]
        u_1i=cd.q[1,index] / cd.q[0,index]
        u_2i=cd.q[3,index] / cd.q[2,index]
        entropy_flux[index] = rho[0]*(h_1i*(u_1i**2)/2+g*(h_1i**2))*u_1i + rho[1]*(h_2i*(u_2i**2)/2+g*(h_2i**2))*u_2i + rho[0]*g*h_1i*h_2i*(u_1i+u_2i) + g*b[index]*(rho[0]*h_1i*u_1i
         + rho[1]*h_2i*u_2i)
        return entropy_flux


    def entropy_condition_is_valid(cd):

        index_t = int(cd.frameno)
        if index_t>0 :
            #entropy at t=0 doesn't exist
            (x,) = np.nonzero(np.all([h_1(cd)>dry_tolerance, h_2(cd)>dry_tolerance],axis=0))
            len_x = len(x)
            delta_t = Solution(index_t, path=plotdata.outdir,read_aux=True).t - Solution(index_t-1, path=plotdata.outdir,read_aux=True).t
            delta_x = cd.dx
            entropy_cond = np.zeros(min(h_1(cd).shape, h_2(cd).shape))
            for index_x in range(len_x-1):
                index_x_next = index_x + 1
                entropy_flux_actual = entropy_flux(cd)[index_x]
                entropy_flux_prev = entropy_flux(cd)[index_x_next]
                entropy_next=entropy(cd)[index_x]
                entropy_actual=entropy(Solution(index_t-1, path=plotdata.outdir,read_aux=True))[index_x]

                entropy_cond[index_x]= entropy_next-entropy_actual + (delta_t/delta_x)*(entropy_flux_actual-entropy_flux_prev)


            #print(eigenspace_velocity(cd))

            return entropy_cond
        else :
            return([0]*500)

    def froude_number_1(cd):
        index=np.nonzero(h_1(cd) > dry_tolerance)
        Fr=np.zeros(h_1(cd).shape)
        Fr[index] = froude_number(u_1(cd)[index],h_1(cd)[index])
        #print(Fr)
        return(Fr)

    def froude_number_2(cd):
        index=np.nonzero(h_2(cd) > dry_tolerance)
        Fr=np.zeros(h_2(cd).shape)
        Fr[index] = froude_number(u_2(cd)[index],h_2(cd)[index])
        #print(Fr)
        return(Fr)

    def composite_Froude_nb(cd):
        index = np.nonzero(np.all([h_1(cd)>dry_tolerance, h_2(cd)>dry_tolerance], axis=0))
        Fr = np.zeros(min(h_1(cd).shape, h_2(cd).shape))
        Fr1_carre = np.zeros(min(h_1(cd).shape, h_2(cd).shape))
        Fr2_carre = np.zeros(min(h_1(cd).shape, h_2(cd).shape))
        Fr1_carre[index] = (u_1(cd)[index])**2/(one_minus_r * g * h_1(cd)[index])
        Fr2_carre[index] = (u_2(cd)[index])**2/(one_minus_r * g * h_2(cd)[index])
        Fr[index] = np.sqrt( Fr1_carre[index] + Fr2_carre[index] )
        #Fr[index] = np.sqrt(Fr1_carre[index] + Fr2_carre[index]  - one_minus_r * np.sqrt(Fr1_carre) * np.sqrt(Fr2_carre))
        return(Fr)

    def dry_tolerance_(cd):
        return ([dry_tolerance]*(len(cd.q[1])) )

    def limit_entropy_condition(cd):
        return ([0]*(len(cd.q[1])))

    def flow_type(cd):
        return ([1]*len(cd.q[1]))

    def charac(cd):
        values1=[0]*500
        values2=[0]*500

        (eigenvalues1, eigenvalues2, eigenvalues3, eigenvalues4) = eigenvalues(cd)
        values1[0:249]=[(k-500)*eigenvalues1[249]/1000 for k in range(0,500,2)]
        values2[0:249]=[(k-500)*eigenvalues2[249]/1000 for k in range(0,500,2)]
        values2[250:501]=[(k-500)*eigenvalues3[250]/1000 for k in range(500,1000,2)]
        values1[250:501]=[(k-500)*eigenvalues4[250]/1000 for k in range(500,1000,2)]
        return([values1, values2])


    plotdata.clearfigures()  # clear any old figures,axes,items data

    # Window Settings
    xlimits = [0.0,1.0]
    xlimits_zoomed = [0.45,0.55]
    ylimits_momentum = [-5.0,5.0]
    ylimits_depth = [-1.0,0.5]
    ylimits_depth_zoomed = ylimits_depth
    ylimits_velocities = [-8.75,8.75]
    ylimits_velocities_zoomed = ylimits_velocities

    y_limits_depth_only=[0.,5.0]
    y_limits_entropy = [-5.0 , 0.5]
    y_limits_entropy_flux = [-0.023 , 0.003 ]
    y_limits_entropy_condition = y_limits_entropy_flux
    y_limits_entropy_shared =y_limits_entropy_flux
    y_limits_richardson = [-0.1,17.0]
    y_limits_Froude=[-1.0,10.0]
    y_limits_eigenspace=[-12.0,12.0]
    y_limits_eigenspace_4=[-30.0,15.0]
    y_limits_charac=[-5.0,10.0]



    # ========================================================================
    #  Depth and Momentum Plot
    # ========================================================================
    plotfigure = plotdata.new_plotfigure(name='Depth and Momentum')
    plotfigure.show = False

    def twin_axes(cd,xlimits):
        fig = mpl.gcf()
        fig.clf()

        # Get x coordinate values
        x = cd.patch.dimensions[0].centers

        # Create axes for each plot, sharing x axis
        ax1 = fig.add_subplot(211)
        ax2 = fig.add_subplot(212,sharex=ax1)     # the velocity scale

        # Bottom layer
        ax1.fill_between(x,bathy(cd),eta_1(cd),color=plot.bottom_color)
        # Top Layer
        ax1.fill_between(x,eta_1(cd),eta_2(cd),color=plot.top_color)
        # Plot bathy
        ax1.plot(x,bathy(cd),'k',linestyle=plot.bathy_linestyle)
        # Plot internal layer
        ax1.plot(x,eta_2(cd),'k',linestyle=plot.internal_linestyle)
        # Plot surface
        ax1.plot(x,eta_1(cd),'k',linestyle=plot.surface_linestyle)

        # Remove ticks from top plot
        locs,labels = mpl.xticks()
        labels = ['' for i in xrange(len(locs))]
        mpl.xticks(locs,labels)

        # ax1.set_title('')
        ax1.set_title('Solution at t = %3.5f' % cd.t)
        ax1.set_xlim(xlimits)
        ax1.set_ylim(ylimits_depth)
        # ax1.set_xlabel('x')
        ax1.set_ylabel('Depth (m)')

        # Bottom layer velocity
        bottom_layer = ax2.plot(x,u_2(cd),'k',linestyle=plot.internal_linestyle,label="Bottom Layer Velocity")
        # Top Layer velocity
        top_layer = ax2.plot(x,u_1(cd),'b',linestyle=plot.surface_linestyle,label="Top Layer velocity")


        # Add legend
        ax2.legend(loc=4)
        ax2.set_title('')
        # ax1.set_title('Layer Velocities')
        ax2.set_ylabel('Velocities (m/s)')
        ax2.set_xlabel('x (m)')
        ax2.set_xlim(xlimits)
        ax2.set_ylim(ylimits_velocities)

        # This does not work on all versions of matplotlib
        try:
            mpl.subplots_adjust(hspace=0.1)
        except:
            pass

    plotaxes = plotfigure.new_plotaxes()
    plotaxes.afteraxes = lambda cd:twin_axes(cd,xlimits)

    # ========================================================================
    #  Fill plot zoom
    # ========================================================================
    plotfigure = plotdata.new_plotfigure(name='full_zoom')

    plotaxes = plotfigure.new_plotaxes()
    plotaxes.afteraxes = lambda cd:twin_axes(cd,xlimits_zoomed)

    # ========================================================================
    #  Momentum
    # ========================================================================
    plotfigure = plotdata.new_plotfigure(name="momentum")
    plotfigure.show = True

    plotaxes = plotfigure.new_plotaxes()
    plotaxes.title = "Momentum"
    plotaxes.xlimits = xlimits
    plotaxes.ylimits = ylimits_momentum

    # Top layer
    plotitem = plotaxes.new_plotitem(plot_type='1d')
    plotitem.plot_var = 1
    plotitem.plotstyle = 'b-'
    plotitem.show = True

    # Bottom layer
    plotitem = plotaxes.new_plotitem(plot_type='1d')
    plotitem.plot_var = 3
    plotitem.plotstyle = 'k--'
    plotitem.show = True

    # ========================================================================
    #  h-valuesplot
    # ========================================================================
    plotfigure = plotdata.new_plotfigure(name='depths')
    plotfigure.show = False

    plotaxes = plotfigure.new_plotaxes()
    plotaxes.axescmd = 'subplot(2,1,1)'
    plotaxes.title = 'Depths'
    plotaxes.xlimits = xlimits
    plotaxes.afteraxes = jump_afteraxes
    # plotaxes.ylimits = [-1.0,0.5]
    # plotaxes.xlimits = [0.45,0.55]
    # plotaxes.xlimits = [0.0,2000.0]
    # plotaxes.ylimits = [-2000.0,100.0]

    # Top layer
    plotitem = plotaxes.new_plotitem(plot_type='1d')
    plotitem.plot_var = 0
    plotitem.plotstyle = '-'
    plotitem.color = (0.2,0.8,1.0)
    plotitem.show = True

    # Bottom layer
    plotitem = plotaxes.new_plotitem(plot_type='1d')
    plotitem.plot_var = 2
    plotitem.color = 'b'
    plotitem.plotstyle = '-'
    plotitem.show = True

    plotaxes = plotfigure.new_plotaxes()
    plotaxes.axescmd = 'subplot(2,1,2)'
    plotaxes.title = 'Depths Zoomed'
    plotaxes.afteraxes = jump_afteraxes
    # plotaxes.xlimits = [0.0,1.0]
    # plotaxes.ylimits = [-1.0,0.5]
    plotaxes.xlimits = [0.45,0.55]
    # plotaxes.xlimits = [0.0,2000.0]
    # plotaxes.ylimits = [-2000.0,100.0]

    # Top layer
    plotitem = plotaxes.new_plotitem(plot_type='1d')
    plotitem.plot_var = 0
    plotitem.plotstyle = 'x'
    plotitem.color = (0.2,0.8,1.0)
    plotitem.show = True

    # Bottom layer
    plotitem = plotaxes.new_plotitem(plot_type='1d')
    plotitem.plot_var = 2
    plotitem.color = 'b'
    plotitem.plotstyle = '+'
    plotitem.show = True

    # ========================================================================
    #  Plot Layer Velocities
    # ========================================================================
    plotfigure = plotdata.new_plotfigure(name='velocities')
    plotfigure.show = False

    plotaxes = plotfigure.new_plotaxes()
    #plotaxes.axescmd = 'subplot(1,2,1)'
    plotaxes.title = "Layer Velocities"
    plotaxes.xlimits = 'auto'
    plotaxes.ylimits = 'auto'

    # Top layer
    plotitem = plotaxes.new_plotitem(plot_type='1d_plot')
    plotitem.plot_var = u_1
    plotitem.color = 'b'
    plotitem.show = True

    # Bottom layer
    plotitem = plotaxes.new_plotitem(plot_type='1d_plot')
    plotitem.color = (0.2,0.8,1.0)
    plotitem.plot_var = u_2
    plotitem.show = True

    # Parameters used only when creating html and/or latex hardcopy
    # e.g., via pyclaw.plotters.frametools.printframes:

    # plotdata.printfigs = True                # print figures
    # plotdata.print_format = 'png'            # file format
    # plotdata.print_framenos = 'all'          # list of frames to print
    # plotdata.print_fignos = 'all'            # list of figures to print
    # plotdata.html = True                     # create html files of plots?
    # plotdata.html_homelink = '../README.html'   # pointer for top of index
    # plotdata.latex = True                    # create latex file of plots?
    # plotdata.latex_figsperline = 2           # layout of plots
    # plotdata.latex_framesperline = 1         # layout of plots
    # plotdata.latex_makepdf = False           # also run pdflatex?

    # ========================================================================
    #  h-values
    # ========================================================================
    plotfigure = plotdata.new_plotfigure(name = "Depths and dry tolerance")
    plotfigure.show = True

    def depths_same_plot(cd,xlimits):
        fig = mpl.gcf()
        fig.clf()

        # Get x coordinate values
        x = cd.patch.dimensions[0].centers

        # Create axes for each plot, sharing x axis
        ax1 = fig.add_subplot(111)

        # Bottom layer
        ax1.fill_between(x,bathy(cd),eta_1(cd),color=plot.bottom_color)
        # Top Layer
        ax1.fill_between(x,eta_1(cd),eta_2(cd),color=plot.top_color)
        # Plot bathy
        ax1.plot(x,bathy(cd),'k',linestyle=plot.bathy_linestyle)
        # Plot internal layer
        ax1.plot(x,eta_2(cd),'k',linestyle=plot.internal_linestyle)
        # Plot surface
        ax1.plot(x,eta_1(cd),'k',linestyle=plot.surface_linestyle)
        #plot depth 1
        #ax1.plot(x,h_1(cd),'k',color='green')
        #plot_depth 2
        #ax1.plot(x,h_2(cd),'k',color='orange')
        # Plot dry tolerance
        ax1.plot(x,dry_tolerance_(cd),'k',linestyle=':', color = 'red')

        # Remove ticks from top plot
        locs,labels = mpl.xticks()
        labels = ['' for i in xrange(len(locs))]
        mpl.xticks(locs,labels)

        # ax1.set_title('')
        ax1.set_title('Solution at t = %3.5f' % cd.t)
        ax1.set_xlim(xlimits)
        ax1.set_ylim(ylimits_depth)
        # ax1.set_xlabel('x')
        ax1.set_ylabel('Depth (m)')


        # # This does not work on all versions of matplotlib
        # try:
        #     mpl.subplots_adjust(hspace=0.1)
        # except:
        #     pass

    plotaxes = plotfigure.new_plotaxes()
    plotaxes.afteraxes = lambda cd:depths_same_plot(cd,xlimits)

    # ====================================================
    # Plot Entropy
    # ====================================================

    plotfigure = plotdata.new_plotfigure(name="Entropy")
    plotfigure.show = True

    plotaxes = plotfigure.new_plotaxes()
    plotaxes.title = "Entropy"
    plotaxes.xlimits = xlimits
    plotaxes.ylimits = 'auto'

    # Entropy
    plotitem = plotaxes.new_plotitem(plot_type='1d')
    plotitem.plot_var = entropy
    plotitem.color = 'b'
    plotitem.show = True



	# # Parameters used only when creating html and/or latex hardcopy
    # # e.g., via pyclaw.plotters.frametools.printframes:
    #
    # plotdata.printfigs = True                # print figures
    # plotdata.print_format = 'png'            # file format
    # plotdata.print_framenos = 'all'          # list of frames to print
    # plotdata.print_fignos = 'all'            # list of figures to print
    # plotdata.html = True                     # create html files of plots?
    # plotdata.html_homelink = '../README.html'   # pointer for top of index
    # plotdata.latex = True                    # create latex file of plots?
    # plotdata.latex_figsperline = 2           # layout of plots
    # plotdata.latex_framesperline = 1         # layout of plots
    # plotdata.latex_makepdf = False           # also run pdflatex?


    # ====================================================
    # Plot Entropy flux
    # ====================================================

    plotfigure = plotdata.new_plotfigure(name="Entropy flux")
    plotfigure.show = True

    plotaxes = plotfigure.new_plotaxes()
    plotaxes.title = "Entropy flux"
    plotaxes.xlimits = xlimits
    plotaxes.ylimits = 'auto'

    # Entropy
    plotitem = plotaxes.new_plotitem(plot_type='1d_plot')
    plotitem.plot_var = entropy_flux
    plotitem.color = 'b'
    plotitem.show = True



	# Parameters used only when creating html and/or latex hardcopy
    # e.g., via pyclaw.plotters.frametools.printframes:

    # plotdata.printfigs = True                # print figures
    # plotdata.print_format = 'png'            # file format
    # plotdata.print_framenos = 'all'          # list of frames to print
    # plotdata.print_fignos = 'all'            # list of figures to print
    # plotdata.html = True                     # create html files of plots?
    # plotdata.html_homelink = '../README.html'   # pointer for top of index
    # plotdata.latex = True                    # create latex file of plots?
    # plotdata.latex_figsperline = 2           # layout of plots
    # plotdata.latex_framesperline = 1         # layout of plots
    # plotdata.latex_makepdf = False           # also run pdflatex?

    # ====================================================
    # Plot Entropy Condition
    # ====================================================

    plotfigure = plotdata.new_plotfigure(name="Entropy condition")
    plotfigure.show = True

    plotaxes = plotfigure.new_plotaxes()
    plotaxes.title = "Entropy Condition"
    plotaxes.xlimits = xlimits
    plotaxes.ylimits = 'auto'

    # Entropy
    plotitem = plotaxes.new_plotitem(plot_type='1d_plot')
    plotitem.plot_var = entropy_condition_is_valid
    plotitem.color = 'b'
    plotitem.show = True

    # ====================================================
    # Plot Richardson Number
    # ====================================================

    plotfigure = plotdata.new_plotfigure(name="Kappa")
    plotfigure.show = True

    plotaxes = plotfigure.new_plotaxes()
    plotaxes.title = "Richardson number"
    plotaxes.xlimits = xlimits
    plotaxes.ylimits = y_limits_richardson

    # Richardson
    plotitem = plotaxes.new_plotitem(plot_type='1d_plot')
    plotitem.plot_var = Richardson_number
    plotitem.color = 'b'
    plotitem.show = True

    # ========================================================================
    #  Froude number
    # ========================================================================
    plotfigure = plotdata.new_plotfigure(name = "Froude number")
    plotfigure.show = False

    def froude_same_plot(cd,xlimits):
        fig = mpl.gcf()
        fig.clf()

        # Get x coordinate values
        x = cd.patch.dimensions[0].centers

        # Create axes for each plot, sharing x axis
        ax1 = fig.add_subplot(211)
        ax2 = fig.add_subplot(212,sharex=ax1)

        # Froude number 1
        ax1.plot(x,froude_number_1(cd),'k',color = 'blue')
        # Plot limit flow type
        ax1.plot(x,flow_type(cd),'k',linestyle=':', color = 'red')


        # Remove ticks from top plot
        locs,labels = mpl.xticks()
        labels = ['' for i in xrange(len(locs))]
        mpl.xticks(locs,labels)

        # ax1.set_title('')
        ax1.set_title('Solution at t = %3.5f' % cd.t)
        ax1.set_xlim(xlimits)
        ax1.set_ylim(y_limits_Froude)
        # ax1.set_xlabel('x')
        ax1.set_ylabel('Froude number 1')


        # froude_number_2
        ax2.plot(x,froude_number_2(cd),'k',color='green')
        # Plot limit flow type
        ax2.plot(x,flow_type(cd),'k',linestyle=':', color = 'red')


        # Add legend
        ax2.legend(loc=4)
        ax2.set_title('')
        # ax1.set_title('Layer Velocities')
        ax2.set_ylabel('Froude number 2')
        ax2.set_xlabel('x (m)')
        ax2.set_xlim(xlimits)
        ax2.set_ylim(y_limits_Froude)

        # This does not work on all versions of matplotlib
        try:
            mpl.subplots_adjust(hspace=0.1)
        except:
            pass

    plotaxes = plotfigure.new_plotaxes()
    plotaxes.afteraxes = lambda cd:froude_same_plot(cd,xlimits)

    # ====================================================
    # Plot Richardson Number
    # ====================================================

    plotfigure = plotdata.new_plotfigure(name="Composite Froude")
    plotfigure.show = True

    plotaxes = plotfigure.new_plotaxes()
    plotaxes.title = "Composite Froude number"
    plotaxes.xlimits = xlimits
    plotaxes.ylimits = 'auto'

    # Composite Froude number
    plotitem = plotaxes.new_plotitem(plot_type='1d_plot')
    plotitem.plot_var = composite_Froude_nb
    plotitem.color = 'b'
    plotitem.show = True

    # ========================================================================
    #  Eigenspaces
    # ========================================================================
    plotfigure = plotdata.new_plotfigure(name = "Eigenspace")
    plotfigure.show = True

    def eigenspace_same_plot(cd,xlimits):
        fig = mpl.gcf()
        fig.clf()

        # Get x coordinate values
        x = cd.patch.dimensions[0].centers

        # Create axes for each plot, sharing x axis
        ax1 = fig.add_subplot(221)
        ax2 = fig.add_subplot(223,sharex=ax1)
        ax3 = fig.add_subplot(222)
        ax4 = fig.add_subplot(224,sharex=ax3)

        # Eigenspace 1
        ax1.plot(x,eigenspace_velocity(cd)[0,0,:],'k',color = 'blue')
        ax1.plot(x,eigenspace_velocity(cd)[0,1,:],'k',color = 'red')
        ax1.plot(x,eigenspace_velocity(cd)[0,2,:],'k',color = 'green')
        ax1.plot(x,eigenspace_velocity(cd)[0,3,:],'k',color = 'grey')

        #Eigenspace 2
        ax2.plot(x,eigenspace_velocity(cd)[1,0,:],'k',color = 'blue')
        ax2.plot(x,eigenspace_velocity(cd)[1,1,:],'k',color = 'red')
        ax2.plot(x,eigenspace_velocity(cd)[1,2,:],'k',color = 'green')
        ax2.plot(x,eigenspace_velocity(cd)[1,3,:],'k',color = 'grey')

        #Eigenspace 3
        ax3.plot(x,eigenspace_velocity(cd)[2,0,:],'k',color = 'blue')
        ax3.plot(x,eigenspace_velocity(cd)[2,1,:],'k',color = 'red')
        ax3.plot(x,eigenspace_velocity(cd)[2,2,:],'k',color = 'green')
        ax3.plot(x,eigenspace_velocity(cd)[2,3,:],'k',color = 'grey')

        #Eigenspace 4
        ax4.plot(x,eigenspace_velocity(cd)[3,0,:],'k',color = 'blue')
        ax4.plot(x,eigenspace_velocity(cd)[3,1,:],'k',color = 'red')
        ax4.plot(x,eigenspace_velocity(cd)[3,2,:],'k',color = 'green')
        ax4.plot(x,eigenspace_velocity(cd)[3,3,:],'k',color = 'grey')

        # Remove ticks from top plot
        locs,labels = mpl.xticks()
        labels = ['' for i in xrange(len(locs))]
        mpl.xticks(locs,labels)

        # ax1.set_title('')
        ax1.set_title('Solution at t = %3.5f' % cd.t)
        ax1.set_xlim(xlimits)
        ax1.set_ylim(y_limits_eigenspace)
        ax1.set_ylabel('Eigenspace 1')

        # Add legend
        ax2.legend(loc=4)
        ax2.set_title('')
        ax2.set_ylabel('Eigenspace 2')
        ax2.set_xlabel('x (m)')
        ax2.set_xlim(xlimits)
        ax2.set_ylim(y_limits_eigenspace)


        ax3.set_xlim(xlimits)
        ax3.set_ylim(y_limits_eigenspace)
        #ax3.set_ylabel('Eigenspace 3')

        # Add legend
        ax4.legend(loc=4)
        ax4.set_title('')
        #ax4.set_ylabel('Eigenspace 4')
        ax4.set_xlabel('x (m)')
        ax4.set_xlim(xlimits)
        ax4.set_ylim(y_limits_eigenspace)



        # This does not work on all versions of matplotlib
        try:
            mpl.subplots_adjust(hspace=0.1)
        except:
            pass

    plotaxes = plotfigure.new_plotaxes()
    plotaxes.afteraxes = lambda cd:eigenspace_same_plot(cd,xlimits)

    # ========================================================================
    #  Zoom eigenspaces
    # ========================================================================
    plotfigure = plotdata.new_plotfigure(name = "Eigenspaces 4")
    plotfigure.show = True

    def eigenspace_same_plot_zoom(cd,xlimits):
        fig = mpl.gcf()
        fig.clf()

        # Get x coordinate values
        x = cd.patch.dimensions[0].centers

        # Create axes for each plot, sharing x axis
        ax1 = fig.add_subplot(111)


        #Eigenspace 4
        ax1.plot(x,eigenspace_velocity(cd)[3,0,:],'k',color = 'blue')
        ax1.plot(x,eigenspace_velocity(cd)[3,1,:],'k',color = 'red')
        ax1.plot(x,eigenspace_velocity(cd)[3,2,:],'k',color = 'green')
        ax1.plot(x,eigenspace_velocity(cd)[3,3,:],'k',color = 'grey')

        # Remove ticks from top plot
        locs,labels = mpl.xticks()
        labels = ['' for i in xrange(len(locs))]
        mpl.xticks(locs,labels)

        # ax1.set_title('')
        ax1.set_title('Solution at t = %3.5f' % cd.t)
        ax1.set_xlim(xlimits)
        ax1.set_ylim(y_limits_eigenspace_4)
        ax1.set_ylabel('Eigenspace 4')



        # This does not work on all versions of matplotlib
        try:
            mpl.subplots_adjust(hspace=0.1)
        except:
            pass

    plotaxes = plotfigure.new_plotaxes()
    plotaxes.afteraxes = lambda cd:eigenspace_same_plot_zoom(cd,xlimits)

    # ====================================================
    # Plot Eigenspace 3
    # ====================================================

    plotfigure = plotdata.new_plotfigure(name="Eigenspace 3")
    plotfigure.show = False

    plotaxes = plotfigure.new_plotaxes()
    plotaxes.title = "Eigenspace 3"
    plotaxes.xlimits = xlimits
    plotaxes.ylimits = 'auto'

    # Richardson
    plotitem = plotaxes.new_plotitem(plot_type='1d_plot')
    plotitem.plot_var = eigenspace_velocity_3
    plotitem.color = 'b'
    plotitem.show = True



    # ====================================================
    # Plot Eigenspace 4
    # ====================================================

    plotfigure = plotdata.new_plotfigure(name="Eigenspace 4")
    plotfigure.show = False

    plotaxes = plotfigure.new_plotaxes()
    plotaxes.title = "Eigenspace 4"
    plotaxes.xlimits = xlimits
    plotaxes.ylimits = 'auto'

    # Richardson
    plotitem = plotaxes.new_plotitem(plot_type='1d_plot')
    plotitem.plot_var = eigenspace_velocity_4
    plotitem.color = 'b'
    plotitem.show = True

    # ========================================================================
    #  Zoom eigenspaces
    # ========================================================================
    plotfigure = plotdata.new_plotfigure(name = "Characteristic")
    plotfigure.show = True

    def charac_same_plot(cd,xlimits):
        fig = mpl.gcf()
        fig.clf()

        # Get x coordinate values
        x = cd.patch.dimensions[0].centers

        # Create axes for each plot, sharing x axis
        ax1 = fig.add_subplot(111)


        #Eigenspace 4
        ax1.plot(x,charac(cd)[0],'k',color = 'blue')
        ax1.plot(x,charac(cd)[1],'k',color = 'green')
        #ax1.plot(x,charac(cd)[2],'k',color = 'green')
        #ax1.plot(x,charac(cd)[3],'k',color = 'grey')
        ax1.plot(x,limit_entropy_condition(cd),'k',linestyle=':',color = 'red')

        # Remove ticks from top plot
        locs,labels = mpl.xticks()
        labels = ['' for i in xrange(len(locs))]
        mpl.xticks(locs,labels)

        # ax1.set_title('')
        ax1.set_title('Solution at t = %3.5f' % cd.t)
        ax1.set_xlim(xlimits)
        ax1.set_ylim(y_limits_charac)
        ax1.set_ylabel('t')



        # This does not work on all versions of matplotlib
        try:
            mpl.subplots_adjust(hspace=0.1)
        except:
            pass

    plotaxes = plotfigure.new_plotaxes()
    plotaxes.afteraxes = lambda cd:charac_same_plot(cd,xlimits)


	# Parameters used only when creating html and/or latex hardcopy
    # e.g., via pyclaw.plotters.frametools.printframes:

    plotdata.printfigs = True                # print figures
    plotdata.print_format = 'png'            # file format
    plotdata.print_framenos = 'all'          # list of frames to print
    plotdata.print_fignos = 'all'            # list of figures to print
    plotdata.html = True                     # create html files of plots?
    plotdata.html_homelink = '../README.html'   # pointer for top of index
    plotdata.latex = True                    # create latex file of plots?
    plotdata.latex_figsperline = 2           # layout of plots
    plotdata.latex_framesperline = 1         # layout of plots
    plotdata.latex_makepdf = False           # also run pdflatex?

    return plotdata