Ejemplo n.º 1
0
 def cost(self, X):
     if len(X) != 4:
         raise ValueError("The number of inputs does not match.")
     cost = GMM(X[0], X[1], X[2], X[3])
     if self.use_sum:
         return cost.sum()
     else:
         return cost.mean()
Ejemplo n.º 2
0
 def cost(self, X):
     if len(X) != 4:
         raise ValueError("The number of inputs does not match.")
     cost = GMM(X[0], X[1], X[2], X[3])
     if self.use_sum:
         return cost.sum()
     else:
         return cost.mean()
Ejemplo n.º 3
0
((s_t, s_t_is, kl_t, theta_mu_t, theta_sig_t, coeff_t, mll), updates) =\
    theano.scan(fn=inner_fn,
                sequences=[x],
                outputs_info=[main_lstm.get_init_state(batch_size),
                              main_lstm.get_init_state(batch_size*num_sample),
                              None, None, None, None, None])

for k, v in updates.iteritems():
    k.default_update = v

reshaped_x = x.reshape((x.shape[0]*x.shape[1], -1))
reshaped_theta_mu = theta_mu_t.reshape((theta_mu_t.shape[0]*theta_mu_t.shape[1], -1))
reshaped_theta_sig = theta_sig_t.reshape((theta_sig_t.shape[0]*theta_sig_t.shape[1], -1))
reshaped_coeff = coeff_t.reshape((coeff_t.shape[0]*coeff_t.shape[1], -1))

recon = GMM(reshaped_x, reshaped_theta_mu, reshaped_theta_sig, reshaped_coeff)
recon = recon.reshape((theta_mu_t.shape[0], theta_mu_t.shape[1]))
recon_term = recon.sum(axis=0).mean()
kl_term = kl_t.sum(axis=0).mean()
nll_lower_bound = recon_term + kl_term
nll_lower_bound.name = 'nll_lower_bound'

mll = -mll.sum(axis=0).mean()
mll.name = 'marginal_nll'

outputs = [mll, nll_lower_bound]
monitor_fn = theano.function(inputs=[x],
                             outputs=outputs,
                             on_unused_input='ignore',
                             allow_input_downcast=True)
def main(args):

    #theano.optimizer='fast_compile'
    #theano.config.exception_verbosity='high'

    trial = int(args['trial'])
    pkl_name = 'vrnn_gmm_%d' % trial
    channel_name = 'valid_nll_upper_bound'

    data_path = args['data_path']
    save_path = args[
        'save_path']  #+'/gmm/'+datetime.datetime.now().strftime("%y-%m-%d_%H-%M")
    flgMSE = int(args['flgMSE'])

    period = int(args['period'])
    n_steps = int(args['n_steps'])
    stride_train = int(args['stride_train'])
    stride_test = n_steps  # int(args['stride_test'])

    monitoring_freq = int(args['monitoring_freq'])
    epoch = int(args['epoch'])
    batch_size = int(args['batch_size'])
    x_dim = int(args['x_dim'])
    y_dim = int(args['y_dim'])
    flgAgg = int(args['flgAgg'])
    z_dim = int(args['z_dim'])
    rnn_dim = int(args['rnn_dim'])
    k = int(args['num_k'])  #a mixture of K Gaussian functions
    lr = float(args['lr'])
    debug = int(args['debug'])
    num_sequences_per_batch = int(args['numSequences'])  #based on appliance
    loadParam = args['loadAsKelly']
    target_inclusion_prob = float(args['target_inclusion_prob'])
    loadAsKelly = True
    if (loadParam == 'N' or loadParam == 'n' or loadParam == 'no'
            or loadParam == 'NO' or loadParam == 'No'):
        loadAsKelly = False

    print "trial no. %d" % trial
    print "batch size %d" % batch_size
    print "learning rate %f" % lr
    print "saving pkl file '%s'" % pkl_name
    print "to the save path '%s'" % save_path

    q_z_dim = 100  #150
    p_z_dim = 60  #150
    p_x_dim = 20  #250
    x2s_dim = 40  #250
    z2s_dim = 40  #150
    target_dim = k  #x_dim #(x_dim-1)*k

    model = Model()
    Xtrain, ytrain, Xval, yval, reader = fetch_ukdale(
        data_path,
        windows,
        appliances,
        numApps=flgAgg,
        period=period,
        n_steps=n_steps,
        stride_train=stride_train,
        stride_test=stride_test,
        flgAggSumScaled=1,
        flgFilterZeros=1,
        isKelly=loadAsKelly,
        seq_per_batch=num_sequences_per_batch,
        target_inclusion_prob=target_inclusion_prob)

    instancesPlot = {
        0: [4, 20],
        2: [5, 10]
    }  #for now use hard coded instancesPlot for kelly sampling
    if (not loadAsKelly):
        instancesPlot = reader.build_dict_instances_plot(
            listDates, batch_size, Xval.shape[0])

    train_data = UKdale(
        name='train',
        prep='normalize',
        cond=True,  # False
        #path=data_path,
        inputX=Xtrain,
        labels=ytrain)

    X_mean = train_data.X_mean
    X_std = train_data.X_std

    valid_data = UKdale(
        name='valid',
        prep='normalize',
        cond=True,  # False
        #path=data_path,
        X_mean=X_mean,
        X_std=X_std,
        inputX=Xval,
        labels=yval)

    init_W = InitCell('rand')
    init_U = InitCell('ortho')
    init_b = InitCell('zeros')
    init_b_sig = InitCell('const', mean=0.6)

    x, mask, y, y_mask = train_data.theano_vars()
    x.name = 'x_original'
    if debug:
        x.tag.test_value = np.zeros((15, batch_size, x_dim), dtype=np.float32)
        temp = np.ones((15, batch_size), dtype=np.float32)
        temp[:, -2:] = 0.
        mask.tag.test_value = temp

    x_1 = FullyConnectedLayer(name='x_1',
                              parent=['x_t'],
                              parent_dim=[x_dim],
                              nout=x2s_dim,
                              unit='relu',
                              init_W=init_W,
                              init_b=init_b)

    z_1 = FullyConnectedLayer(name='z_1',
                              parent=['z_t'],
                              parent_dim=[z_dim],
                              nout=z2s_dim,
                              unit='relu',
                              init_W=init_W,
                              init_b=init_b)

    rnn = LSTM(name='rnn',
               parent=['x_1', 'z_1'],
               parent_dim=[x2s_dim, z2s_dim],
               nout=rnn_dim,
               unit='tanh',
               init_W=init_W,
               init_U=init_U,
               init_b=init_b)
    '''
    dissag_pred = FullyConnectedLayer(name='disag_1',
                                  parent=['s_tm1'],
                                  parent_dim=[rnn_dim],
                                  nout=num_apps,
                                  unit='relu',
                                  init_W=init_W,
                                  init_b=init_b)
    '''
    phi_1 = FullyConnectedLayer(name='phi_1',
                                parent=['x_1', 's_tm1'],
                                parent_dim=[x2s_dim, rnn_dim],
                                nout=q_z_dim,
                                unit='relu',
                                init_W=init_W,
                                init_b=init_b)

    phi_mu = FullyConnectedLayer(name='phi_mu',
                                 parent=['phi_1'],
                                 parent_dim=[q_z_dim],
                                 nout=z_dim,
                                 unit='linear',
                                 init_W=init_W,
                                 init_b=init_b)

    phi_sig = FullyConnectedLayer(name='phi_sig',
                                  parent=['phi_1'],
                                  parent_dim=[q_z_dim],
                                  nout=z_dim,
                                  unit='softplus',
                                  cons=1e-4,
                                  init_W=init_W,
                                  init_b=init_b_sig)

    prior_1 = FullyConnectedLayer(name='prior_1',
                                  parent=['s_tm1'],
                                  parent_dim=[rnn_dim],
                                  nout=p_z_dim,
                                  unit='relu',
                                  init_W=init_W,
                                  init_b=init_b)

    prior_mu = FullyConnectedLayer(name='prior_mu',
                                   parent=['prior_1'],
                                   parent_dim=[p_z_dim],
                                   nout=z_dim,
                                   unit='linear',
                                   init_W=init_W,
                                   init_b=init_b)

    prior_sig = FullyConnectedLayer(name='prior_sig',
                                    parent=['prior_1'],
                                    parent_dim=[p_z_dim],
                                    nout=z_dim,
                                    unit='softplus',
                                    cons=1e-4,
                                    init_W=init_W,
                                    init_b=init_b_sig)

    theta_1 = FullyConnectedLayer(name='theta_1',
                                  parent=['z_1', 's_tm1'],
                                  parent_dim=[z2s_dim, rnn_dim],
                                  nout=p_x_dim,
                                  unit='relu',
                                  init_W=init_W,
                                  init_b=init_b)

    theta_mu = FullyConnectedLayer(name='theta_mu',
                                   parent=['theta_1'],
                                   parent_dim=[p_x_dim],
                                   nout=target_dim,
                                   unit='linear',
                                   init_W=init_W,
                                   init_b=init_b)

    theta_sig = FullyConnectedLayer(name='theta_sig',
                                    parent=['theta_1'],
                                    parent_dim=[p_x_dim],
                                    nout=target_dim,
                                    unit='softplus',
                                    cons=1e-4,
                                    init_W=init_W,
                                    init_b=init_b_sig)

    coeff = FullyConnectedLayer(name='coeff',
                                parent=['theta_1'],
                                parent_dim=[p_x_dim],
                                nout=k,
                                unit='softmax',
                                init_W=init_W,
                                init_b=init_b)

    corr = FullyConnectedLayer(name='corr',
                               parent=['theta_1'],
                               parent_dim=[p_x_dim],
                               nout=k,
                               unit='tanh',
                               init_W=init_W,
                               init_b=init_b)

    binary = FullyConnectedLayer(name='binary',
                                 parent=['theta_1'],
                                 parent_dim=[p_x_dim],
                                 nout=1,
                                 unit='sigmoid',
                                 init_W=init_W,
                                 init_b=init_b)

    nodes = [
        rnn,
        x_1,
        z_1,  #dissag_pred,
        phi_1,
        phi_mu,
        phi_sig,
        prior_1,
        prior_mu,
        prior_sig,
        theta_1,
        theta_mu,
        theta_sig,
        coeff
    ]  #, corr, binary

    params = OrderedDict()

    for node in nodes:
        if node.initialize() is not None:
            params.update(node.initialize())

    params = init_tparams(params)

    s_0 = rnn.get_init_state(batch_size)

    x_1_temp = x_1.fprop([x], params)

    def inner_fn(x_t, s_tm1):

        phi_1_t = phi_1.fprop([x_t, s_tm1], params)
        phi_mu_t = phi_mu.fprop([phi_1_t], params)
        phi_sig_t = phi_sig.fprop([phi_1_t], params)

        prior_1_t = prior_1.fprop([s_tm1], params)
        prior_mu_t = prior_mu.fprop([prior_1_t], params)
        prior_sig_t = prior_sig.fprop([prior_1_t], params)

        z_t = Gaussian_sample(phi_mu_t, phi_sig_t)
        z_1_t = z_1.fprop([z_t], params)

        theta_1_t = theta_1.fprop([z_1_t, s_tm1], params)
        theta_mu_t = theta_mu.fprop([theta_1_t], params)
        theta_sig_t = theta_sig.fprop([theta_1_t], params)

        coeff_t = coeff.fprop([theta_1_t], params)
        #corr_t = corr.fprop([theta_1_t], params)
        #binary_t = binary.fprop([theta_1_t], params)

        pred = GMM_sample(theta_mu_t, theta_sig_t,
                          coeff_t)  #Gaussian_sample(theta_mu_t, theta_sig_t)
        s_t = rnn.fprop([[x_t, z_1_t], [s_tm1]], params)
        #y_pred = dissag_pred.fprop([s_t], params)

        return s_t, phi_mu_t, phi_sig_t, prior_mu_t, prior_sig_t, z_t, z_1_t, theta_1_t, theta_mu_t, theta_sig_t, coeff_t, pred  #, y_pred
        #corr_temp, binary_temp
    ((s_temp, phi_mu_temp, phi_sig_temp, prior_mu_temp, prior_sig_temp,z_t_temp, z_1_temp, theta_1_temp, theta_mu_temp, theta_sig_temp, coeff_temp, prediction), updates) =\
        theano.scan(fn=inner_fn,
                    sequences=[x_1_temp],
                    outputs_info=[s_0, None, None, None, None, None, None,  None, None, None, None, None])

    for k, v in updates.iteritems():
        k.default_update = v

    s_temp = concatenate(
        [s_0[None, :, :], s_temp[:-1]], axis=0
    )  # seems like this is for creating an additional dimension to s_0
    '''
    theta_1_temp = theta_1.fprop([z_1_temp, s_temp], params)
    theta_mu_temp = theta_mu.fprop([theta_1_temp], params)
    theta_sig_temp = theta_sig.fprop([theta_1_temp], params)
    coeff_temp = coeff.fprop([theta_1_temp], params)
    corr_temp = corr.fprop([theta_1_temp], params)
    binary_temp = binary.fprop([theta_1_temp], params)
    '''

    s_temp.name = 'h_1'  #gisse
    z_1_temp.name = 'z_1'  #gisse
    z_t_temp.name = 'z'
    theta_mu_temp.name = 'theta_mu_temp'
    theta_sig_temp.name = 'theta_sig_temp'
    coeff_temp.name = 'coeff'
    #corr_temp.name = 'corr'
    #binary_temp.name = 'binary'
    if (flgAgg == -1):
        prediction.name = 'x_reconstructed'
        mse = T.mean((prediction - x)**2)  # CHECK RESHAPE with an assertion
        mae = T.mean(T.abs(prediction - x))
        mse.name = 'mse'
        pred_in = x.reshape((x_shape[0] * x_shape[1], -1))
    else:
        prediction.name = 'pred_' + str(flgAgg)
        #[:,:,flgAgg].reshape((y.shape[0],y.shape[1],1)
        mse = T.mean(
            (prediction - y)**2)  # As axis = None is calculated for all
        mae = T.mean(T.abs_(prediction - y))
        mse.name = 'mse'
        mae.name = 'mae'
        pred_in = y.reshape((y.shape[0] * y.shape[1], -1))

    kl_temp = KLGaussianGaussian(phi_mu_temp, phi_sig_temp, prior_mu_temp,
                                 prior_sig_temp)

    x_shape = x.shape

    theta_mu_in = theta_mu_temp.reshape((x_shape[0] * x_shape[1], -1))
    theta_sig_in = theta_sig_temp.reshape((x_shape[0] * x_shape[1], -1))
    coeff_in = coeff_temp.reshape((x_shape[0] * x_shape[1], -1))
    #corr_in = corr_temp.reshape((x_shape[0]*x_shape[1], -1))
    #binary_in = binary_temp.reshape((x_shape[0]*x_shape[1], -1))

    recon = GMM(
        pred_in, theta_mu_in, theta_sig_in, coeff_in
    )  # BiGMM(x_in, theta_mu_in, theta_sig_in, coeff_in, corr_in, binary_in)
    recon = recon.reshape((x_shape[0], x_shape[1]))
    recon.name = 'gmm_out'

    #recon = recon * mask

    recon_term = recon.sum(axis=0).mean()
    recon_term.name = 'recon_term'

    #kl_temp = kl_temp * mask

    kl_term = kl_temp.sum(axis=0).mean()
    kl_term.name = 'kl_term'

    nll_upper_bound = recon_term + kl_term  #+ mse
    if (flgMSE):
        nll_upper_bound = nll_upper_bound + mse
    nll_upper_bound.name = 'nll_upper_bound'

    max_x = x.max()
    mean_x = x.mean()
    min_x = x.min()
    max_x.name = 'max_x'
    mean_x.name = 'mean_x'
    min_x.name = 'min_x'

    max_theta_mu = theta_mu_in.max()
    mean_theta_mu = theta_mu_in.mean()
    min_theta_mu = theta_mu_in.min()
    max_theta_mu.name = 'max_theta_mu'
    mean_theta_mu.name = 'mean_theta_mu'
    min_theta_mu.name = 'min_theta_mu'

    max_theta_sig = theta_sig_in.max()
    mean_theta_sig = theta_sig_in.mean()
    min_theta_sig = theta_sig_in.min()
    max_theta_sig.name = 'max_theta_sig'
    mean_theta_sig.name = 'mean_theta_sig'
    min_theta_sig.name = 'min_theta_sig'

    coeff_max = coeff_in.max()
    coeff_min = coeff_in.min()
    coeff_mean_max = coeff_in.mean(axis=0).max()
    coeff_mean_min = coeff_in.mean(axis=0).min()
    coeff_max.name = 'coeff_max'
    coeff_min.name = 'coeff_min'
    coeff_mean_max.name = 'coeff_mean_max'
    coeff_mean_min.name = 'coeff_mean_min'

    max_phi_sig = phi_sig_temp.max()
    mean_phi_sig = phi_sig_temp.mean()
    min_phi_sig = phi_sig_temp.min()
    max_phi_sig.name = 'max_phi_sig'
    mean_phi_sig.name = 'mean_phi_sig'
    min_phi_sig.name = 'min_phi_sig'

    max_prior_sig = prior_sig_temp.max()
    mean_prior_sig = prior_sig_temp.mean()
    min_prior_sig = prior_sig_temp.min()
    max_prior_sig.name = 'max_prior_sig'
    mean_prior_sig.name = 'mean_prior_sig'
    min_prior_sig.name = 'min_prior_sig'

    model.inputs = [x, mask, y, y_mask]
    model.params = params
    model.nodes = nodes

    optimizer = Adam(lr=lr)

    extension = [
        GradientClipping(batch_size=batch_size),
        EpochCount(epoch),
        Monitoring(
            freq=monitoring_freq,
            ddout=[
                nll_upper_bound,
                recon_term,
                kl_term,
                mse,
                mae,
                theta_mu_temp,
                theta_sig_temp,
                z_t_temp,
                prediction,  #corr_temp, binary_temp, 
                s_temp,
                z_1_temp
            ],
            indexSep=5,
            indexDDoutPlot=[(0, theta_mu_temp), (2, z_t_temp),
                            (3, prediction)],
            instancesPlot=instancesPlot,  #{0:[4,20],2:[5,10]},#, 80,150
            data=[Iterator(valid_data, batch_size)],
            savedFolder=save_path),
        Picklize(freq=monitoring_freq, path=save_path),
        EarlyStopping(freq=monitoring_freq,
                      path=save_path,
                      channel=channel_name),
        WeightNorm()
    ]

    lr_iterations = {0: lr, 15: (lr / 10), 70: (lr / 100)}

    mainloop = Training(name=pkl_name,
                        data=Iterator(train_data, batch_size),
                        model=model,
                        optimizer=optimizer,
                        cost=nll_upper_bound,
                        outputs=[nll_upper_bound],
                        extension=extension,
                        lr_iterations=lr_iterations)
    #mainloop.run()
    fLog = open(save_path + '/output.csv', 'w')
    fLog.write("log,kl,nll_upper_bound,mse,mae\n")
    for i, item in enumerate(mainloop.trainlog.monitor['nll_upper_bound']):
        a = mainloop.trainlog.monitor['recon_term'][i]
        b = mainloop.trainlog.monitor['kl_term'][i]
        c = mainloop.trainlog.monitor['nll_upper_bound'][i]
        d = mainloop.trainlog.monitor['mse'][i]
        e = mainloop.trainlog.monitor['mae'][i]
        fLog.write("{},{},{},{},{}\n".format(a, b, c, d, e))
Ejemplo n.º 5
0
def main(args):

    trial = int(args['trial'])
    pkl_name = 'vrnn_gmm_%d' % trial
    channel_name = 'valid_nll_upper_bound'

    data_path = args['data_path']
    save_path = args['save_path']

    monitoring_freq = int(args['monitoring_freq'])
    force_saving_freq = int(args['force_saving_freq'])
    reset_freq = int(args['reset_freq'])
    epoch = int(args['epoch'])
    batch_size = int(args['batch_size'])
    m_batch_size = int(args['m_batch_size'])
    x_dim = int(args['x_dim'])
    z_dim = int(args['z_dim'])
    rnn_dim = int(args['rnn_dim'])
    k = int(args['num_k'])
    lr = float(args['lr'])
    debug = int(args['debug'])

    print "trial no. %d" % trial
    print "batch size %d" % batch_size
    print "learning rate %f" % lr
    print "saving pkl file '%s'" % pkl_name
    print "to the save path '%s'" % save_path

    q_z_dim = 500
    p_z_dim = 500
    p_x_dim = 500
    x2s_dim = 500
    z2s_dim = 500
    target_dim = x_dim * k

    file_name = 'blizzard_unseg_tbptt'
    normal_params = np.load(data_path + file_name + '_normal.npz')
    X_mean = normal_params['X_mean']
    X_std = normal_params['X_std']

    model = Model()
    train_data = Blizzard_tbptt(name='train',
                                path=data_path,
                                frame_size=x_dim,
                                file_name=file_name,
                                X_mean=X_mean,
                                X_std=X_std)

    valid_data = Blizzard_tbptt(name='valid',
                                path=data_path,
                                frame_size=x_dim,
                                file_name=file_name,
                                X_mean=X_mean,
                                X_std=X_std)

    x = train_data.theano_vars()
    m_x = valid_data.theano_vars()

    if debug:
        x.tag.test_value = np.zeros((15, batch_size, x_dim), dtype=theano.config.floatX)
        m_x.tag.test_value = np.zeros((15, m_batch_size, x_dim), dtype=theano.config.floatX)

    init_W = InitCell('rand')
    init_U = InitCell('ortho')
    init_b = InitCell('zeros')
    init_b_sig = InitCell('const', mean=0.6)

    x_1 = FullyConnectedLayer(name='x_1',
                              parent=['x_t'],
                              parent_dim=[x_dim],
                              nout=x2s_dim,
                              unit='relu',
                              init_W=init_W,
                              init_b=init_b)

    x_2 = FullyConnectedLayer(name='x_2',
                              parent=['x_1'],
                              parent_dim=[x2s_dim],
                              nout=x2s_dim,
                              unit='relu',
                              init_W=init_W,
                              init_b=init_b)

    x_3 = FullyConnectedLayer(name='x_3',
                              parent=['x_2'],
                              parent_dim=[x2s_dim],
                              nout=x2s_dim,
                              unit='relu',
                              init_W=init_W,
                              init_b=init_b)

    x_4 = FullyConnectedLayer(name='x_4',
                              parent=['x_3'],
                              parent_dim=[x2s_dim],
                              nout=x2s_dim,
                              unit='relu',
                              init_W=init_W,
                              init_b=init_b)

    z_1 = FullyConnectedLayer(name='z_1',
                              parent=['z_t'],
                              parent_dim=[z_dim],
                              nout=z2s_dim,
                              unit='relu',
                              init_W=init_W,
                              init_b=init_b)

    z_2 = FullyConnectedLayer(name='z_2',
                              parent=['z_1'],
                              parent_dim=[z2s_dim],
                              nout=z2s_dim,
                              unit='relu',
                              init_W=init_W,
                              init_b=init_b)

    z_3 = FullyConnectedLayer(name='z_3',
                              parent=['z_2'],
                              parent_dim=[z2s_dim],
                              nout=z2s_dim,
                              unit='relu',
                              init_W=init_W,
                              init_b=init_b)

    z_4 = FullyConnectedLayer(name='z_4',
                              parent=['z_3'],
                              parent_dim=[z2s_dim],
                              nout=z2s_dim,
                              unit='relu',
                              init_W=init_W,
                              init_b=init_b)

    rnn = LSTM(name='rnn',
               parent=['x_4', 'z_4'],
               parent_dim=[x2s_dim, z2s_dim],
               nout=rnn_dim,
               unit='tanh',
               init_W=init_W,
               init_U=init_U,
               init_b=init_b)

    phi_1 = FullyConnectedLayer(name='phi_1',
                                parent=['x_4', 's_tm1'],
                                parent_dim=[x2s_dim, rnn_dim],
                                nout=q_z_dim,
                                unit='relu',
                                init_W=init_W,
                                init_b=init_b)

    phi_2 = FullyConnectedLayer(name='phi_2',
                                parent=['phi_1'],
                                parent_dim=[q_z_dim],
                                nout=q_z_dim,
                                unit='relu',
                                init_W=init_W,
                                init_b=init_b)

    phi_3 = FullyConnectedLayer(name='phi_3',
                                parent=['phi_2'],
                                parent_dim=[q_z_dim],
                                nout=q_z_dim,
                                unit='relu',
                                init_W=init_W,
                                init_b=init_b)

    phi_4 = FullyConnectedLayer(name='phi_4',
                                parent=['phi_3'],
                                parent_dim=[q_z_dim],
                                nout=q_z_dim,
                                unit='relu',
                                init_W=init_W,
                                init_b=init_b)

    phi_mu = FullyConnectedLayer(name='phi_mu',
                                 parent=['phi_4'],
                                 parent_dim=[q_z_dim],
                                 nout=z_dim,
                                 unit='linear',
                                 init_W=init_W,
                                 init_b=init_b)

    phi_sig = FullyConnectedLayer(name='phi_sig',
                                  parent=['phi_4'],
                                  parent_dim=[q_z_dim],
                                  nout=z_dim,
                                  unit='softplus',
                                  cons=1e-4,
                                  init_W=init_W,
                                  init_b=init_b_sig)

    prior_1 = FullyConnectedLayer(name='prior_1',
                                  parent=['s_tm1'],
                                  parent_dim=[rnn_dim],
                                  nout=p_z_dim,
                                  unit='relu',
                                  init_W=init_W,
                                  init_b=init_b)

    prior_2 = FullyConnectedLayer(name='prior_2',
                                  parent=['prior_1'],
                                  parent_dim=[p_z_dim],
                                  nout=p_z_dim,
                                  unit='relu',
                                  init_W=init_W,
                                  init_b=init_b)

    prior_3 = FullyConnectedLayer(name='prior_3',
                                  parent=['prior_2'],
                                  parent_dim=[p_z_dim],
                                  nout=p_z_dim,
                                  unit='relu',
                                  init_W=init_W,
                                  init_b=init_b)

    prior_4 = FullyConnectedLayer(name='prior_4',
                                  parent=['prior_3'],
                                  parent_dim=[p_z_dim],
                                  nout=p_z_dim,
                                  unit='relu',
                                  init_W=init_W,
                                  init_b=init_b)

    prior_mu = FullyConnectedLayer(name='prior_mu',
                                   parent=['prior_4'],
                                   parent_dim=[p_z_dim],
                                   nout=z_dim,
                                   unit='linear',
                                   init_W=init_W,
                                   init_b=init_b)

    prior_sig = FullyConnectedLayer(name='prior_sig',
                                    parent=['prior_4'],
                                    parent_dim=[p_z_dim],
                                    nout=z_dim,
                                    unit='softplus',
                                    cons=1e-4,
                                    init_W=init_W,
                                    init_b=init_b_sig)

    theta_1 = FullyConnectedLayer(name='theta_1',
                                  parent=['z_4', 's_tm1'],
                                  parent_dim=[z2s_dim, rnn_dim],
                                  nout=p_x_dim,
                                  unit='relu',
                                  init_W=init_W,
                                  init_b=init_b)

    theta_2 = FullyConnectedLayer(name='theta_2',
                                  parent=['theta_1'],
                                  parent_dim=[p_x_dim],
                                  nout=p_x_dim,
                                  unit='relu',
                                  init_W=init_W,
                                  init_b=init_b)

    theta_3 = FullyConnectedLayer(name='theta_3',
                                  parent=['theta_2'],
                                  parent_dim=[p_x_dim],
                                  nout=p_x_dim,
                                  unit='relu',
                                  init_W=init_W,
                                  init_b=init_b)

    theta_4 = FullyConnectedLayer(name='theta_4',
                                  parent=['theta_3'],
                                  parent_dim=[p_x_dim],
                                  nout=p_x_dim,
                                  unit='relu',
                                  init_W=init_W,
                                  init_b=init_b)

    theta_mu = FullyConnectedLayer(name='theta_mu',
                                   parent=['theta_4'],
                                   parent_dim=[p_x_dim],
                                   nout=target_dim,
                                   unit='linear',
                                   init_W=init_W,
                                   init_b=init_b)

    theta_sig = FullyConnectedLayer(name='theta_sig',
                                    parent=['theta_4'],
                                    parent_dim=[p_x_dim],
                                    nout=target_dim,
                                    unit='softplus',
                                    cons=1e-4,
                                    init_W=init_W,
                                    init_b=init_b_sig)

    coeff = FullyConnectedLayer(name='coeff',
                                parent=['theta_4'],
                                parent_dim=[p_x_dim],
                                nout=k,
                                unit='softmax',
                                init_W=init_W,
                                init_b=init_b)

    nodes = [rnn,
             x_1, x_2, x_3, x_4,
             z_1, z_2, z_3, z_4,
             phi_1, phi_2, phi_3, phi_4, phi_mu, phi_sig,
             prior_1, prior_2, prior_3, prior_4, prior_mu, prior_sig,
             theta_1, theta_2, theta_3, theta_4, theta_mu, theta_sig, coeff]

    params = OrderedDict()
    for node in nodes:
        if node.initialize() is not None:
            params.update(node.initialize())
    params = init_tparams(params)

    step_count = sharedX(0, name='step_count')
    last_rnn = np.zeros((batch_size, rnn_dim*2), dtype=theano.config.floatX)
    rnn_tm1 = sharedX(last_rnn, name='rnn_tm1')
    shared_updates = OrderedDict()
    shared_updates[step_count] = step_count + 1

    s_0 = T.switch(T.eq(T.mod(step_count, reset_freq), 0),
                   rnn.get_init_state(batch_size), rnn_tm1)

    x_shape = x.shape
    x_in = x.reshape((x_shape[0]*x_shape[1], -1))
    x_1_in = x_1.fprop([x_in], params)
    x_2_in = x_2.fprop([x_1_in], params)
    x_3_in = x_3.fprop([x_2_in], params)
    x_4_in = x_4.fprop([x_3_in], params)
    x_4_in = x_4_in.reshape((x_shape[0], x_shape[1], -1))


    def inner_fn(x_t, s_tm1):

        phi_1_t = phi_1.fprop([x_t, s_tm1], params)
        phi_2_t = phi_2.fprop([phi_1_t], params)
        phi_3_t = phi_3.fprop([phi_2_t], params)
        phi_4_t = phi_4.fprop([phi_3_t], params)
        phi_mu_t = phi_mu.fprop([phi_4_t], params)
        phi_sig_t = phi_sig.fprop([phi_4_t], params)

        prior_1_t = prior_1.fprop([s_tm1], params)
        prior_2_t = prior_2.fprop([prior_1_t], params)
        prior_3_t = prior_3.fprop([prior_2_t], params)
        prior_4_t = prior_4.fprop([prior_3_t], params)
        prior_mu_t = prior_mu.fprop([prior_4_t], params)
        prior_sig_t = prior_sig.fprop([prior_4_t], params)

        z_t = Gaussian_sample(phi_mu_t, phi_sig_t)

        z_1_t = z_1.fprop([z_t], params)
        z_2_t = z_2.fprop([z_1_t], params)
        z_3_t = z_3.fprop([z_2_t], params)
        z_4_t = z_4.fprop([z_3_t], params)

        s_t = rnn.fprop([[x_t, z_4_t], [s_tm1]], params)

        return s_t, phi_mu_t, phi_sig_t, prior_mu_t, prior_sig_t, z_4_t

    ((s_temp, phi_mu_temp, phi_sig_temp, prior_mu_temp, prior_sig_temp, z_4_temp), updates) =\
        theano.scan(fn=inner_fn,
                    sequences=[x_4_in],
                    outputs_info=[s_0, None, None, None, None, None])

    for k, v in updates.iteritems():
        k.default_update = v

    shared_updates[rnn_tm1] = s_temp[-1]
    s_temp = concatenate([s_0[None, :, :], s_temp[:-1]], axis=0)
    theta_1_temp = theta_1.fprop([z_4_temp, s_temp], params)
    theta_2_temp = theta_2.fprop([theta_1_temp], params)
    theta_3_temp = theta_3.fprop([theta_2_temp], params)
    theta_4_temp = theta_4.fprop([theta_3_temp], params)
    theta_mu_temp = theta_mu.fprop([theta_4_temp], params)
    theta_sig_temp = theta_sig.fprop([theta_4_temp], params)
    coeff_temp = coeff.fprop([theta_4_temp], params)

    kl_temp = KLGaussianGaussian(phi_mu_temp, phi_sig_temp, prior_mu_temp, prior_sig_temp)

    x_shape = x.shape
    x_in = x.reshape((x_shape[0]*x_shape[1], -1))
    theta_mu_in = theta_mu_temp.reshape((x_shape[0]*x_shape[1], -1))
    theta_sig_in = theta_sig_temp.reshape((x_shape[0]*x_shape[1], -1))
    coeff_in = coeff_temp.reshape((x_shape[0]*x_shape[1], -1))

    recon = GMM(x_in, theta_mu_in, theta_sig_in, coeff_in)
    recon_term = recon.mean()
    kl_term = kl_temp.mean()
    nll_upper_bound = recon_term + kl_term
    nll_upper_bound.name = 'nll_upper_bound'

    m_x_1_temp = x_1.fprop([m_x], params)
    m_x_2_temp = x_2.fprop([m_x_1_temp], params)
    m_x_3_temp = x_3.fprop([m_x_2_temp], params)
    m_x_4_temp = x_4.fprop([m_x_3_temp], params)

    m_s_0 = rnn.get_init_state(m_batch_size)

    ((m_s_temp, m_phi_mu_temp, m_phi_sig_temp, m_prior_mu_temp, m_prior_sig_temp, m_z_4_temp), m_updates) =\
        theano.scan(fn=inner_fn,
                    sequences=[m_x_4_temp],
                    outputs_info=[m_s_0, None, None, None, None, None])

    for k, v in m_updates.iteritems():
        k.default_update = v

    m_s_temp = concatenate([m_s_0[None, :, :], m_s_temp[:-1]], axis=0)
    m_theta_1_temp = theta_1.fprop([m_z_4_temp, m_s_temp], params)
    m_theta_2_temp = theta_2.fprop([m_theta_1_temp], params)
    m_theta_3_temp = theta_3.fprop([m_theta_2_temp], params)
    m_theta_4_temp = theta_4.fprop([m_theta_3_temp], params)
    m_theta_mu_temp = theta_mu.fprop([m_theta_4_temp], params)
    m_theta_sig_temp = theta_sig.fprop([m_theta_4_temp], params)
    m_coeff_temp = coeff.fprop([m_theta_4_temp], params)

    m_kl_temp = KLGaussianGaussian(m_phi_mu_temp, m_phi_sig_temp, m_prior_mu_temp, m_prior_sig_temp)

    m_x_shape = m_x.shape
    m_x_in = m_x.reshape((m_x_shape[0]*m_x_shape[1], -1))
    m_theta_mu_in = m_theta_mu_temp.reshape((m_x_shape[0]*m_x_shape[1], -1))
    m_theta_sig_in = m_theta_sig_temp.reshape((m_x_shape[0]*m_x_shape[1], -1))
    m_coeff_in = m_coeff_temp.reshape((m_x_shape[0]*m_x_shape[1], -1))

    m_recon = GMM(m_x_in, m_theta_mu_in, m_theta_sig_in, m_coeff_in)
    m_recon_term = m_recon.mean()
    m_kl_term = m_kl_temp.mean()
    m_nll_upper_bound = m_recon_term + m_kl_term
    m_nll_upper_bound.name = 'nll_upper_bound'
    m_recon_term.name = 'recon_term'
    m_kl_term.name = 'kl_term'

    max_x = m_x.max()
    mean_x = m_x.mean()
    min_x = m_x.min()
    max_x.name = 'max_x'
    mean_x.name = 'mean_x'
    min_x.name = 'min_x'

    max_theta_mu = m_theta_mu_in.max()
    mean_theta_mu = m_theta_mu_in.mean()
    min_theta_mu = m_theta_mu_in.min()
    max_theta_mu.name = 'max_theta_mu'
    mean_theta_mu.name = 'mean_theta_mu'
    min_theta_mu.name = 'min_theta_mu'

    max_theta_sig = m_theta_sig_in.max()
    mean_theta_sig = m_theta_sig_in.mean()
    min_theta_sig = m_theta_sig_in.min()
    max_theta_sig.name = 'max_theta_sig'
    mean_theta_sig.name = 'mean_theta_sig'
    min_theta_sig.name = 'min_theta_sig'

    max_phi_sig = m_phi_sig_temp.max()
    mean_phi_sig = m_phi_sig_temp.mean()
    min_phi_sig = m_phi_sig_temp.min()
    max_phi_sig.name = 'max_phi_sig'
    mean_phi_sig.name = 'mean_phi_sig'
    min_phi_sig.name = 'min_phi_sig'

    max_prior_sig = m_prior_sig_temp.max()
    mean_prior_sig = m_prior_sig_temp.mean()
    min_prior_sig = m_prior_sig_temp.min()
    max_prior_sig.name = 'max_prior_sig'
    mean_prior_sig.name = 'mean_prior_sig'
    min_prior_sig.name = 'min_prior_sig'

    model.inputs = [x]
    model.params = params
    model.nodes = nodes
    model.set_updates(shared_updates)

    optimizer = Adam(
        lr=lr
    )

    monitor_fn = theano.function(inputs=[m_x],
                                 outputs=[m_nll_upper_bound, m_recon_term, m_kl_term,
                                          max_phi_sig, mean_phi_sig, min_phi_sig,
                                          max_prior_sig, mean_prior_sig, min_prior_sig,
                                          max_theta_sig, mean_theta_sig, min_theta_sig,
                                          max_x, mean_x, min_x,
                                          max_theta_mu, mean_theta_mu, min_theta_mu],
                                 on_unused_input='ignore')

    extension = [
        GradientClipping(batch_size=batch_size, check_nan=1),
        EpochCount(epoch),
        Monitoring(freq=monitoring_freq,
                   monitor_fn=monitor_fn,
                   ddout=[m_nll_upper_bound, m_recon_term, m_kl_term,
                          max_phi_sig, mean_phi_sig, min_phi_sig,
                          max_prior_sig, mean_prior_sig, min_prior_sig,
                          max_theta_sig, mean_theta_sig, min_theta_sig,
                          max_x, mean_x, min_x,
                          max_theta_mu, mean_theta_mu, min_theta_mu],
                   data=[Iterator(train_data, m_batch_size, start=0, end=112640),
                         Iterator(valid_data, m_batch_size, start=2040064, end=2152704)]),
        Picklize(freq=monitoring_freq, force_save_freq=force_saving_freq, path=save_path),
        EarlyStopping(freq=monitoring_freq, force_save_freq=force_saving_freq, path=save_path, channel=channel_name),
        WeightNorm()
    ]

    mainloop = Training(
        name=pkl_name,
        data=Iterator(train_data, batch_size, start=0, end=2040064),
        model=model,
        optimizer=optimizer,
        cost=nll_upper_bound,
        outputs=[nll_upper_bound],
        extension=extension
    )
    mainloop.run()
def main(args):

    #theano.optimizer='fast_compile'
    #theano.config.exception_verbosity='high'

    trial = int(args['trial'])
    pkl_name = 'dp_dis1-sch_%d' % trial
    channel_name = 'mae'

    data_path = args['data_path']
    save_path = args[
        'save_path']  #+'/gmm/'+datetime.datetime.now().strftime("%y-%m-%d_%H-%M")
    flgMSE = int(args['flgMSE'])

    period = int(args['period'])
    n_steps = int(args['n_steps'])
    stride_train = int(args['stride_train'])
    stride_test = n_steps  # int(args['stride_test'])

    monitoring_freq = int(args['monitoring_freq'])
    epoch = int(args['epoch'])
    batch_size = int(args['batch_size'])
    x_dim = int(args['x_dim'])
    y_dim = int(args['y_dim'])
    flgAgg = int(args['flgAgg'])
    z_dim = int(args['z_dim'])
    rnn_dim = int(args['rnn_dim'])
    k = int(args['num_k'])  #a mixture of K Gaussian functions
    lr = float(args['lr'])
    typeLoad = int(args['typeLoad'])
    debug = int(args['debug'])
    kSchedSamp = int(args['kSchedSamp'])

    print "trial no. %d" % trial
    print "batch size %d" % batch_size
    print "learning rate %f" % lr
    print "saving pkl file '%s'" % pkl_name
    print "to the save path '%s'" % save_path

    q_z_dim = 150
    p_z_dim = 150
    p_x_dim = 150  #250
    x2s_dim = 100  #250
    y2s_dim = 100
    z2s_dim = 100  #150
    target_dim = k  #x_dim #(x_dim-1)*k

    model = Model()
    Xtrain, ytrain, Xval, yval, Xtest, ytest, reader = fetch_dataport(
        data_path,
        windows,
        appliances,
        numApps=flgAgg,
        period=period,
        n_steps=n_steps,
        stride_train=stride_train,
        stride_test=stride_test,
        trainPer=0.6,
        valPer=0.2,
        testPer=0.2,
        typeLoad=typeLoad,
        flgAggSumScaled=1,
        flgFilterZeros=1)
    print(reader.stdTrain, reader.meanTrain)
    instancesPlot = {
        0: [4],
        2: [10]
    }  #for now use hard coded instancesPlot for kelly sampling

    train_data = Dataport(
        name='train',
        prep='normalize',
        cond=True,  # False
        #path=data_path,
        inputX=Xtrain,
        labels=ytrain)

    X_mean = train_data.X_mean
    X_std = train_data.X_std

    valid_data = Dataport(
        name='valid',
        prep='normalize',
        cond=True,  # False
        #path=data_path,
        X_mean=X_mean,
        X_std=X_std,
        inputX=Xval,
        labels=yval)

    test_data = Dataport(
        name='valid',
        prep='normalize',
        cond=True,  # False
        #path=data_path,
        X_mean=X_mean,
        X_std=X_std,
        inputX=Xtest,
        labels=ytest)

    init_W = InitCell('rand')
    init_U = InitCell('ortho')
    init_b = InitCell('zeros')
    init_b_sig = InitCell('const', mean=0.6)

    x, mask, y, y_mask = train_data.theano_vars()
    scheduleSamplingMask = T.fvector('schedMask')

    x.name = 'x_original'
    if debug:
        x.tag.test_value = np.zeros((15, batch_size, x_dim), dtype=np.float32)
        temp = np.ones((15, batch_size), dtype=np.float32)
        temp[:, -2:] = 0.
        mask.tag.test_value = temp
    """ print (mainloop)
    attrs = vars(mainloop)
    print ', '.join("%s: %s" % item for item in attrs.items())

    print (type(mainloop.model.nodes[1]))
    print (type(mainloop.model.params))"""

    #for node in mainloop.model.nodes:
    #  print(node.name)
    '''
    for node in mainloop.model.nodes:
      print("Name:", node.name, "Parent:", node.parent, "Unit:",node.unit,"init_W:", node.init_W, "init_b:", node.init_b)

    for param in mainloop.model.params:
      print(type(param),param)
    '''
    """rnn = LSTM(name='rnn',
             parent=['x_1', 'z_1','y_1'],
             parent_dim=[x2s_dim, z2s_dim, y_dim],
             nout=rnn_dim,
             unit='tanh',
             init_W=mainloop.model.nodes[0].init_W,
             init_U=mainloop.model.nodes[0].init_U,
             init_b=mainloop.model.nodes[0].init_b)

    x_1 = FullyConnectedLayer(name='x_1',
                              parent=['x_t'],
                              parent_dim=[x_dim],
                              nout=x2s_dim,
                              unit='relu',
                              init_W=mainloop.model.nodes[1].init_W,
                              init_b=mainloop.model.nodes[1].init_b)

    y_1 = FullyConnectedLayer(name='y_1',
                              parent=['y_t'],
                              parent_dim=[y_dim],
                              nout=y2s_dim,
                              unit='relu',
                              init_W=mainloop.model.nodes[2].init_W,
                              init_b=mainloop.model.nodes[2].init_b)

    z_1 = FullyConnectedLayer(name='z_1',
                              parent=['z_t'],
                              parent_dim=[z_dim],
                              nout=z2s_dim,
                              unit='relu',
                              init_W=mainloop.model.nodes[3].init_W,
                              init_b=mainloop.model.nodes[3].init_b)

    phi_1 = FullyConnectedLayer(name='phi_1',
                                parent=['x_1', 's_tm1','y_1'],
                                parent_dim=[x2s_dim, rnn_dim,y2s_dim],
                                nout=q_z_dim,
                                unit='relu',
                                init_W=mainloop.model.nodes[4].init_W,
                                init_b=mainloop.model.nodes[4].init_b)

    phi_mu = FullyConnectedLayer(name='phi_mu',
                                 parent=['phi_1'],
                                 parent_dim=[q_z_dim],
                                 nout=z_dim,
                                 unit='linear',
                                 init_W=mainloop.model.nodes[5].init_W,
                                 init_b=mainloop.model.nodes[5].init_b)

    phi_sig = FullyConnectedLayer(name='phi_sig',
                                  parent=['phi_1'],
                                  parent_dim=[q_z_dim],
                                  nout=z_dim,
                                  unit='softplus',
                                  cons=1e-4,
                                  init_W=mainloop.model.nodes[6].init_W,
                                  init_b=mainloop.model.nodes[6].init_b)

    prior_1 = FullyConnectedLayer(name='prior_1',
                                  parent=['x_1','s_tm1'],
                                  parent_dim=[x2s_dim,rnn_dim],
                                  nout=p_z_dim,
                                  unit='relu',
                                  init_W=mainloop.model.nodes[7].init_W,
                                  init_b=mainloop.model.nodes[7].init_b)

    prior_mu = FullyConnectedLayer(name='prior_mu',
                                   parent=['prior_1'],
                                   parent_dim=[p_z_dim],
                                   nout=z_dim,
                                   unit='linear',
                                   init_W=mainloop.model.nodes[8].init_W,
                                   init_b=mainloop.model.nodes[8].init_b)

    prior_sig = FullyConnectedLayer(name='prior_sig',
                                    parent=['prior_1'],
                                    parent_dim=[p_z_dim],
                                    nout=z_dim,
                                    unit='softplus',
                                    cons=1e-4,
                                    init_W=mainloop.model.nodes[9].init_W,
                                    init_b=mainloop.model.nodes[9].init_b)

    theta_1 = FullyConnectedLayer(name='theta_1',
                                  parent=['z_1', 's_tm1'],
                                  parent_dim=[z2s_dim, rnn_dim],
                                  nout=p_x_dim,
                                  unit='relu',
                                  init_W=mainloop.model.nodes[10].init_W,
                                  init_b=mainloop.model.nodes[10].init_b)

    theta_mu = FullyConnectedLayer(name='theta_mu',
                                   parent=['theta_1'],
                                   parent_dim=[p_x_dim],
                                   nout=target_dim,
                                   unit='linear',
                                   init_W=mainloop.model.nodes[11].init_W,
                                   init_b=mainloop.model.nodes[11].init_b)

    theta_sig = FullyConnectedLayer(name='theta_sig',
                                    parent=['theta_1'],
                                    parent_dim=[p_x_dim],
                                    nout=target_dim,
                                    unit='softplus',
                                    cons=1e-4,
                                    init_W=mainloop.model.nodes[12].init_W,
                                    init_b=mainloop.model.nodes[12].init_b)

    coeff = FullyConnectedLayer(name='coeff',
                                parent=['theta_1'],
                                parent_dim=[p_x_dim],
                                nout=k,
                                unit='softmax',
                                init_W=mainloop.model.nodes[13].init_W,
                                init_b=mainloop.model.nodes[13].init_b)"""

    #pickle is from experiment gmmAE/18-05-30_16-07_app3
    fmodel = open('dp_dis1-sch_1.pkl', 'rb')
    mainloop = cPickle.load(fmodel)
    fmodel.close()

    rnn = mainloop.model.nodes[0]
    x_1 = mainloop.model.nodes[1]
    y_1 = mainloop.model.nodes[2]
    z_1 = mainloop.model.nodes[3]
    phi_1 = mainloop.model.nodes[4]
    phi_mu = mainloop.model.nodes[5]
    phi_sig = mainloop.model.nodes[6]
    prior_1 = mainloop.model.nodes[7]
    prior_mu = mainloop.model.nodes[8]
    prior_sig = mainloop.model.nodes[9]
    theta_1 = mainloop.model.nodes[10]
    theta_mu = mainloop.model.nodes[11]
    theta_sig = mainloop.model.nodes[12]
    coeff = mainloop.model.nodes[13]

    nodes = [
        rnn,
        x_1,
        y_1,
        z_1,  #dissag_pred,
        phi_1,
        phi_mu,
        phi_sig,
        prior_1,
        prior_mu,
        prior_sig,
        theta_1,
        theta_mu,
        theta_sig,
        coeff
    ]  #, corr, binary

    params = mainloop.model.params

    s_0 = rnn.get_init_state(batch_size)

    x_1_temp = x_1.fprop([x], params)
    y_1_temp = y_1.fprop([y], params)

    def inner_fn_val(x_t, s_tm1):

        prior_1_t = prior_1.fprop([x_t, s_tm1], params)
        prior_mu_t = prior_mu.fprop([prior_1_t], params)
        prior_sig_t = prior_sig.fprop([prior_1_t], params)

        z_t = Gaussian_sample(prior_mu_t, prior_sig_t)
        z_1_t = z_1.fprop([z_t], params)

        theta_1_t = theta_1.fprop([z_1_t, s_tm1], params)
        theta_mu_t = theta_mu.fprop([theta_1_t], params)
        theta_sig_t = theta_sig.fprop([theta_1_t], params)

        coeff_t = coeff.fprop([theta_1_t], params)

        pred_t = GMM_sample(theta_mu_t, theta_sig_t,
                            coeff_t)  #Gaussian_sample(theta_mu_t, theta_sig_t)
        pred_1_t = y_1.fprop([pred_t], params)
        s_t = rnn.fprop([[x_t, z_1_t, pred_1_t], [s_tm1]], params)
        #y_pred = dissag_pred.fprop([s_t], params)

        return s_t, prior_mu_t, prior_sig_t, theta_mu_t, theta_sig_t, coeff_t, pred_t  #, y_pred
        #corr_temp, binary_temp
    ((s_temp_val, prior_mu_temp_val, prior_sig_temp_val, theta_mu_temp_val, theta_sig_temp_val, coeff_temp_val, prediction_val), updates_val) =\
        theano.scan(fn=inner_fn_val,
                    sequences=[x_1_temp],
                    outputs_info=[s_0, None, None, None,  None, None, None])

    for k, v in updates_val.iteritems():
        k.default_update = v

    s_temp_val = concatenate([s_0[None, :, :], s_temp_val[:-1]], axis=0)

    def inner_fn_train(x_t, y_t, schedSampMask, s_tm1):

        phi_1_t = phi_1.fprop([x_t, s_tm1, y_t], params)
        phi_mu_t = phi_mu.fprop([phi_1_t], params)
        phi_sig_t = phi_sig.fprop([phi_1_t], params)

        prior_1_t = prior_1.fprop([x_t, s_tm1], params)
        prior_mu_t = prior_mu.fprop([prior_1_t], params)
        prior_sig_t = prior_sig.fprop([prior_1_t], params)

        z_t = Gaussian_sample(phi_mu_t, phi_sig_t)
        z_1_t = z_1.fprop([z_t], params)

        theta_1_t = theta_1.fprop([z_1_t, s_tm1], params)
        theta_mu_t = theta_mu.fprop([theta_1_t], params)
        theta_sig_t = theta_sig.fprop([theta_1_t], params)

        coeff_t = coeff.fprop([theta_1_t], params)
        #corr_t = corr.fprop([theta_1_t], params)
        #binary_t = binary.fprop([theta_1_t], params)

        pred = GMM_sample(theta_mu_t, theta_sig_t,
                          coeff_t)  #Gaussian_sample(theta_mu_t, theta_sig_t)

        if (schedSampMask == 1):
            s_t = rnn.fprop([[x_t, z_1_t, y_t], [s_tm1]], params)
        else:
            y_t_aux = y_1.fprop([pred], params)
            s_t = rnn.fprop([[x_t, z_1_t, y_t_aux], [s_tm1]], params)

        #y_pred = dissag_pred.fprop([s_t], params)

        return s_t, phi_mu_t, phi_sig_t, prior_mu_t, prior_sig_t, theta_mu_t, theta_sig_t, coeff_t, pred  #, y_pred
        #corr_temp, binary_temp
    ((s_temp, phi_mu_temp, phi_sig_temp, prior_mu_temp, prior_sig_temp, theta_mu_temp, theta_sig_temp, coeff_temp, prediction), updates) =\
        theano.scan(fn=inner_fn_train,
                    sequences=[x_1_temp, y_1_temp, scheduleSamplingMask],
                    outputs_info=[s_0, None, None, None, None, None, None, None, None])

    for k, v in updates.iteritems():
        k.default_update = v

    #s_temp = concatenate([s_0[None, :, :], s_temp[:-1]], axis=0)# seems like this is for creating an additional dimension to s_0

    theta_mu_temp.name = 'theta_mu_temp'
    theta_sig_temp.name = 'theta_sig_temp'
    coeff_temp.name = 'coeff'

    if (flgAgg == -1):
        prediction.name = 'x_reconstructed'
        mse = T.mean((prediction - x)**2)  # CHECK RESHAPE with an assertion
        mae = T.mean(T.abs(prediction - x))
        mse.name = 'mse'
        pred_in = x.reshape((x_shape[0] * x_shape[1], -1))
    else:
        prediction.name = 'pred_' + str(flgAgg)
        mse = T.mean(
            (prediction - y)**2)  # As axis = None is calculated for all
        mae = T.mean(T.abs_(prediction - y))
        mse.name = 'mse'
        mae.name = 'mae'
        pred_in = y.reshape((y.shape[0] * y.shape[1], -1))

    kl_temp = KLGaussianGaussian(phi_mu_temp, phi_sig_temp, prior_mu_temp,
                                 prior_sig_temp)

    x_shape = x.shape

    theta_mu_in = theta_mu_temp.reshape((x_shape[0] * x_shape[1], -1))
    theta_sig_in = theta_sig_temp.reshape((x_shape[0] * x_shape[1], -1))
    coeff_in = coeff_temp.reshape((x_shape[0] * x_shape[1], -1))
    #corr_in = corr_temp.reshape((x_shape[0]*x_shape[1], -1))
    #binary_in = binary_temp.reshape((x_shape[0]*x_shape[1], -1))

    recon = GMM(
        pred_in, theta_mu_in, theta_sig_in, coeff_in
    )  # BiGMM(x_in, theta_mu_in, theta_sig_in, coeff_in, corr_in, binary_in)
    recon = recon.reshape((x_shape[0], x_shape[1]))
    recon.name = 'gmm_out'

    recon_term = recon.sum(axis=0).mean()
    recon_term.name = 'recon_term'

    kl_term = kl_temp.sum(axis=0).mean()
    kl_term.name = 'kl_term'

    nll_upper_bound = recon_term + kl_term  #+ mse
    if (flgMSE):
        nll_upper_bound = nll_upper_bound + mse
    nll_upper_bound.name = 'nll_upper_bound'

    ######################## TEST (GENERATION) TIME
    prediction_val.name = 'generated__' + str(flgAgg)
    mse_val = T.mean(
        (prediction_val - y)**2)  # As axis = None is calculated for all
    mae_val = T.mean(T.abs_(prediction_val - y))

    #y_unNormalize = (y * reader.stdTrain) + reader.meanTrain # accessing to just an scalar when loading y_dim=1
    #prediction_valAux = (prediction_val * reader.stdTrain) + reader.meanTrain
    #mse_valUnNorm = T.mean((prediction_valAux - y_unNormalize)**2) # As axis = None is calculated for all
    #mae_valUnNorm = T.mean( T.abs_(prediction_valAux - y_unNormalize) )

    mse_val.name = 'mse_val'
    mae_val.name = 'mae_val'
    pred_in_val = y.reshape((y.shape[0] * y.shape[1], -1))

    theta_mu_in_val = theta_mu_temp_val.reshape((x_shape[0] * x_shape[1], -1))
    theta_sig_in_val = theta_sig_temp_val.reshape(
        (x_shape[0] * x_shape[1], -1))
    coeff_in_val = coeff_temp_val.reshape((x_shape[0] * x_shape[1], -1))

    recon_val = GMM(
        pred_in_val, theta_mu_in_val, theta_sig_in_val, coeff_in_val
    )  # BiGMM(x_in, theta_mu_in, theta_sig_in, coeff_in, corr_in, binary_in)
    recon_val = recon_val.reshape((x_shape[0], x_shape[1]))
    recon_val.name = 'gmm_out_val'

    recon_term_val = recon_val.sum(axis=0).mean()
    recon_term_val.name = 'recon_term_val'

    model.inputs = [x, mask, y, y_mask, scheduleSamplingMask]
    model.params = params
    model.nodes = nodes

    optimizer = Adam(lr=lr)

    header = "epoch,log,kl,nll_upper_bound,mse,mae\n"
    extension = [
        GradientClipping(batch_size=batch_size),
        EpochCount(epoch, save_path, header),
        Monitoring(
            freq=monitoring_freq,
            ddout=[nll_upper_bound, recon_term, kl_term, mse, mae, prediction],
            indexSep=5,
            instancesPlot=instancesPlot,  #{0:[4,20],2:[5,10]},#, 80,150
            data=[Iterator(valid_data, batch_size)],
            savedFolder=save_path),
        Picklize(freq=monitoring_freq, path=save_path),
        EarlyStopping(freq=monitoring_freq,
                      path=save_path,
                      channel=channel_name),
        WeightNorm()
    ]

    lr_iterations = {0: lr, 75: (lr / 10), 150: (lr / 100)}
    """mainloop = Training(
        name=pkl_name,
        data=Iterator(train_data, batch_size),
        model=model,
        optimizer=optimizer,
        cost=nll_upper_bound,
        outputs=[recon_term, kl_term, nll_upper_bound, mse, mae],
        n_steps = n_steps,
        extension=extension,
        lr_iterations=lr_iterations,
        k_speedOfconvergence=kSchedSamp
    )"""
    """mainloop.restore(
        data=Iterator(train_data, batch_size),
        cost=nll_upper_bound,
        model=model,
        optimizer=mainloop.optimizer
      )"""

    mainloop.restore(name=pkl_name,
                     data=Iterator(train_data, batch_size),
                     model=model,
                     optimizer=optimizer,
                     cost=nll_upper_bound,
                     outputs=[recon_term, kl_term, nll_upper_bound, mse, mae],
                     n_steps=n_steps,
                     extension=extension,
                     lr_iterations=lr_iterations,
                     k_speedOfconvergence=kSchedSamp)

    mainloop.run()

    data = Iterator(test_data, batch_size)

    test_fn = theano.function(
        inputs=[x, y],  #[x, y],
        #givens={x:Xtest},
        #on_unused_input='ignore',
        #z=( ,200,1)
        allow_input_downcast=True,
        outputs=[prediction_val, recon_term_val, mse_val,
                 mae_val]  #prediction_val, mse_val, mae_val
        ,
        updates=
        updates_val  #, allow_input_downcast=True, on_unused_input='ignore'
    )
    testOutput = []
    numBatchTest = 0
    for batch in data:
        outputGeneration = test_fn(batch[0], batch[2])  #(20, 220, 1)
        testOutput.append(outputGeneration[1:])
        # outputGeneration[0].shape #(20, 220, 40)
        #if (numBatchTest<5):
        '''
      plt.figure(1)
      plt.plot(np.transpose(outputGeneration[0],[1,0,2])[4])
      plt.savefig(save_path+"/vrnn_dis_generated{}_z_0-4".format(numBatchTest))
      plt.clf()

      plt.figure(2)
      plt.plot(np.transpose(outputGeneration[1],[1,0,2])[4])
      plt.savefig(save_path+"/vrnn_dis_generated{}_s_0-4".format(numBatchTest))
      plt.clf()

      plt.figure(3)
      plt.plot(np.transpose(outputGeneration[2],[1,0,2])[4])
      plt.savefig(save_path+"/vrnn_dis_generated{}_theta_0-4".format(numBatchTest))
      plt.clf()
      '''
        plt.figure(4)
        plt.plot(np.transpose(outputGeneration[0], [1, 0, 2])[4])
        plt.plot(np.transpose(batch[2], [1, 0, 2])[4])
        plt.savefig(
            save_path +
            "/vrnn_dis_generated{}_RealAndPred_0-4".format(numBatchTest))
        plt.clf()

        plt.figure(4)
        plt.plot(np.transpose(batch[0], [1, 0, 2])[4])
        plt.savefig(save_path +
                    "/vrnn_dis_generated{}_Realagg_0-4".format(numBatchTest))
        plt.clf()
        numBatchTest += 1

    testOutput = np.asarray(testOutput)
    print(testOutput.shape)
    recon_test = testOutput[:, 0].mean()
    mse_test = testOutput[:, 1].mean()
    mae_test = testOutput[:, 2].mean()
    #mseUnNorm_test = testOutput[:, 3].mean()
    #maeUnNorm_test = testOutput[:, 4].mean()

    fLog = open(save_path + '/output.csv', 'w')
    fLog.write(str(lr_iterations) + "\n")
    fLog.write(str(windows) + "\n")
    fLog.write("logTest,mseTest,maeTest, mseTestUnNorm, maeTestUnNorm\n")
    fLog.write("{},{},{}\n".format(recon_test, mse_test, mae_test))
    fLog.write("q_z_dim,p_z_dim,p_x_dim,x2s_dim,y2s_dim,z2s_dim\n")
    fLog.write("{},{},{},{},{},{}\n".format(q_z_dim, p_z_dim, p_x_dim, x2s_dim,
                                            y2s_dim, z2s_dim))
    header = "epoch,log,kl,mse,mae\n"
    fLog.write(header)
    for i, item in enumerate(mainloop.trainlog.monitor['recon_term']):
        f = mainloop.trainlog.monitor['epoch'][i]
        a = mainloop.trainlog.monitor['recon_term'][i]
        b = mainloop.trainlog.monitor['kl_term'][i]
        d = mainloop.trainlog.monitor['mse'][i]
        e = mainloop.trainlog.monitor['mae'][i]
        fLog.write("{:d},{:.2f},{:.2f},{:.3f},{:.3f}\n".format(f, a, b, d, e))
Ejemplo n.º 7
0
def main(args):

    #theano.optimizer='fast_compile'
    #theano.config.exception_verbosity='high'

    trial = int(args['trial'])
    pkl_name = 'vrnn_gmm_%d' % trial
    channel_name = 'nll_upper_bound'

    data_path = args['data_path']
    save_path = args[
        'save_path']  #+'/gmm/'+datetime.datetime.now().strftime("%y-%m-%d_%H-%M")
    flgMSE = int(args['flgMSE'])

    period = int(args['period'])
    n_steps = int(args['n_steps'])
    stride_train = int(args['stride_train'])
    stride_test = n_steps  # int(args['stride_test'])

    monitoring_freq = int(args['monitoring_freq'])
    epoch = int(args['epoch'])
    batch_size = int(args['batch_size'])
    x_dim = int(args['x_dim'])
    y_dim = int(args['y_dim'])
    flgAgg = int(args['flgAgg'])
    z_dim = int(args['z_dim'])
    rnn_dim = int(args['rnn_dim'])
    k = int(args['num_k'])  #a mixture of K Gaussian functions
    lr = float(args['lr'])
    typeLoad = int(args['typeLoad'])
    debug = int(args['debug'])
    n_steps_val = n_steps

    print "trial no. %d" % trial
    print "batch size %d" % batch_size
    print "learning rate %f" % lr
    print "saving pkl file '%s'" % pkl_name
    print "to the save path '%s'" % save_path
    print str(windows)

    q_z_dim = 180
    p_z_dim = 180
    p_x_dim = 200
    x2s_dim = 100
    z2s_dim = 150
    target_dim = k  #x_dim #(x_dim-1)*k

    model = Model()
    Xtrain, ytrain, Xval, yval, Xtest, ytest, reader = fetch_dataport(
        data_path,
        windows,
        appliances,
        numApps=flgAgg,
        period=period,
        n_steps=n_steps,
        stride_train=stride_train,
        stride_test=stride_test,
        trainPer=0.6,
        valPer=0.2,
        testPer=0.2,
        typeLoad=typeLoad,
        flgAggSumScaled=1,
        flgFilterZeros=1)

    instancesPlot = {
        0: [5]
    }  #for now use hard coded instancesPlot for kelly sampling

    train_data = Dataport(
        name='train',
        prep='normalize',
        cond=True,  # False
        #path=data_path,
        inputX=ytrain,
        labels=Xtrain)

    X_mean = train_data.X_mean
    X_std = train_data.X_std

    valid_data = Dataport(
        name='valid',
        prep='normalize',
        cond=True,  # False
        #path=data_path,
        X_mean=X_mean,
        X_std=X_std,
        inputX=yval,
        labels=Xval)

    init_W = InitCell('rand')
    init_U = InitCell('ortho')
    init_b = InitCell('zeros')
    init_b_sig = InitCell('const', mean=0.6)

    x, mask, y, y_mask = train_data.theano_vars()
    scheduleSamplingMask = T.fvector('schedMask')

    x.name = 'x_original'
    if debug:
        x.tag.test_value = np.zeros((15, batch_size, x_dim), dtype=np.float32)
        temp = np.ones((15, batch_size), dtype=np.float32)
        temp[:, -2:] = 0.
        mask.tag.test_value = temp

    x_1 = FullyConnectedLayer(name='x_1',
                              parent=['x_t'],
                              parent_dim=[x_dim],
                              nout=x2s_dim,
                              unit='relu',
                              init_W=init_W,
                              init_b=init_b)

    z_1 = FullyConnectedLayer(name='z_1',
                              parent=['z_t'],
                              parent_dim=[z_dim],
                              nout=z2s_dim,
                              unit='relu',
                              init_W=init_W,
                              init_b=init_b)

    rnn = LSTM(name='rnn',
               parent=['x_1', 'z_1'],
               parent_dim=[x2s_dim, z2s_dim],
               nout=rnn_dim,
               unit='tanh',
               init_W=init_W,
               init_U=init_U,
               init_b=init_b)
    '''
    dissag_pred = FullyConnectedLayer(name='disag_1',
                                  parent=['s_tm1'],
                                  parent_dim=[rnn_dim],
                                  nout=num_apps,
                                  unit='relu',
                                  init_W=init_W,
                                  init_b=init_b)
    '''
    phi_1 = FullyConnectedLayer(name='phi_1',
                                parent=['x_1', 's_tm1'],
                                parent_dim=[x2s_dim, rnn_dim],
                                nout=q_z_dim,
                                unit='relu',
                                init_W=init_W,
                                init_b=init_b)

    phi_mu = FullyConnectedLayer(name='phi_mu',
                                 parent=['phi_1'],
                                 parent_dim=[q_z_dim],
                                 nout=z_dim,
                                 unit='linear',
                                 init_W=init_W,
                                 init_b=init_b)

    phi_sig = FullyConnectedLayer(name='phi_sig',
                                  parent=['phi_1'],
                                  parent_dim=[q_z_dim],
                                  nout=z_dim,
                                  unit='softplus',
                                  cons=1e-4,
                                  init_W=init_W,
                                  init_b=init_b_sig)

    prior_1 = FullyConnectedLayer(name='prior_1',
                                  parent=['s_tm1'],
                                  parent_dim=[rnn_dim],
                                  nout=p_z_dim,
                                  unit='relu',
                                  init_W=init_W,
                                  init_b=init_b)

    prior_mu = FullyConnectedLayer(name='prior_mu',
                                   parent=['prior_1'],
                                   parent_dim=[p_z_dim],
                                   nout=z_dim,
                                   unit='linear',
                                   init_W=init_W,
                                   init_b=init_b)

    prior_sig = FullyConnectedLayer(name='prior_sig',
                                    parent=['prior_1'],
                                    parent_dim=[p_z_dim],
                                    nout=z_dim,
                                    unit='softplus',
                                    cons=1e-4,
                                    init_W=init_W,
                                    init_b=init_b_sig)

    theta_1 = FullyConnectedLayer(name='theta_1',
                                  parent=['z_1', 's_tm1'],
                                  parent_dim=[z2s_dim, rnn_dim],
                                  nout=p_x_dim,
                                  unit='relu',
                                  init_W=init_W,
                                  init_b=init_b)

    theta_mu = FullyConnectedLayer(name='theta_mu',
                                   parent=['theta_1'],
                                   parent_dim=[p_x_dim],
                                   nout=target_dim,
                                   unit='linear',
                                   init_W=init_W,
                                   init_b=init_b)

    theta_sig = FullyConnectedLayer(name='theta_sig',
                                    parent=['theta_1'],
                                    parent_dim=[p_x_dim],
                                    nout=target_dim,
                                    unit='softplus',
                                    cons=1e-4,
                                    init_W=init_W,
                                    init_b=init_b_sig)

    coeff = FullyConnectedLayer(name='coeff',
                                parent=['theta_1'],
                                parent_dim=[p_x_dim],
                                nout=k,
                                unit='softmax',
                                init_W=init_W,
                                init_b=init_b)

    corr = FullyConnectedLayer(name='corr',
                               parent=['theta_1'],
                               parent_dim=[p_x_dim],
                               nout=k,
                               unit='tanh',
                               init_W=init_W,
                               init_b=init_b)

    binary = FullyConnectedLayer(name='binary',
                                 parent=['theta_1'],
                                 parent_dim=[p_x_dim],
                                 nout=1,
                                 unit='sigmoid',
                                 init_W=init_W,
                                 init_b=init_b)

    nodes = [
        rnn,
        x_1,
        z_1,  #dissag_pred,
        phi_1,
        phi_mu,
        phi_sig,
        prior_1,
        prior_mu,
        prior_sig,
        theta_1,
        theta_mu,
        theta_sig,
        coeff
    ]  #, corr, binary

    params = OrderedDict()

    for node in nodes:
        if node.initialize() is not None:
            params.update(node.initialize())

    params = init_tparams(params)

    s_0 = rnn.get_init_state(batch_size)

    x_1_temp = x_1.fprop([x], params)

    def inner_val_fn(s_tm1):
        '''
        phi_1_t = phi_1.fprop([x_t, s_tm1], params)
        phi_mu_t = phi_mu.fprop([phi_1_t], params)
        phi_sig_t = phi_sig.fprop([phi_1_t], params)
        '''
        prior_1_t = prior_1.fprop([s_tm1], params)
        prior_mu_t = prior_mu.fprop([prior_1_t], params)
        prior_sig_t = prior_sig.fprop([prior_1_t], params)

        z_t = Gaussian_sample(prior_mu_t, prior_sig_t)
        z_1_t = z_1.fprop([z_t], params)

        theta_1_t = theta_1.fprop([z_1_t, s_tm1], params)
        theta_mu_t = theta_mu.fprop([theta_1_t], params)
        theta_sig_t = theta_sig.fprop([theta_1_t], params)
        coeff_t = coeff.fprop([theta_1_t], params)

        pred_t = GMM_sample(theta_mu_t, theta_sig_t,
                            coeff_t)  #Gaussian_sample(theta_mu_t, theta_sig_t)
        pred_1_t = x_1.fprop([pred_t], params)

        s_t = rnn.fprop([[pred_1_t, z_1_t], [s_tm1]], params)

        return s_t, pred_t, z_t, theta_1_t, theta_mu_t, theta_sig_t, coeff_t
        # prior_mu_temp_val, prior_sig_temp_val
    ((s_temp_val, prediction_val, z_t_temp_val, theta_1_temp_val, theta_mu_temp_val, theta_sig_temp_val, coeff_temp_val), updates_val) =\
        theano.scan(fn=inner_val_fn , n_steps=n_steps_val, #already 1 subtracted if doing next step
                    outputs_info=[s_0, None, None,  None, None, None, None])

    for k, v in updates_val.iteritems():
        k.default_update = v

    def inner_fn(x_t, s_tm1):

        phi_1_t = phi_1.fprop([x_t, s_tm1], params)
        phi_mu_t = phi_mu.fprop([phi_1_t], params)
        phi_sig_t = phi_sig.fprop([phi_1_t], params)

        prior_1_t = prior_1.fprop([s_tm1], params)
        prior_mu_t = prior_mu.fprop([prior_1_t], params)
        prior_sig_t = prior_sig.fprop([prior_1_t], params)

        z_t = Gaussian_sample(phi_mu_t, phi_sig_t)
        z_1_t = z_1.fprop([z_t], params)

        theta_1_t = theta_1.fprop([z_1_t, s_tm1], params)
        theta_mu_t = theta_mu.fprop([theta_1_t], params)
        theta_sig_t = theta_sig.fprop([theta_1_t], params)

        coeff_t = coeff.fprop([theta_1_t], params)
        #corr_t = corr.fprop([theta_1_t], params)
        #binary_t = binary.fprop([theta_1_t], params)

        pred = GMM_sample(theta_mu_t, theta_sig_t,
                          coeff_t)  #Gaussian_sample(theta_mu_t, theta_sig_t)

        s_t = rnn.fprop([[x_t, z_1_t], [s_tm1]], params)

        #y_pred = dissag_pred.fprop([s_t], params)

        return s_t, phi_mu_t, phi_sig_t, prior_mu_t, prior_sig_t, z_t, z_1_t, theta_1_t, theta_mu_t, theta_sig_t, coeff_t, pred  #, y_pred
        #corr_temp, binary_temp
    ((s_temp, phi_mu_temp, phi_sig_temp, prior_mu_temp, prior_sig_temp,z_t_temp, z_1_temp, theta_1_temp, theta_mu_temp, theta_sig_temp, coeff_temp, prediction), updates) =\
        theano.scan(fn=inner_fn,
                    sequences=[x_1_temp ],
                    outputs_info=[s_0, None, None, None, None, None, None,  None, None, None, None, None])

    for k, v in updates.iteritems():
        k.default_update = v

    s_temp = concatenate(
        [s_0[None, :, :], s_temp[:-1]], axis=0
    )  # seems like this is for creating an additional dimension to s_0
    '''
    theta_1_temp = theta_1.fprop([z_1_temp, s_temp], params)
    theta_mu_temp = theta_mu.fprop([theta_1_temp], params)
    theta_sig_temp = theta_sig.fprop([theta_1_temp], params)
    coeff_temp = coeff.fprop([theta_1_temp], params)
    corr_temp = corr.fprop([theta_1_temp], params)
    binary_temp = binary.fprop([theta_1_temp], params)
    '''

    s_temp.name = 'h'  #gisse
    z_1_temp.name = 'z2'  #gisse
    z_t_temp.name = 'z'
    theta_mu_temp.name = 'mu'
    theta_sig_temp.name = 'sig'
    coeff_temp.name = 'coeff'

    prediction.name = 'Prediction-' + str(appliances[flgAgg][:-1])
    mse = T.mean((prediction - x)**2)  # As axis = None is calculated for all
    mae = T.mean(T.abs_(prediction - x))
    mse.name = 'mse'
    mae.name = 'mae'
    x_in = x.reshape((batch_size * n_steps, -1))

    kl_temp = KLGaussianGaussian(phi_mu_temp, phi_sig_temp, prior_mu_temp,
                                 prior_sig_temp)

    x_shape = x.shape

    theta_mu_in = theta_mu_temp.reshape((x_shape[0] * x_shape[1], -1))
    theta_sig_in = theta_sig_temp.reshape((x_shape[0] * x_shape[1], -1))
    coeff_in = coeff_temp.reshape((x_shape[0] * x_shape[1], -1))
    #corr_in = corr_temp.reshape((x_shape[0]*x_shape[1], -1))
    #binary_in = binary_temp.reshape((x_shape[0]*x_shape[1], -1))

    recon = GMM(
        x_in, theta_mu_in, theta_sig_in, coeff_in
    )  # BiGMM(x_in, theta_mu_in, theta_sig_in, coeff_in, corr_in, binary_in)
    recon = recon.reshape((x_shape[0], x_shape[1]))
    recon.name = 'gmm_out'

    #recon = recon * mask

    recon_term = recon.sum(axis=0).mean()
    recon_term.name = 'recon_term'

    #kl_temp = kl_temp * mask

    kl_term = kl_temp.sum(axis=0).mean()
    kl_term.name = 'kl_term'

    nll_upper_bound = recon_term + kl_term  #+ mse
    if (flgMSE):
        nll_upper_bound = nll_upper_bound + mse
    nll_upper_bound.name = 'nll_upper_bound'

    ############## TEST  ###############
    theta_mu_in_val = theta_mu_temp_val.reshape((batch_size * n_steps, -1))
    theta_sig_in_val = theta_sig_temp_val.reshape((batch_size * n_steps, -1))
    coeff_in_val = coeff_temp_val.reshape((batch_size * n_steps, -1))

    pred_in = prediction_val.reshape((batch_size * n_steps, -1))
    recon_val = GMM(
        pred_in, theta_mu_in_val, theta_sig_in_val, coeff_in_val
    )  # BiGMM(x_in, theta_mu_in, theta_sig_in, coeff_in, corr_in, binary_in)
    recon_val = recon_val.reshape((batch_size, n_steps))
    recon_val.name = 'gmm_out_val'

    model.inputs = [x, mask, y, y_mask, scheduleSamplingMask]
    model.params = params
    model.nodes = nodes

    optimizer = Adam(lr=lr)

    header = "epoch,log,kl,nll_upper_bound,mse,mae\n"
    extension = [
        GradientClipping(batch_size=batch_size),
        EpochCount(epoch, save_path, header),
        Monitoring(
            freq=monitoring_freq,
            ddout=[nll_upper_bound, recon_term, kl_term, mse, mae, prediction],
            indexSep=5,
            indexDDoutPlot=[(0, theta_mu_temp), (2, z_t_temp),
                            (3, prediction)],
            instancesPlot=instancesPlot,  #{0:[4,20],2:[5,10]},#, 80,150
            data=[Iterator(valid_data, batch_size)],
            savedFolder=save_path),
        Picklize(freq=monitoring_freq, path=save_path),
        EarlyStopping(freq=monitoring_freq,
                      path=save_path,
                      channel=channel_name),
        WeightNorm()
    ]

    lr_iterations = {
        0: lr,
        30: (lr / 10)
    }  #, 150:(lr/10), 270:(lr/100), 370:(lr/1000)

    mainloop = Training(name=pkl_name,
                        data=Iterator(train_data, batch_size),
                        model=model,
                        optimizer=optimizer,
                        cost=nll_upper_bound,
                        outputs=[nll_upper_bound],
                        n_steps=n_steps,
                        extension=extension,
                        lr_iterations=lr_iterations)
    mainloop.run()

    test_fn = theano.function(
        inputs=[],
        outputs=[prediction_val, recon_val],
        updates=
        updates_val  #, allow_input_downcast=True, on_unused_input='ignore'
    )

    outputGeneration = test_fn()
    #{0:[4,20], 2:[5,10]}
    '''
    plt.figure(1)
    plt.plot(np.transpose(outputGeneration[0],[1,0,2])[5])
    plt.savefig(save_path+"/vrnn_dis_generated_z_0-4.ps")

    plt.figure(2)
    plt.plot(np.transpose(outputGeneration[1],[1,0,2])[5])
    plt.savefig(save_path+"/vrnn_dis_generated_s_0-4.ps")

    plt.figure(3)
    plt.plot(np.transpose(outputGeneration[2],[1,0,2])[5])
    plt.savefig(save_path+"/vrnn_dis_generated_theta_0-4.ps")
    '''
    plt.figure(1)
    plt.plot(np.transpose(outputGeneration[0], [1, 0, 2])[2])
    plt.savefig(save_path + "/vrnn_dis_generated_pred_0-2.ps")

    plt.figure(2)
    plt.plot(np.transpose(outputGeneration[0], [1, 0, 2])[10])
    plt.savefig(save_path + "/vrnn_dis_generated_pred_0-10.ps")

    plt.figure(3)
    plt.plot(np.transpose(outputGeneration[0], [1, 0, 2])[15])
    plt.savefig(save_path + "/vrnn_dis_generated_pred_0-15.ps")

    testLogLike = np.asarray(outputGeneration[1]).mean()

    fLog = open(save_path + '/output.csv', 'w')
    fLog.write(str(lr_iterations) + "\n")
    fLog.write(str(windows) + "\n")
    fLog.write("Test-log-likelihood\n")
    fLog.write("{}\n".format(testLogLike))
    fLog.write("q_z_dim,p_z_dim,p_x_dim,x2s_dim,z2s_dim\n")
    fLog.write("{},{},{},{},{}\n".format(q_z_dim, p_z_dim, p_x_dim, x2s_dim,
                                         z2s_dim))
    fLog.write("epoch,log,kl,nll_upper_bound,mse,mae\n")
    for i, item in enumerate(mainloop.trainlog.monitor['nll_upper_bound']):
        f = mainloop.trainlog.monitor['epoch'][i]
        a = mainloop.trainlog.monitor['recon_term'][i]
        b = mainloop.trainlog.monitor['kl_term'][i]
        c = mainloop.trainlog.monitor['nll_upper_bound'][i]
        d = mainloop.trainlog.monitor['mse'][i]
        e = mainloop.trainlog.monitor['mae'][i]
        fLog.write("{:d},{:.2f},{:.2f},{:.2f},{:.3f},{:.3f}\n".format(
            f, a, b, c, d, e))
    fLog.close()

    f = open(save_path + '/outputRealGeneration.pkl', 'wb')
    cPickle.dump(outputGeneration, f, -1)
    f.close()
Ejemplo n.º 8
0
def main(args):

    theano.optimizer = 'fast_compile'
    theano.config.exception_verbosity = 'high'

    trial = int(args['trial'])
    pkl_name = 'rnn_gmm_%d' % trial
    channel_name = 'valid_nll'

    data_path = args['data_path']
    save_path = args['save_path']
    flgMSE = int(args['flgMSE'])

    period = int(args['period'])
    n_steps = int(args['n_steps'])
    stride_train = int(args['stride_train'])
    stride_test = n_steps  # int(args['stride_test'])

    monitoring_freq = int(args['monitoring_freq'])
    epoch = int(args['epoch'])
    batch_size = int(args['batch_size'])
    x_dim = int(args['x_dim'])
    z_dim = int(args['z_dim'])
    y_dim = int(args['y_dim'])
    flgAgg = int(args['flgAgg'])
    rnn_dim = int(args['rnn_dim'])
    k = int(args['num_k'])
    lr = float(args['lr'])
    debug = int(args['debug'])

    print "trial no. %d" % trial
    print "batch size %d" % batch_size
    print "learning rate %f" % lr
    print "saving pkl file '%s'" % pkl_name
    print "to the save path '%s'" % save_path

    x2s_dim = 50  #300
    s2x_dim = 50  #300
    target_dim = k  #(x_dim-1)*k

    model = Model()
    Xtrain, ytrain, Xval, yval = fetch_ukdale(data_path,
                                              windows,
                                              appliances,
                                              numApps=flgAgg,
                                              period=period,
                                              n_steps=n_steps,
                                              stride_train=stride_train,
                                              stride_test=stride_test)
    print("Inside: ", Xtrain.shape, ytrain.shape, Xval.shape, yval.shape)
    train_data = UKdale(
        name='train',
        prep='normalize',
        cond=True,  # False
        #path=data_path,
        inputX=Xtrain,
        labels=ytrain)

    X_mean = train_data.X_mean
    X_std = train_data.X_std

    valid_data = UKdale(
        name='valid',
        prep='normalize',
        cond=True,  # False
        #path=data_path,
        X_mean=X_mean,
        X_std=X_std,
        inputX=Xval,
        labels=yval)

    init_W = InitCell('rand')
    init_U = InitCell('ortho')
    init_b = InitCell('zeros')
    init_b_sig = InitCell('const', mean=0.6)

    x, mask, y, y_mask = train_data.theano_vars()  #mask, y_mask
    '''
    if debug:
        x.tag.test_value = np.zeros((15, batch_size, x_dim), dtype=np.float32)
        temp = np.ones((15, batch_size), dtype=np.float32)
        temp[:, -2:] = 0.
        mask.tag.test_value = temp
    '''
    x_1 = FullyConnectedLayer(name='x_1',
                              parent=['x_t'],
                              parent_dim=[x_dim],
                              nout=x2s_dim,
                              unit='relu',
                              init_W=init_W,
                              init_b=init_b)

    rnn = LSTM(name='rnn',
               parent=['x_1'],
               parent_dim=[x2s_dim],
               nout=rnn_dim,
               unit='tanh',
               init_W=init_W,
               init_U=init_U,
               init_b=init_b)

    theta_1 = FullyConnectedLayer(name='theta_1',
                                  parent=['s_tm1'],
                                  parent_dim=[rnn_dim],
                                  nout=s2x_dim,
                                  unit='relu',
                                  init_W=init_W,
                                  init_b=init_b)

    theta_mu = FullyConnectedLayer(name='theta_mu',
                                   parent=['theta_1'],
                                   parent_dim=[s2x_dim],
                                   nout=target_dim,
                                   unit='linear',
                                   init_W=init_W,
                                   init_b=init_b)

    theta_sig = FullyConnectedLayer(name='theta_sig',
                                    parent=['theta_1'],
                                    parent_dim=[s2x_dim],
                                    nout=target_dim,
                                    unit='softplus',
                                    cons=1e-4,
                                    init_W=init_W,
                                    init_b=init_b_sig)

    coeff = FullyConnectedLayer(name='coeff',
                                parent=['theta_1'],
                                parent_dim=[s2x_dim],
                                nout=k,
                                unit='softmax',
                                init_W=init_W,
                                init_b=init_b)
    '''
    corr = FullyConnectedLayer(name='corr',
                               parent=['theta_1'],
                               parent_dim=[s2x_dim],
                               nout=k,
                               unit='tanh',
                               init_W=init_W,
                               init_b=init_b)

    binary = FullyConnectedLayer(name='binary',
                                 parent=['theta_1'],
                                 parent_dim=[s2x_dim],
                                 nout=1,
                                 unit='sigmoid',
                                 init_W=init_W,
                                 init_b=init_b)
    '''
    nodes = [rnn, x_1, theta_1, theta_mu, theta_sig, coeff]

    params = OrderedDict()

    for node in nodes:
        if node.initialize() is not None:
            params.update(node.initialize())

    params = init_tparams(params)

    s_0 = rnn.get_init_state(batch_size)

    x_shape = x.shape
    x_1_temp = x_1.fprop([x], params)

    def inner_fn(x_t, s_tm1):

        s_t = rnn.fprop([[x_t], [s_tm1]], params)
        theta_1_t = theta_1.fprop([s_t], params)
        theta_mu_t = theta_mu.fprop([theta_1_t], params)
        theta_sig_t = theta_sig.fprop([theta_1_t], params)
        coeff_t = coeff.fprop([theta_1_t], params)

        pred = GMM_sample(theta_mu_t, theta_sig_t, coeff_t)
        return s_t, theta_mu_t, theta_sig_t, coeff_t, pred

    ((s_temp, theta_mu_temp, theta_sig_temp, coeff_temp, pred_temp),
     updates) = theano.scan(fn=inner_fn,
                            sequences=[x_1_temp],
                            outputs_info=[s_0, None, None, None, None])

    for k, v in updates.iteritems():
        k.default_update = v

    s_temp = concatenate([s_0[None, :, :], s_temp[:-1]], axis=0)
    '''
    theta_1_temp = theta_1.fprop([s_temp], params)
    theta_mu_temp = theta_mu.fprop([theta_1_temp], params)
    theta_sig_temp = theta_sig.fprop([theta_1_temp], params)
    coeff_temp = coeff.fprop([theta_1_temp], params)
    corr_temp = corr.fprop([theta_1_temp], params)
    binary_temp = binary.fprop([theta_1_temp], params)
    '''

    x_shape = x.shape
    x_in = x.reshape((x_shape[0] * x_shape[1], -1))
    theta_mu_in = theta_mu_temp.reshape((x_shape[0] * x_shape[1], -1))
    theta_sig_in = theta_sig_temp.reshape((x_shape[0] * x_shape[1], -1))
    coeff_in = coeff_temp.reshape((x_shape[0] * x_shape[1], -1))
    #corr_in = corr_temp.reshape((x_shape[0]*x_shape[1], -1))
    #binary_in = binary_temp.reshape((x_shape[0]*x_shape[1], -1))

    if (flgAgg == -1):
        pred_temp.name = 'x_reconstructed'
        mse = T.mean((pred_temp - x)**2)  # CHECK RESHAPE with an assertion
        mae = T.mean(T.abs(pred_temp - x))
        mse.name = 'mse'
        pred_in = x.reshape((x_shape[0] * x_shape[1], -1))
    else:
        #pred_temp = pred_temp.reshape((pred_temp.shape[0], pred_temp.shape[1]))
        pred_temp.name = 'pred_' + str(flgAgg)
        #y[:,:,flgAgg].reshape((y.shape[0],y.shape[1],1))
        mse = T.mean((pred_temp - y)**2)  # CHECK RESHAPE with an assertion
        mae = T.mean(T.abs_(pred_temp - y))
        mse.name = 'mse'
        mae.name = 'mae'
        pred_in = y.reshape((y.shape[0] * y.shape[1], -1))

    recon = GMM(pred_in, theta_mu_in, theta_sig_in, coeff_in)  #, binary_in
    recon.name = 'recon'
    recon = recon.reshape((y.shape[0], y.shape[1]))
    #recon = recon * y_mask #(200, 1000), (1000, 200)
    recon_term = recon.sum(axis=0).mean()
    recon_term.name = 'nll'

    max_x = x.max()
    mean_x = x.mean()
    min_x = x.min()
    max_x.name = 'max_x'
    mean_x.name = 'mean_x'
    min_x.name = 'min_x'

    max_theta_mu = theta_mu_in.max()
    mean_theta_mu = theta_mu_in.mean()
    min_theta_mu = theta_mu_in.min()
    max_theta_mu.name = 'max_theta_mu'
    mean_theta_mu.name = 'mean_theta_mu'
    min_theta_mu.name = 'min_theta_mu'
    '''
    max_theta_sig = theta_sig_in.max()
    mean_theta_sig = theta_sig_in.mean()
    min_theta_sig = theta_sig_in.min()
    max_theta_sig.name = 'max_theta_sig'
    mean_theta_sig.name = 'mean_theta_sig'
    min_theta_sig.name = 'min_theta_sig'


    coeff_max = coeff_in.max()
    coeff_min = coeff_in.min()
    coeff_mean_max = coeff_in.mean(axis=0).max()
    coeff_mean_min = coeff_in.mean(axis=0).min()
    coeff_max.name = 'coeff_max'
    coeff_min.name = 'coeff_min'
    coeff_mean_max.name = 'coeff_mean_max'
    coeff_mean_min.name = 'coeff_mean_min'
    '''
    model.inputs = [x, mask, y, y_mask]
    model.params = params
    model.nodes = nodes

    optimizer = Adam(lr=lr)

    extension = [
        GradientClipping(batch_size=batch_size),
        EpochCount(epoch),
        Monitoring(
            freq=monitoring_freq,
            ddout=[
                recon_term,
                mse,
                mae,
                #max_theta_sig, mean_theta_sig, min_theta_sig,
                max_x,
                mean_x,
                min_x,
                max_theta_mu,
                mean_theta_mu,
                min_theta_mu,
                #coeff_max, coeff_min, coeff_mean_max, coeff_mean_min,#16
                theta_mu_temp,
                theta_sig_temp,
                pred_temp,
                coeff_temp,
                s_temp
            ],
            indexSep=9,
            indexDDoutPlot=[(0, theta_mu_temp), (2, pred_temp)],
            instancesPlot=[10, 100],  #, 80,150
            savedFolder=save_path,
            data=[Iterator(valid_data, batch_size)]),
        Picklize(freq=monitoring_freq, path=save_path),
        EarlyStopping(freq=monitoring_freq,
                      path=save_path,
                      channel=channel_name),
        WeightNorm()
    ]

    lr_iterations = {0: lr, 20: (lr / 10), 150: (lr / 100), 200: (lr / 1000)}

    mainloop = Training(name=pkl_name,
                        data=Iterator(train_data, batch_size),
                        model=model,
                        optimizer=optimizer,
                        cost=recon_term,
                        outputs=[recon_term],
                        extension=extension,
                        lr_iterations=lr_iterations)
    mainloop.run()
    fLog = open(save_path + '/output.csv', 'w')
    fLog.write("log,mse,mae\n")
    for i, item in enumerate(mainloop.trainlog.monitor['nll']):
        a = mainloop.trainlog.monitor['nll'][i]
        d = mainloop.trainlog.monitor['mse'][i]
        e = mainloop.trainlog.monitor['mae'][i]
        fLog.write("{},{},{}\n".format(a, d, e))
Ejemplo n.º 9
0
for k, v in updates.iteritems():
    k.default_update = v

s_t = s_t[:-1]
s_shape = s_t.shape
s_in = T.concatenate([s_0, s_t.reshape((s_shape[0]*s_shape[1], -1))], axis=0)
theta_1_in = theta_1.fprop([s_in])
theta_2_in = theta_2.fprop([theta_1_in])
theta_3_in = theta_3.fprop([theta_2_in])
theta_4_in = theta_4.fprop([theta_3_in])
theta_mu_in = theta_mu.fprop([theta_4_in])
theta_sig_in = theta_sig.fprop([theta_4_in])
coeff_in = coeff.fprop([theta_4_in])

recon = GMM(x_in, theta_mu_in, theta_sig_in, coeff_in)
recon = recon.reshape((x_shape[0], x_shape[1]))
recon = recon * x_mask
recon_term = recon.sum(axis=0).mean()
recon_term.name = 'nll'

max_x = x.max()
mean_x = x.mean()
min_x = x.min()
max_x.name = 'max_x'
mean_x.name = 'mean_x'
min_x.name = 'min_x'

max_theta_mu = theta_mu_in.max()
mean_theta_mu = theta_mu_in.mean()
min_theta_mu = theta_mu_in.min()
Ejemplo n.º 10
0
theta_2_in = theta_2.fprop([theta_1_in])
theta_3_in = theta_3.fprop([theta_2_in])
theta_4_in = theta_4.fprop([theta_3_in])
theta_mu_in = theta_mu.fprop([theta_4_in])
theta_sig_in = theta_sig.fprop([theta_4_in])
coeff_in = coeff.fprop([theta_4_in])

z_shape = phi_mu_t.shape
phi_mu_in = phi_mu_t.reshape((z_shape[0]*z_shape[1], -1))
phi_sig_in = phi_sig_t.reshape((z_shape[0]*z_shape[1], -1))
prior_mu_in = prior_mu_t.reshape((z_shape[0]*z_shape[1], -1))
prior_sig_in = prior_sig_t.reshape((z_shape[0]*z_shape[1], -1))
kl_in = kl.fprop([phi_mu_in, phi_sig_in, prior_mu_in, prior_sig_in])
kl_t = kl_in.reshape((z_shape[0], z_shape[1]))

recon = GMM(x_in, theta_mu_in, theta_sig_in, coeff_in)
recon = recon.reshape((x_shape[0], x_shape[1]))
recon_term = recon.mean()
kl_term = kl_t.mean()
nll_lower_bound = recon_term + kl_term
nll_lower_bound.name = 'nll_lower_bound'

mn_x_shape = mn_x.shape
mn_x_in = mn_x.reshape((mn_x_shape[0]*mn_x_shape[1], -1))
mn_x_1_in = x_1.fprop([mn_x_in])
mn_x_2_in = x_2.fprop([mn_x_1_in])
mn_x_3_in = x_3.fprop([mn_x_2_in])
mn_x_4_in = x_4.fprop([mn_x_3_in])
mn_x_4_in = mn_x_4_in.reshape((mn_x_shape[0], mn_x_shape[1], -1))
mn_s_0 = main_lstm.get_init_state(mn_batch_size)
Ejemplo n.º 11
0
def main(args):

    #theano.optimizer='fast_compile'
    #theano.config.exception_verbosity='high'

    trial = int(args['trial'])
    #pkl_name = 'dp_dis1-nosch_%d' % trial
    channel_name = 'mae'

    data_path = args['data_path']
    save_path = args[
        'save_path']  #+'/gmm/'+datetime.datetime.now().strftime("%y-%m-%d_%H-%M")
    testRef_file = args['testRef_file']
    flgMSE = int(args['flgMSE'])

    period = int(args['period'])
    n_steps = int(args['n_steps'])
    stride_train = int(args['stride_train'])
    stride_test = n_steps  # int(args['stride_test'])

    monitoring_freq = int(args['monitoring_freq'])
    epoch = int(args['epoch'])
    batch_size = int(args['batch_size'])
    x_dim = int(args['x_dim'])
    y_dim = int(args['y_dim'])
    flgAgg = int(args['flgAgg'])
    z_dim = int(args['z_dim'])
    rnn_dim = int(args['rnn_dim'])
    k = int(args['num_k'])  #a mixture of K Gaussian functions
    lr = float(args['lr'])
    typeLoad = int(args['typeLoad'])
    debug = int(args['debug'])
    kSchedSamp = int(args['kSchedSamp'])
    clipped = int(args['clipped'])

    print "trial no. %d" % trial
    print "batch size %d" % batch_size
    print "learning rate %f" % lr
    print "Reading pkl file '%s'" % testRef_file
    print "to the save path '%s'" % save_path

    q_z_dim = 150
    p_z_dim = 150
    p_x_dim = 150  #250
    x2s_dim = 100  #250
    y2s_dim = 100
    z2s_dim = 100  #150
    target_dim = k  #x_dim #(x_dim-1)*k

    model = Model()
    Xtrain, ytrain, Xval, yval, Xtest, ytest, reader = fetch_dataport(
        data_path,
        windows,
        appliances,
        numApps=flgAgg,
        period=period,
        n_steps=n_steps,
        stride_train=stride_train,
        stride_test=stride_test,
        trainPer=0.6,
        valPer=0.2,
        testPer=0.2,
        typeLoad=typeLoad,
        flgAggSumScaled=1,
        flgFilterZeros=1)
    print(reader.stdTrain, reader.meanTrain)
    instancesPlot = {
        0: [4],
        2: [5]
    }  #for now use hard coded instancesPlot for kelly sampling

    train_data = Dataport(
        name='train',
        prep='normalize',
        cond=True,  # False
        #path=data_path,
        inputX=Xtrain,
        labels=ytrain)

    X_mean = train_data.X_mean
    X_std = train_data.X_std

    valid_data = Dataport(
        name='valid',
        prep='normalize',
        cond=True,  # False
        #path=data_path,
        X_mean=X_mean,
        X_std=X_std,
        inputX=Xval,
        labels=yval)

    test_data = Dataport(
        name='valid',
        prep='normalize',
        cond=True,  # False
        #path=data_path,
        X_mean=X_mean,
        X_std=X_std,
        inputX=Xtest,
        labels=ytest)

    init_W = InitCell('rand')
    init_U = InitCell('ortho')
    init_b = InitCell('zeros')
    init_b_sig = InitCell('const', mean=0.6)

    x, mask, y, y_mask = test_data.theano_vars()
    scheduleSamplingMask = T.fvector('schedMask')

    x.name = 'x_original'
    if debug:
        x.tag.test_value = np.zeros((15, batch_size, x_dim), dtype=np.float32)
        temp = np.ones((15, batch_size), dtype=np.float32)
        temp[:, -2:] = 0.
        mask.tag.test_value = temp

    fmodel = open(testRef_file, 'rb')
    mainloop = cPickle.load(fmodel)
    fmodel.close()

    #define layers
    rnn = mainloop.model.nodes[0]
    x_1 = mainloop.model.nodes[1]
    y_1 = mainloop.model.nodes[2]
    z_1 = mainloop.model.nodes[3]
    phi_1 = mainloop.model.nodes[4]
    phi_mu = mainloop.model.nodes[5]
    phi_sig = mainloop.model.nodes[6]
    prior_1 = mainloop.model.nodes[7]
    prior_mu = mainloop.model.nodes[8]
    prior_sig = mainloop.model.nodes[9]
    theta_1 = mainloop.model.nodes[10]
    theta_mu = mainloop.model.nodes[11]
    theta_sig = mainloop.model.nodes[12]
    coeff = mainloop.model.nodes[13]

    nodes = [
        rnn,
        x_1,
        y_1,
        z_1,  #dissag_pred,
        phi_1,
        phi_mu,
        phi_sig,
        prior_1,
        prior_mu,
        prior_sig,
        theta_1,
        theta_mu,
        theta_sig,
        coeff
    ]  #, corr, binary

    params = mainloop.model.params
    """params = OrderedDict()

    for node in nodes:
        if node.initialize() is not None:
            params.update(node.initialize())

    params = init_tparams(params)"""

    s_0 = rnn.get_init_state(batch_size)

    x_1_temp = x_1.fprop([x], params)

    def inner_fn_val(x_t, s_tm1):

        prior_1_t = prior_1.fprop([x_t, s_tm1], params)
        prior_mu_t = prior_mu.fprop([prior_1_t], params)
        prior_sig_t = prior_sig.fprop([prior_1_t], params)

        z_t = Gaussian_sample(prior_mu_t, prior_sig_t)
        z_1_t = z_1.fprop([z_t], params)

        theta_1_t = theta_1.fprop([z_1_t, s_tm1], params)
        theta_mu_t = theta_mu.fprop([theta_1_t], params)
        theta_sig_t = theta_sig.fprop([theta_1_t], params)

        coeff_t = coeff.fprop([theta_1_t], params)

        pred_t = GMM_sample(theta_mu_t, theta_sig_t,
                            coeff_t)  #Gaussian_sample(theta_mu_t, theta_sig_t)
        pred_1_t = y_1.fprop([pred_t], params)
        s_t = rnn.fprop([[x_t, z_1_t, pred_1_t], [s_tm1]], params)
        #y_pred = dissag_pred.fprop([s_t], params)

        return s_t, prior_mu_t, prior_sig_t, theta_mu_t, theta_sig_t, coeff_t, pred_t  #, y_pred
        #corr_temp, binary_temp
    ((s_temp_val, prior_mu_temp_val, prior_sig_temp_val,  theta_mu_temp_val, theta_sig_temp_val, coeff_temp_val, prediction_val), updates_val) =\
        theano.scan(fn=inner_fn_val,
                    sequences=[x_1_temp],
                    outputs_info=[s_0, None, None, None, None, None, None])

    for k, v in updates_val.iteritems():
        k.default_update = v

    s_temp_val = concatenate([s_0[None, :, :], s_temp_val[:-1]], axis=0)

    x_shape = x.shape

    ######################## TEST (GENERATION) TIME
    prediction_val = T.clip(prediction_val, 0.0, np.inf)
    prediction_val.name = 'generated__' + str(flgAgg)
    mse_val = T.mean(
        (prediction_val - y)**2)  # As axis = None is calculated for all
    mae_val = T.mean(T.abs_(prediction_val - y))

    mse_val.name = 'mse_val'
    mae_val.name = 'mae_val'
    pred_in_val = y.reshape((y.shape[0] * y.shape[1], -1))

    theta_mu_in_val = theta_mu_temp_val.reshape((x_shape[0] * x_shape[1], -1))
    theta_sig_in_val = theta_sig_temp_val.reshape(
        (x_shape[0] * x_shape[1], -1))
    coeff_in_val = coeff_temp_val.reshape((x_shape[0] * x_shape[1], -1))

    recon_val = GMM(
        pred_in_val, theta_mu_in_val, theta_sig_in_val, coeff_in_val
    )  # BiGMM(x_in, theta_mu_in, theta_sig_in, coeff_in, corr_in, binary_in)
    recon_val = recon_val.reshape((x_shape[0], x_shape[1]))
    recon_val.name = 'gmm_out_val'

    recon_term_val = recon_val.sum(axis=0).mean()
    recon_term_val.name = 'recon_term_val'

    data = Iterator(test_data, batch_size)

    test_fn = theano.function(
        inputs=[x, y],  #[x, y],
        allow_input_downcast=True,
        outputs=[
            prediction_val, theta_mu_in_val, theta_sig_in_val, coeff_in_val,
            recon_term_val
        ]  #prediction_val, mse_val, mae_val
        ,
        updates=
        updates_val  #, allow_input_downcast=True, on_unused_input='ignore'
    )
    testOutput = []
    bestInstsancesPred = []
    bestInstsancesDisa = []
    bestInstsancesAggr = []
    numBatchTest = 0
    for batch in data:
        #, recon_term_val, mse_val, mae_val
        x_test, y_test = batch[0], batch[2]
        outputGeneration = test_fn(x_test, y_test)  #(20, 220, 1)
        #testOutput.append(outputGeneration[1:])
        # outputGeneration[0].shape #(20, 220, 40)

        if (clipped == 1):
            prediction_test = outputGeneration[0].clip(min=0)

        theta_mu_test = outputGeneration[1]
        theta_sig_test = outputGeneration[2]
        coeff_in_test = outputGeneration[3]

        realAggTest = np.transpose(x_test, [1, 0, 2])
        realDisagTest = np.transpose(
            y_test, [1, 0, 2])  # because y_test already transformed
        prediction_test = np.transpose(prediction_test, [1, 0, 2])

        ### test loglike
        y_test = y_test.reshape((y_test.shape[0] * y_test.shape[1], -1))
        recon_test = GMM_outside(
            y_test, theta_mu_test, theta_sig_test, coeff_in_test
        )  # BiGMM(x_in, theta_mu_in, theta_sig_in, coeff_in, corr_in, binary_in)
        recon_test = recon_test.reshape((x_test.shape[0], x_test.shape[1]))
        recon_term_test = recon_test.sum(axis=0).mean()

        ## test mse - mae
        mse_test = np.mean(
            (prediction_test -
             realDisagTest)**2)  # As axis = None is calculated for all
        mae_test = np.mean(np.absolute(prediction_test - realDisagTest))
        testOutput.append(
            (recon_term_test, mse_test, mae_test, outputGeneration[4]))

        batchMae_test = np.mean(np.absolute(prediction_test - realDisagTest),
                                axis=(1, 2))
        idxMin = np.argmin(batchMae_test)

        for idx in np.asarray(idxMin).reshape(1, -1)[0, :]:

            plt.figure(1)
            plt.plot(prediction_test[idx])
            plt.plot(realDisagTest[idx])
            plt.legend(["Predicted", "Real"])
            plt.savefig(
                save_path +
                "/vrnn_dis1_test-b{}_Pred-Real_0-{}".format(numBatchTest, idx))
            plt.clf()

            plt.figure(3)
            plt.plot(np.transpose(batch[0], [1, 0, 2])[idx])
            plt.savefig(
                save_path +
                "/vrnn_dis1_test-b{}_RealAgg_0-{}".format(numBatchTest, idx))
            plt.clf()

            bestInstsancesPred.append(prediction_test[idx])
            bestInstsancesDisa.append(realDisagTest[idx])
            bestInstsancesAggr.append(realAggTest[idx])

        numBatchTest += 1

    testOutput = np.asarray(testOutput)
    recon_testOutside = np.mean(testOutput[:, 0])
    mse_test = np.mean(testOutput[:, 1])
    mae_test = np.mean(testOutput[:, 2])
    recon_testInside = np.mean(testOutput[:, 3])
    #mseUnNorm_test =  testOutput[:, 3].mean()
    #maeUnNorm_test =  testOutput[:, 4].mean()

    fLog = open(save_path + '/output_test.csv', 'w')
    fLog.write(str(windows) + "\n")
    fLog.write(
        "logTestOutside,logTestInside,mseTest,maeTest, mseTestUnNorm, maeTestUnNorm\n"
    )
    fLog.write("{},{},{},{}\n".format(recon_testOutside, recon_testInside,
                                      mse_test, mae_test))
    fLog.write("q_z_dim,p_z_dim,p_x_dim,x2s_dim,y2s_dim,z2s_dim\n")
    fLog.write("{},{},{},{},{},{}\n".format(q_z_dim, p_z_dim, p_x_dim, x2s_dim,
                                            y2s_dim, z2s_dim))
def main(args):

    #theano.optimizer='fast_compile'
    #theano.config.exception_verbosity='high'

    trial = int(args['trial'])
    pkl_name = 'dp_dis1-sch_%d' % trial
    channel_name = 'mae'

    data_path = args['data_path']
    save_path = args[
        'save_path']  #+'/gmm/'+datetime.datetime.now().strftime("%y-%m-%d_%H-%M")
    flgMSE = int(args['flgMSE'])

    period = int(args['period'])
    n_steps = int(args['n_steps'])
    stride_train = int(args['stride_train'])
    stride_test = n_steps  # int(args['stride_test'])

    monitoring_freq = int(args['monitoring_freq'])
    epoch = int(args['epoch'])
    batch_size = int(args['batch_size'])
    x_dim = int(args['x_dim'])
    y_dim = int(args['y_dim'])
    flgAgg = int(args['flgAgg'])
    z_dim = int(args['z_dim'])
    rnn_dim = int(args['rnn_dim'])
    k = int(args['num_k'])  #a mixture of K Gaussian functions
    lr = float(args['lr'])
    typeLoad = int(args['typeLoad'])
    debug = int(args['debug'])
    kSchedSamp = int(args['kSchedSamp'])

    print "trial no. %d" % trial
    print "batch size %d" % batch_size
    print "learning rate %f" % lr
    print "saving pkl file '%s'" % pkl_name
    print "to the save path '%s'" % save_path

    q_z_dim = 150
    p_z_dim = 150
    p_x_dim = 150  #250
    x2s_dim = 100  #250
    y2s_dim = 100
    z2s_dim = 100  #150
    target_dim = k  #x_dim #(x_dim-1)*k

    model = Model()
    Xtrain, ytrain, Xval, yval, Xtest, ytest, reader = fetch_dataport(
        data_path,
        windows,
        appliances,
        numApps=flgAgg,
        period=period,
        n_steps=n_steps,
        stride_train=stride_train,
        stride_test=stride_test,
        trainPer=0.6,
        valPer=0.2,
        testPer=0.2,
        typeLoad=typeLoad,
        flgAggSumScaled=1,
        flgFilterZeros=1)
    print(reader.stdTrain, reader.meanTrain)
    instancesPlot = {
        0: [4],
        2: [10]
    }  #for now use hard coded instancesPlot for kelly sampling

    train_data = Dataport(
        name='train',
        prep='normalize',
        cond=True,  # False
        #path=data_path,
        inputX=Xtrain,
        labels=ytrain)

    X_mean = train_data.X_mean
    X_std = train_data.X_std

    valid_data = Dataport(
        name='valid',
        prep='normalize',
        cond=True,  # False
        #path=data_path,
        X_mean=X_mean,
        X_std=X_std,
        inputX=Xval,
        labels=yval)

    test_data = Dataport(
        name='valid',
        prep='normalize',
        cond=True,  # False
        #path=data_path,
        X_mean=X_mean,
        X_std=X_std,
        inputX=Xtest,
        labels=ytest)

    init_W = InitCell('rand')
    init_U = InitCell('ortho')
    init_b = InitCell('zeros')
    init_b_sig = InitCell('const', mean=0.6)

    x, mask, y, y_mask = train_data.theano_vars()
    scheduleSamplingMask = T.fvector('schedMask')

    x.name = 'x_original'
    if debug:
        x.tag.test_value = np.zeros((15, batch_size, x_dim), dtype=np.float32)
        temp = np.ones((15, batch_size), dtype=np.float32)
        temp[:, -2:] = 0.
        mask.tag.test_value = temp

    fmodel = open('dp_dis1-sch_1_best.pkl', 'rb')
    mainloop = cPickle.load(fmodel)
    fmodel.close()

    #attrs = vars(mainloop)
    #print ', '.join("%s: %s" % item for item in attrs.items())
    """names = [x.name for x in mainloop.model.nodes]
    print(names)
    print(mainloop.model.nodes)"""

    #define layers
    rnn = mainloop.model.nodes[0]
    x_1 = mainloop.model.nodes[1]
    y_1 = mainloop.model.nodes[2]
    z_1 = mainloop.model.nodes[3]
    phi_1 = mainloop.model.nodes[4]
    phi_mu = mainloop.model.nodes[5]
    phi_sig = mainloop.model.nodes[6]
    prior_1 = mainloop.model.nodes[7]
    prior_mu = mainloop.model.nodes[8]
    prior_sig = mainloop.model.nodes[9]
    theta_1 = mainloop.model.nodes[10]
    theta_mu = mainloop.model.nodes[11]
    theta_sig = mainloop.model.nodes[12]
    coeff = mainloop.model.nodes[13]

    nodes = [
        rnn,
        x_1,
        y_1,
        z_1,  #dissag_pred,
        phi_1,
        phi_mu,
        phi_sig,
        prior_1,
        prior_mu,
        prior_sig,
        theta_1,
        theta_mu,
        theta_sig,
        coeff
    ]  #, corr, binary

    params = mainloop.model.params
    """params = OrderedDict()

    for node in nodes:
        if node.initialize() is not None:
            params.update(node.initialize())"""

    #params = init_tparams(params)
    """OrderedDict([('W_x_1__rnn', W_x_1__rnn), ('W_z_1__rnn', W_z_1__rnn), ('W_y_1__rnn', W_y_1__rnn), 
    ('U_rnn__rnn', U_rnn__rnn), ('b_rnn', b_rnn), ('W_x_t__x_1', W_x_t__x_1), ('b_x_1', b_x_1), 
    ('W_y_t__y_1', W_y_t__y_1), ('b_y_1', b_y_1), ('W_z_t__z_1', W_z_t__z_1), ('b_z_1', b_z_1), 
    ('W_x_1__phi_1', W_x_1__phi_1), ('W_s_tm1__phi_1', W_s_tm1__phi_1), ('W_y_1__phi_1', W_y_1__phi_1), 
    ('b_phi_1', b_phi_1), ('W_phi_1__phi_mu', W_phi_1__phi_mu), ('b_phi_mu', b_phi_mu), 
    ('W_phi_1__phi_sig', W_phi_1__phi_sig), ('b_phi_sig', b_phi_sig), ('W_x_1__prior_1', W_x_1__prior_1), 
    ('W_s_tm1__prior_1', W_s_tm1__prior_1), ('b_prior_1', b_prior_1), ('W_prior_1__prior_mu', W_prior_1__prior_mu), 
    ('b_prior_mu', b_prior_mu), ('W_prior_1__prior_sig', W_prior_1__prior_sig), ('b_prior_sig', b_prior_sig), 
    ('W_z_1__theta_1', W_z_1__theta_1), ('W_s_tm1__theta_1', W_s_tm1__theta_1), ('b_theta_1', b_theta_1), 
    ('W_theta_1__theta_mu', W_theta_1__theta_mu), ('b_theta_mu', b_theta_mu), ('W_theta_1__theta_sig', W_theta_1__theta_sig), 
    ('b_theta_sig', b_theta_sig), ('W_theta_1__coeff', W_theta_1__coeff), ('b_coeff', b_coeff)])"""
    """w1 = params['W_x_1__rnn']
    w2 = params['W_phi_1__phi_sig']
    w3 = params['W_theta_1__coeff']

    print("Initialized W matricies:")
    print("W1:",w1.get_value())
    print("W2:",w2.get_value())
    print("W3:",w3.get_value())
    print("\n\n--------------------------------\n\n")"""

    s_0 = rnn.get_init_state(batch_size)

    x_1_temp = x_1.fprop([x], params)
    y_1_temp = y_1.fprop([y], params)

    def inner_fn_val(x_t, s_tm1):

        prior_1_t = prior_1.fprop([x_t, s_tm1], params)
        prior_mu_t = prior_mu.fprop([prior_1_t], params)
        prior_sig_t = prior_sig.fprop([prior_1_t], params)

        z_t = Gaussian_sample(prior_mu_t, prior_sig_t)
        z_1_t = z_1.fprop([z_t], params)

        theta_1_t = theta_1.fprop([z_1_t, s_tm1], params)
        theta_mu_t = theta_mu.fprop([theta_1_t], params)
        theta_sig_t = theta_sig.fprop([theta_1_t], params)

        coeff_t = coeff.fprop([theta_1_t], params)

        pred_t = GMM_sample(theta_mu_t, theta_sig_t,
                            coeff_t)  #Gaussian_sample(theta_mu_t, theta_sig_t)
        pred_1_t = y_1.fprop([pred_t], params)
        s_t = rnn.fprop([[x_t, z_1_t, pred_1_t], [s_tm1]], params)
        #y_pred = dissag_pred.fprop([s_t], params)

        return s_t, prior_mu_t, prior_sig_t, theta_mu_t, theta_sig_t, coeff_t, pred_t  #, y_pred
        #corr_temp, binary_temp
    ((s_temp_val, prior_mu_temp_val, prior_sig_temp_val, theta_mu_temp_val, theta_sig_temp_val, coeff_temp_val, prediction_val), updates_val) =\
        theano.scan(fn=inner_fn_val,
                    sequences=[x_1_temp],
                    outputs_info=[s_0, None, None, None,  None, None, None])

    for k, v in updates_val.iteritems():
        k.default_update = v

    s_temp_val = concatenate([s_0[None, :, :], s_temp_val[:-1]], axis=0)

    x_shape = x.shape

    ######################## TEST (GENERATION) TIME
    prediction_val.name = 'generated__' + str(flgAgg)
    mse_val = T.mean(
        (prediction_val - y)**2)  # As axis = None is calculated for all
    mae_val = T.mean(T.abs_(prediction_val - y))

    mse_val.name = 'mse_val'
    mae_val.name = 'mae_val'
    pred_in_val = y.reshape((y.shape[0] * y.shape[1], -1))

    theta_mu_in_val = theta_mu_temp_val.reshape((x_shape[0] * x_shape[1], -1))
    theta_sig_in_val = theta_sig_temp_val.reshape(
        (x_shape[0] * x_shape[1], -1))
    coeff_in_val = coeff_temp_val.reshape((x_shape[0] * x_shape[1], -1))

    recon_val = GMM(
        pred_in_val, theta_mu_in_val, theta_sig_in_val, coeff_in_val
    )  # BiGMM(x_in, theta_mu_in, theta_sig_in, coeff_in, corr_in, binary_in)
    recon_val = recon_val.reshape((x_shape[0], x_shape[1]))
    recon_val.name = 'gmm_out_val'

    recon_term_val = recon_val.sum(axis=0).mean()
    recon_term_val.name = 'recon_term_val'

    model.inputs = [x, mask, y, y_mask, scheduleSamplingMask]
    model.params = params
    model.nodes = nodes

    optimizer = Adam(lr=lr)

    header = "epoch,log,kl,nll_upper_bound,mse,mae\n"
    extension = [
        GradientClipping(batch_size=batch_size),
        EpochCount(epoch, save_path, header),
        Monitoring(
            freq=monitoring_freq,
            #ddout=[nll_upper_bound, recon_term, kl_term, mse, mae, prediction],
            indexSep=5,
            instancesPlot=instancesPlot,  #{0:[4,20],2:[5,10]},#, 80,150
            data=[Iterator(valid_data, batch_size)],
            savedFolder=save_path),
        Picklize(freq=monitoring_freq, path=save_path),
        EarlyStopping(freq=monitoring_freq,
                      path=save_path,
                      channel=channel_name),
        WeightNorm()
    ]
    """params = OrderedDict()

    for node in mainloop.model.nodes:
        if node.initialize() is not None:
            params.update(node.initialize())

    params = init_tparams(params)"""
    """ w11 = params['W_x_1__rnn']
    w21 = params['W_phi_1__phi_sig']
    w31 = params['W_theta_1__coeff']

    print("Pickle W matricies:")
    print("W1:",w11.get_value())
    print("W2:",w21.get_value())
    print("W3:",w31.get_value())"""
    """mainloop.restore(
      name=pkl_name,
      data=Iterator(train_data, batch_size),
      model=model,
      optimizer=optimizer,
      #cost=nll_upper_bound,
      #outputs=[recon_term, kl_term, nll_upper_bound, mse, mae],
      n_steps = n_steps,
      extension=extension,
      #lr_iterations=lr_iterations,
      k_speedOfconvergence=kSchedSamp
    )"""

    data = Iterator(test_data, batch_size)

    test_fn = theano.function(
        inputs=[x, y],  #[x, y],
        #givens={x:Xtest},
        #on_unused_input='ignore',
        #z=( ,200,1)
        allow_input_downcast=True,
        outputs=[prediction_val, recon_term_val, mse_val,
                 mae_val]  #prediction_val, mse_val, mae_val
        ,
        updates=
        updates_val  #, allow_input_downcast=True, on_unused_input='ignore'
    )
    testOutput = []
    numBatchTest = 0
    for batch in data:
        outputGeneration = test_fn(batch[0], batch[2])  #(20, 220, 1)
        testOutput.append(outputGeneration[1:])

        plt.figure(4)
        plt.plot(np.transpose(outputGeneration[0], [1, 0, 2])[4])
        plt.plot(np.transpose(batch[2], [1, 0, 2])[4])
        plt.savefig(
            save_path +
            "/vrnn_dis_generated{}_RealAndPred_0-4".format(numBatchTest))
        plt.clf()

        plt.figure(4)
        plt.plot(np.transpose(batch[0], [1, 0, 2])[4])
        plt.savefig(save_path +
                    "/vrnn_dis_generated{}_Realagg_0-4".format(numBatchTest))
        plt.clf()
        numBatchTest += 1

    testOutput = np.asarray(testOutput)
    print(testOutput.shape)
    recon_test = testOutput[:, 0].mean()
    mse_test = testOutput[:, 1].mean()
    mae_test = testOutput[:, 2].mean()
    #mseUnNorm_test = testOutput[:, 3].mean()
    #maeUnNorm_test = testOutput[:, 4].mean()

    fLog = open(save_path + '/output.csv', 'w')
    #fLog.write(str(lr_iterations)+"\n")
    fLog.write(str(windows) + "\n")
    fLog.write("logTest,mseTest,maeTest, mseTestUnNorm, maeTestUnNorm\n")
    fLog.write("{},{},{}\n".format(recon_test, mse_test, mae_test))
    fLog.write("q_z_dim,p_z_dim,p_x_dim,x2s_dim,y2s_dim,z2s_dim\n")
    fLog.write("{},{},{},{},{},{}\n".format(q_z_dim, p_z_dim, p_x_dim, x2s_dim,
                                            y2s_dim, z2s_dim))
    header = "epoch,log,kl,mse,mae\n"
    fLog.write(header)
    for i, item in enumerate(mainloop.trainlog.monitor['recon_term']):
        f = mainloop.trainlog.monitor['epoch'][i]
        a = mainloop.trainlog.monitor['recon_term'][i]
        b = mainloop.trainlog.monitor['kl_term'][i]
        d = mainloop.trainlog.monitor['mse'][i]
        e = mainloop.trainlog.monitor['mae'][i]
        fLog.write("{:d},{:.2f},{:.2f},{:.3f},{:.3f}\n".format(f, a, b, d, e))
def main(args):
    
    #theano.optimizer='fast_compile'
    #theano.config.exception_verbosity='high'

    trial = int(args['trial'])
    pkl_name = 'dp_dis1-nosch_%d' % trial
    channel_name = 'mae'

    data_path = args['data_path']
    save_path = args['save_path'] #+'/gmm/'+datetime.datetime.now().strftime("%y-%m-%d_%H-%M")
    flgMSE = int(args['flgMSE'])

    period = int(args['period'])
    n_steps = int(args['n_steps'])
    stride_train = int(args['stride_train'])
    stride_test = n_steps# int(args['stride_test'])

    monitoring_freq = int(args['monitoring_freq'])
    epoch = int(args['epoch'])
    batch_size = int(args['batch_size'])
    x_dim = int(args['x_dim'])
    y_dim = int(args['y_dim'])
    flgAgg = int(args['flgAgg'])
    z_dim = int(args['z_dim'])
    rnn_dim = int(args['rnn_dim'])
    k = int(args['num_k']) #a mixture of K Gaussian functions
    lr = float(args['lr'])
    typeLoad = int(args['typeLoad'])
    debug = int(args['debug'])
    kSchedSamp = int(args['kSchedSamp'])

    print "trial no. %d" % trial
    print "batch size %d" % batch_size
    print "learning rate %f" % lr
    print "saving pkl file '%s'" % pkl_name
    print "to the save path '%s'" % save_path

    q_z_dim = 150
    p_z_dim = 150
    p_x_dim = 150#250
    x2s_dim = 100#250
    y2s_dim = 100
    z2s_dim = 100#150
    target_dim = k#x_dim #(x_dim-1)*k

    model = Model()
    Xtrain, ytrain, Xval, yval, Xtest, ytest, reader = fetch_dataport(data_path, windows, appliances,numApps=flgAgg, period=period,
                                              n_steps= n_steps, stride_train = stride_train, stride_test = stride_test,
                                              trainPer=0.6, valPer=0.2, testPer=0.2, typeLoad=typeLoad,
                                              flgAggSumScaled = 1, flgFilterZeros = 1)
    print(reader.stdTrain, reader.meanTrain)
    instancesPlot = {0:[4], 2:[5]} #for now use hard coded instancesPlot for kelly sampling

    train_data = Dataport(name='train',
                         prep='normalize',
                         cond=True,# False
                         #path=data_path,
                         inputX=Xtrain,
                         labels=ytrain)

    X_mean = train_data.X_mean
    X_std = train_data.X_std

    valid_data = Dataport(name='valid',
                         prep='normalize',
                         cond=True,# False
                         #path=data_path,
                         X_mean=X_mean,
                         X_std=X_std,
                         inputX=Xval,
                         labels = yval)

    test_data = Dataport(name='valid',
                         prep='normalize',
                         cond=True,# False
                         #path=data_path,
                         X_mean=X_mean,
                         X_std=X_std,
                         inputX=Xtest,
                         labels = ytest)

    init_W = InitCell('rand')
    init_U = InitCell('ortho')
    init_b = InitCell('zeros')
    init_b_sig = InitCell('const', mean=0.6)

    x, mask, y , y_mask = train_data.theano_vars()
    scheduleSamplingMask  = T.fvector('schedMask')
    
    x.name = 'x_original'
    if debug:
        x.tag.test_value = np.zeros((15, batch_size, x_dim), dtype=np.float32)
        temp = np.ones((15, batch_size), dtype=np.float32)
        temp[:, -2:] = 0.
        mask.tag.test_value = temp

    pickelModel = '/home/gissella/Documents/Research/Disaggregation/PecanStreet-dataport/VRNN_theano_version/output/gmmAE/18-05-30_16-27_app6/dp_dis1-sch_1_best.pkl'
    fmodel = open(pickelModel, 'rb')
    mainloop = cPickle.load(fmodel)
    fmodel.close()

    #define layers
    rnn = mainloop.model.nodes[0]
    x_1 = mainloop.model.nodes[1]
    y_1 = mainloop.model.nodes[2]
    z_1 = mainloop.model.nodes[3]
    phi_1 = mainloop.model.nodes[4]
    phi_mu = mainloop.model.nodes[5]
    phi_sig = mainloop.model.nodes[6]
    prior_1 = mainloop.model.nodes[7]
    prior_mu = mainloop.model.nodes[8]
    prior_sig = mainloop.model.nodes[9]
    theta_1 = mainloop.model.nodes[10]
    theta_mu = mainloop.model.nodes[11]
    theta_sig = mainloop.model.nodes[12]
    coeff = mainloop.model.nodes[13]


    nodes = [rnn,
             x_1, y_1, z_1, #dissag_pred,
             phi_1, phi_mu, phi_sig,
             prior_1, prior_mu, prior_sig,
             theta_1, theta_mu, theta_sig, coeff]#, corr, binary

    params = mainloop.model.params

    """params = OrderedDict()

    for node in nodes:
        if node.initialize() is not None:
            params.update(node.initialize())

    params = init_tparams(params)"""

    s_0 = rnn.get_init_state(batch_size)

    x_1_temp = x_1.fprop([x], params)
    y_1_temp = y_1.fprop([y], params)

    def inner_fn_val(x_t, s_tm1):

        prior_1_t = prior_1.fprop([x_t,s_tm1], params)
        prior_mu_t = prior_mu.fprop([prior_1_t], params)
        prior_sig_t = prior_sig.fprop([prior_1_t], params)

        z_t = Gaussian_sample(prior_mu_t, prior_sig_t)
        z_1_t = z_1.fprop([z_t], params)

        theta_1_t = theta_1.fprop([z_1_t, s_tm1], params)
        theta_mu_t = theta_mu.fprop([theta_1_t], params)
        theta_sig_t = theta_sig.fprop([theta_1_t], params)

        coeff_t = coeff.fprop([theta_1_t], params)

        pred_t = GMM_sample(theta_mu_t, theta_sig_t, coeff_t) #Gaussian_sample(theta_mu_t, theta_sig_t)
        pred_1_t = y_1.fprop([pred_t], params)
        s_t = rnn.fprop([[x_t, z_1_t, pred_1_t], [s_tm1]], params)
        #y_pred = dissag_pred.fprop([s_t], params)

        return s_t, prior_mu_t, prior_sig_t, theta_mu_t, theta_sig_t, coeff_t, pred_t#, y_pred
        #corr_temp, binary_temp
    ((s_temp_val, prior_mu_temp_val, prior_sig_temp_val,  theta_mu_temp_val, theta_sig_temp_val, coeff_temp_val, prediction_val), updates_val) =\
        theano.scan(fn=inner_fn_val,
                    sequences=[x_1_temp],
                    outputs_info=[s_0, None, None, None, None, None, None])

    for k, v in updates_val.iteritems():
        k.default_update = v

    s_temp_val = concatenate([s_0[None, :, :], s_temp_val[:-1]], axis=0)


    x_shape = x.shape

    ######################## TEST (GENERATION) TIME
    prediction_val.name = 'generated__'+str(flgAgg)
    mse_val = T.mean((prediction_val - y)**2) # As axis = None is calculated for all
    mae_val = T.mean( T.abs_(prediction_val - y) )

    mse_val.name = 'mse_val'
    mae_val.name = 'mae_val'
    pred_in_val = y.reshape((y.shape[0]*y.shape[1],-1))

    theta_mu_in_val = theta_mu_temp_val.reshape((x_shape[0]*x_shape[1], -1))
    theta_sig_in_val = theta_sig_temp_val.reshape((x_shape[0]*x_shape[1], -1))
    coeff_in_val = coeff_temp_val.reshape((x_shape[0]*x_shape[1], -1))

    recon_val = GMM(pred_in_val, theta_mu_in_val, theta_sig_in_val, coeff_in_val)# BiGMM(x_in, theta_mu_in, theta_sig_in, coeff_in, corr_in, binary_in)
    recon_val = recon_val.reshape((x_shape[0], x_shape[1]))
    recon_val.name = 'gmm_out_val'

    recon_term_val= recon_val.sum(axis=0).mean()
    recon_term_val.name = 'recon_term_val'

    model.inputs = [x, mask, y, y_mask, scheduleSamplingMask]
    model.params = params
    model.nodes = nodes


    data=Iterator(test_data, batch_size)

    test_fn = theano.function(inputs=[x, y],#[x, y],
                              allow_input_downcast=True,
                              outputs=[prediction_val, recon_term_val, mse_val, mae_val]#prediction_val, mse_val, mae_val
                              ,updates=updates_val#, allow_input_downcast=True, on_unused_input='ignore'
                              )
    testOutput = []
    numBatchTest = 0
    for batch in data:
      outputGeneration = test_fn(batch[0], batch[2])#(20, 220, 1)
      testOutput.append(outputGeneration[1:])
      # outputGeneration[0].shape #(20, 220, 40)
      #if (numBatchTest<5):

      '''
      plt.figure(1)
      plt.plot(np.transpose(outputGeneration[0],[1,0,2])[4])
      plt.savefig(save_path+"/vrnn_dis_generated{}_z_0-4".format(numBatchTest))
      plt.clf()

      plt.figure(2)
      plt.plot(np.transpose(outputGeneration[1],[1,0,2])[4])
      plt.savefig(save_path+"/vrnn_dis_generated{}_s_0-4".format(numBatchTest))
      plt.clf()

      plt.figure(3)
      plt.plot(np.transpose(outputGeneration[2],[1,0,2])[4])
      plt.savefig(save_path+"/vrnn_dis_generated{}_theta_0-4".format(numBatchTest))
      plt.clf()
      '''
      plt.figure(4)
      plt.plot(np.transpose(outputGeneration[0],[1,0,2])[4])
      plt.plot(np.transpose(batch[2],[1,0,2])[4])
      plt.savefig(save_path+"/vrnn_dis_generated{}_RealAndPred_0-4".format(numBatchTest))
      plt.clf()

      plt.figure(4)
      plt.plot(np.transpose(batch[0],[1,0,2])[4])
      plt.savefig(save_path+"/vrnn_dis_generated{}_Realagg_0-4".format(numBatchTest))
      plt.clf()
      numBatchTest+=1

    testOutput = np.asarray(testOutput)
    print(testOutput.shape)
    recon_test = testOutput[:, 0].mean()
    mse_test =  testOutput[:, 1].mean()
    mae_test =  testOutput[:, 2].mean()
    #mseUnNorm_test =  testOutput[:, 3].mean()
    #maeUnNorm_test =  testOutput[:, 4].mean()

    fLog = open(save_path+'/output.csv', 'w')
    fLog.write(str(lr_iterations)+"\n")
    fLog.write(str(windows)+"\n")
    fLog.write("logTest,mseTest,maeTest, mseTestUnNorm, maeTestUnNorm\n")
    fLog.write("{},{},{}\n".format(recon_test,mse_test,mae_test))
    fLog.write("q_z_dim,p_z_dim,p_x_dim,x2s_dim,y2s_dim,z2s_dim\n")
    fLog.write("{},{},{},{},{},{}\n".format(q_z_dim,p_z_dim,p_x_dim,x2s_dim,y2s_dim,z2s_dim))
    header = "epoch,log,kl,mse,mae\n"
    fLog.write(header)
    for i , item in enumerate(mainloop.trainlog.monitor['recon_term']):
      f = mainloop.trainlog.monitor['epoch'][i]
      a = mainloop.trainlog.monitor['recon_term'][i]
      b = mainloop.trainlog.monitor['kl_term'][i]
      d = mainloop.trainlog.monitor['mse'][i]
      e = mainloop.trainlog.monitor['mae'][i]
      fLog.write("{:d},{:.2f},{:.2f},{:.3f},{:.3f}\n".format(f,a,b,d,e))
Ejemplo n.º 14
0
def main(args):

    #theano.optimizer='fast_compile'
    #theano.config.exception_verbosity='high'

    trial = int(args['trial'])
    pkl_name = 'dp_dis1-nosch_%d' % trial
    channel_name = 'mae'

    data_path = args['data_path']
    save_path = args[
        'save_path']  #+'/gmm/'+datetime.datetime.now().strftime("%y-%m-%d_%H-%M")
    flgMSE = int(args['flgMSE'])

    period = int(args['period'])
    n_steps = int(args['n_steps'])
    stride_train = int(args['stride_train'])
    stride_test = n_steps  # int(args['stride_test'])

    monitoring_freq = int(args['monitoring_freq'])
    epoch = int(args['epoch'])
    batch_size = int(args['batch_size'])
    x_dim = int(args['x_dim'])
    y_dim = int(args['y_dim'])
    flgAgg = int(args['flgAgg'])
    z_dim = int(args['z_dim'])
    rnn_dim = int(args['rnn_dim'])
    k = int(args['num_k'])  #a mixture of K Gaussian functions
    lr = float(args['lr'])
    typeLoad = int(args['typeLoad'])
    debug = int(args['debug'])
    kSchedSamp = int(args['kSchedSamp'])
    typeActivFunc = args['typeActivFunc']

    print "trial no. %d" % trial
    print "batch size %d" % batch_size
    print "learning rate %f" % lr
    print "saving pkl file '%s'" % pkl_name
    print "to the save path '%s'" % save_path

    q_z_dim = 150
    p_z_dim = 150
    p_x_dim = 150  #250
    x2s_dim = 100  #250
    y2s_dim = 100
    z2s_dim = 100  #150
    target_dim = k  #x_dim #(x_dim-1)*k

    model = Model()
    Xtrain, ytrain, Xval, yval, Xtest, ytest, reader = fetch_dataport(
        data_path,
        windows,
        appliances,
        numApps=flgAgg,
        period=period,
        n_steps=n_steps,
        stride_train=stride_train,
        stride_test=stride_test,
        trainPer=0.6,
        valPer=0.2,
        testPer=0.2,
        typeLoad=typeLoad,
        flgAggSumScaled=1,
        flgFilterZeros=1)
    print(reader.stdTrain, reader.meanTrain)
    instancesPlot = {
        0: [4],
        2: [5]
    }  #for now use hard coded instancesPlot for kelly sampling

    train_data = Dataport(
        name='train',
        prep='normalize',
        cond=True,  # False
        #path=data_path,
        inputX=Xtrain,
        labels=ytrain)

    X_mean = train_data.X_mean
    X_std = train_data.X_std

    valid_data = Dataport(
        name='valid',
        prep='normalize',
        cond=True,  # False
        #path=data_path,
        X_mean=X_mean,
        X_std=X_std,
        inputX=Xval,
        labels=yval)

    test_data = Dataport(
        name='valid',
        prep='normalize',
        cond=True,  # False
        #path=data_path,
        X_mean=X_mean,
        X_std=X_std,
        inputX=Xtest,
        labels=ytest)

    init_W = InitCell('rand')
    init_U = InitCell('ortho')
    init_b = InitCell('zeros')
    init_b_sig = InitCell('const', mean=0.6)

    x, mask, y, y_mask = train_data.theano_vars()
    scheduleSamplingMask = T.fvector('schedMask')
    x.name = 'x_original'
    if debug:
        x.tag.test_value = np.zeros((15, batch_size, x_dim), dtype=np.float32)
        temp = np.ones((15, batch_size), dtype=np.float32)
        temp[:, -2:] = 0.
        mask.tag.test_value = temp

    x_1 = FullyConnectedLayer(name='x_1',
                              parent=['x_t'],
                              parent_dim=[x_dim],
                              nout=x2s_dim,
                              unit='relu',
                              init_W=init_W,
                              init_b=init_b)

    y_1 = FullyConnectedLayer(name='y_1',
                              parent=['y_t'],
                              parent_dim=[y_dim],
                              nout=y2s_dim,
                              unit='relu',
                              init_W=init_W,
                              init_b=init_b)

    z_1 = FullyConnectedLayer(name='z_1',
                              parent=['z_t'],
                              parent_dim=[z_dim],
                              nout=z2s_dim,
                              unit='relu',
                              init_W=init_W,
                              init_b=init_b)

    rnn = LSTM(name='rnn',
               parent=['x_1', 'z_1', 'y_1'],
               parent_dim=[x2s_dim, z2s_dim, y_dim],
               nout=rnn_dim,
               unit='tanh',
               init_W=init_W,
               init_U=init_U,
               init_b=init_b)

    phi_1 = FullyConnectedLayer(name='phi_1',
                                parent=['x_1', 's_tm1', 'y_1'],
                                parent_dim=[x2s_dim, rnn_dim, y2s_dim],
                                nout=q_z_dim,
                                unit='relu',
                                init_W=init_W,
                                init_b=init_b)

    phi_mu = FullyConnectedLayer(name='phi_mu',
                                 parent=['phi_1'],
                                 parent_dim=[q_z_dim],
                                 nout=z_dim,
                                 unit='linear',
                                 init_W=init_W,
                                 init_b=init_b)

    phi_sig = FullyConnectedLayer(name='phi_sig',
                                  parent=['phi_1'],
                                  parent_dim=[q_z_dim],
                                  nout=z_dim,
                                  unit='softplus',
                                  cons=1e-4,
                                  init_W=init_W,
                                  init_b=init_b_sig)

    prior_1 = FullyConnectedLayer(name='prior_1',
                                  parent=['x_1', 's_tm1'],
                                  parent_dim=[x2s_dim, rnn_dim],
                                  nout=p_z_dim,
                                  unit='relu',
                                  init_W=init_W,
                                  init_b=init_b)

    prior_mu = FullyConnectedLayer(name='prior_mu',
                                   parent=['prior_1'],
                                   parent_dim=[p_z_dim],
                                   nout=z_dim,
                                   unit='linear',
                                   init_W=init_W,
                                   init_b=init_b)

    prior_sig = FullyConnectedLayer(name='prior_sig',
                                    parent=['prior_1'],
                                    parent_dim=[p_z_dim],
                                    nout=z_dim,
                                    unit='softplus',
                                    cons=1e-4,
                                    init_W=init_W,
                                    init_b=init_b_sig)

    theta_1 = FullyConnectedLayer(name='theta_1',
                                  parent=['z_1', 's_tm1'],
                                  parent_dim=[z2s_dim, rnn_dim],
                                  nout=p_x_dim,
                                  unit='relu',
                                  init_W=init_W,
                                  init_b=init_b)

    theta_mu = FullyConnectedLayer(name='theta_mu',
                                   parent=['theta_1'],
                                   parent_dim=[p_x_dim],
                                   nout=target_dim,
                                   unit=typeActivFunc,
                                   init_W=init_W,
                                   init_b=init_b)

    theta_sig = FullyConnectedLayer(name='theta_sig',
                                    parent=['theta_1'],
                                    parent_dim=[p_x_dim],
                                    nout=target_dim,
                                    unit='softplus',
                                    cons=1e-4,
                                    init_W=init_W,
                                    init_b=init_b_sig)

    coeff = FullyConnectedLayer(name='coeff',
                                parent=['theta_1'],
                                parent_dim=[p_x_dim],
                                nout=k,
                                unit='softmax',
                                init_W=init_W,
                                init_b=init_b)

    corr = FullyConnectedLayer(name='corr',
                               parent=['theta_1'],
                               parent_dim=[p_x_dim],
                               nout=k,
                               unit='tanh',
                               init_W=init_W,
                               init_b=init_b)

    binary = FullyConnectedLayer(name='binary',
                                 parent=['theta_1'],
                                 parent_dim=[p_x_dim],
                                 nout=1,
                                 unit='sigmoid',
                                 init_W=init_W,
                                 init_b=init_b)

    nodes = [
        rnn,
        x_1,
        y_1,
        z_1,  #dissag_pred,
        phi_1,
        phi_mu,
        phi_sig,
        prior_1,
        prior_mu,
        prior_sig,
        theta_1,
        theta_mu,
        theta_sig,
        coeff
    ]  #, corr, binary

    params = OrderedDict()

    for node in nodes:
        if node.initialize() is not None:
            params.update(node.initialize())

    params = init_tparams(params)

    s_0 = rnn.get_init_state(batch_size)

    x_1_temp = x_1.fprop([x], params)
    y_1_temp = y_1.fprop([y], params)

    def inner_fn_train(x_t, y_t, s_tm1):

        phi_1_t = phi_1.fprop([x_t, s_tm1, y_t], params)
        phi_mu_t = phi_mu.fprop([phi_1_t], params)
        phi_sig_t = phi_sig.fprop([phi_1_t], params)

        prior_1_t = prior_1.fprop([x_t, s_tm1], params)
        prior_mu_t = prior_mu.fprop([prior_1_t], params)
        prior_sig_t = prior_sig.fprop([prior_1_t], params)

        z_t = Gaussian_sample(phi_mu_t, phi_sig_t)
        z_1_t = z_1.fprop([z_t], params)

        theta_1_t = theta_1.fprop([z_1_t, s_tm1], params)
        theta_mu_t = theta_mu.fprop([theta_1_t], params)
        theta_sig_t = theta_sig.fprop([theta_1_t], params)

        coeff_t = coeff.fprop([theta_1_t], params)
        #corr_t = corr.fprop([theta_1_t], params)
        #binary_t = binary.fprop([theta_1_t], params)

        pred = GMM_sample(theta_mu_t, theta_sig_t,
                          coeff_t)  #Gaussian_sample(theta_mu_t, theta_sig_t)
        s_t = rnn.fprop([[x_t, z_1_t, y_t], [s_tm1]], params)
        #y_pred = dissag_pred.fprop([s_t], params)

        return s_t, phi_mu_t, phi_sig_t, prior_mu_t, prior_sig_t, theta_mu_t, theta_sig_t, coeff_t, pred  #, y_pred
        #corr_temp, binary_temp
    ((s_temp, phi_mu_temp, phi_sig_temp, prior_mu_temp, prior_sig_temp, theta_mu_temp, theta_sig_temp, coeff_temp, prediction), updates) =\
        theano.scan(fn=inner_fn_train,
                    sequences=[x_1_temp, y_1_temp],
                    outputs_info=[s_0, None, None, None, None, None, None, None, None])

    for k, v in updates.iteritems():
        k.default_update = v

    #s_temp = concatenate([s_0[None, :, :], s_temp[:-1]], axis=0)# seems like this is for creating an additional dimension to s_0

    theta_mu_temp.name = 'theta_mu_temp'
    theta_sig_temp.name = 'theta_sig_temp'
    coeff_temp.name = 'coeff'

    if (flgAgg == -1):
        prediction.name = 'x_reconstructed'
        mse = T.mean((prediction - x)**2)  # CHECK RESHAPE with an assertion
        mae = T.mean(T.abs(prediction - x))
        mse.name = 'mse'
        pred_in = x.reshape((x_shape[0] * x_shape[1], -1))
    else:
        prediction.name = 'pred_' + str(flgAgg)
        mse = T.mean(
            (prediction - y)**2)  # As axis = None is calculated for all
        mae = T.mean(T.abs_(prediction - y))
        mse.name = 'mse'
        mae.name = 'mae'
        pred_in = y.reshape((y.shape[0] * y.shape[1], -1))

    kl_temp = KLGaussianGaussian(phi_mu_temp, phi_sig_temp, prior_mu_temp,
                                 prior_sig_temp)

    x_shape = x.shape

    theta_mu_in = theta_mu_temp.reshape((x_shape[0] * x_shape[1], -1))
    theta_sig_in = theta_sig_temp.reshape((x_shape[0] * x_shape[1], -1))
    coeff_in = coeff_temp.reshape((x_shape[0] * x_shape[1], -1))
    #corr_in = corr_temp.reshape((x_shape[0]*x_shape[1], -1))
    #binary_in = binary_temp.reshape((x_shape[0]*x_shape[1], -1))

    recon = GMM(
        pred_in, theta_mu_in, theta_sig_in, coeff_in
    )  # BiGMM(x_in, theta_mu_in, theta_sig_in, coeff_in, corr_in, binary_in)
    recon = recon.reshape((x_shape[0], x_shape[1]))
    recon.name = 'gmm_out'

    recon_term = recon.sum(axis=0).mean()
    recon_term.name = 'recon_term'

    kl_term = kl_temp.sum(axis=0).mean()
    kl_term.name = 'kl_term'

    nll_upper_bound = recon_term + kl_term  #+ mse
    if (flgMSE):
        nll_upper_bound = nll_upper_bound + mse
    nll_upper_bound.name = 'nll_upper_bound'

    model.inputs = [x, mask, y, y_mask, scheduleSamplingMask]
    model.params = params
    model.nodes = nodes

    optimizer = Adam(lr=lr)

    header = "epoch,log,kl,nll_upper_bound,mse,mae\n"
    extension = [
        GradientClipping(batch_size=batch_size),
        EpochCount(epoch, save_path, header),
        Monitoring(
            freq=monitoring_freq,
            ddout=[
                nll_upper_bound, recon_term, kl_term, mse, mae, theta_mu_temp,
                prediction
            ],
            indexSep=5,
            instancesPlot=instancesPlot,  #{0:[4,20],2:[5,10]},#, 80,150
            data=[Iterator(valid_data, batch_size)],
            savedFolder=save_path),
        Picklize(freq=monitoring_freq, path=save_path),
        EarlyStopping(freq=monitoring_freq,
                      path=save_path,
                      channel=channel_name),
        WeightNorm()
    ]

    lr_iterations = {0: lr}

    mainloop = Training(
        name=pkl_name,
        data=Iterator(train_data, batch_size),
        model=model,
        optimizer=optimizer,
        cost=nll_upper_bound,
        outputs=[recon_term, kl_term, nll_upper_bound, mse, mae],
        n_steps=n_steps,
        extension=extension,
        lr_iterations=lr_iterations,
        k_speedOfconvergence=kSchedSamp)
    mainloop.run()

    fLog = open(save_path + '/output.csv', 'w')
    fLog.write(str(lr_iterations) + "\n")
    fLog.write(str(windows) + "\n")

    fLog.write("q_z_dim,p_z_dim,p_x_dim,x2s_dim,y2s_dim,z2s_dim\n")
    fLog.write("{},{},{},{},{},{}\n".format(q_z_dim, p_z_dim, p_x_dim, x2s_dim,
                                            y2s_dim, z2s_dim))
    header = "epoch,log,kl,mse,mae\n"
    fLog.write(header)
    for i, item in enumerate(mainloop.trainlog.monitor['recon_term']):
        f = mainloop.trainlog.monitor['epoch'][i]
        a = mainloop.trainlog.monitor['recon_term'][i]
        b = mainloop.trainlog.monitor['kl_term'][i]
        d = mainloop.trainlog.monitor['mse'][i]
        e = mainloop.trainlog.monitor['mae'][i]
        fLog.write("{:d},{:.2f},{:.2f},{:.3f},{:.3f}\n".format(f, a, b, d, e))
Ejemplo n.º 15
0
def main(args):

    trial = int(args['trial'])
    pkl_name = 'vrnn_gmm_%d' % trial
    channel_name = 'valid_nll_upper_bound'

    data_path = args['data_path']
    save_path = args['save_path']

    monitoring_freq = int(args['monitoring_freq'])
    force_saving_freq = int(args['force_saving_freq'])
    reset_freq = int(args['reset_freq'])
    epoch = int(args['epoch'])
    batch_size = int(args['batch_size'])
    m_batch_size = int(args['m_batch_size'])
    x_dim = int(args['x_dim'])
    z_dim = int(args['z_dim'])
    rnn_dim = int(args['rnn_dim'])
    k = int(args['num_k'])
    lr = float(args['lr'])
    debug = int(args['debug'])

    print "trial no. %d" % trial
    print "batch size %d" % batch_size
    print "learning rate %f" % lr
    print "saving pkl file '%s'" % pkl_name
    print "to the save path '%s'" % save_path

    q_z_dim = 500
    p_z_dim = 500
    p_x_dim = 500
    x2s_dim = 500
    z2s_dim = 500
    target_dim = x_dim * k

    file_name = 'blizzard_unseg_tbptt'
    normal_params = np.load(data_path + file_name + '_normal.npz')
    X_mean = normal_params['X_mean']
    X_std = normal_params['X_std']

    model = Model()
    train_data = Blizzard_tbptt(name='train',
                                path=data_path,
                                frame_size=x_dim,
                                file_name=file_name,
                                X_mean=X_mean,
                                X_std=X_std)

    valid_data = Blizzard_tbptt(name='valid',
                                path=data_path,
                                frame_size=x_dim,
                                file_name=file_name,
                                X_mean=X_mean,
                                X_std=X_std)

    x = train_data.theano_vars()
    m_x = valid_data.theano_vars()

    if debug:
        x.tag.test_value = np.zeros((15, batch_size, x_dim), dtype=theano.config.floatX)
        m_x.tag.test_value = np.zeros((15, m_batch_size, x_dim), dtype=theano.config.floatX)

    init_W = InitCell('rand')
    init_U = InitCell('ortho')
    init_b = InitCell('zeros')
    init_b_sig = InitCell('const', mean=0.6)

    x_1 = FullyConnectedLayer(name='x_1',
                              parent=['x_t'],
                              parent_dim=[x_dim],
                              nout=x2s_dim,
                              unit='relu',
                              init_W=init_W,
                              init_b=init_b)

    x_2 = FullyConnectedLayer(name='x_2',
                              parent=['x_1'],
                              parent_dim=[x2s_dim],
                              nout=x2s_dim,
                              unit='relu',
                              init_W=init_W,
                              init_b=init_b)

    x_3 = FullyConnectedLayer(name='x_3',
                              parent=['x_2'],
                              parent_dim=[x2s_dim],
                              nout=x2s_dim,
                              unit='relu',
                              init_W=init_W,
                              init_b=init_b)

    x_4 = FullyConnectedLayer(name='x_4',
                              parent=['x_3'],
                              parent_dim=[x2s_dim],
                              nout=x2s_dim,
                              unit='relu',
                              init_W=init_W,
                              init_b=init_b)

    z_1 = FullyConnectedLayer(name='z_1',
                              parent=['z_t'],
                              parent_dim=[z_dim],
                              nout=z2s_dim,
                              unit='relu',
                              init_W=init_W,
                              init_b=init_b)

    z_2 = FullyConnectedLayer(name='z_2',
                              parent=['z_1'],
                              parent_dim=[z2s_dim],
                              nout=z2s_dim,
                              unit='relu',
                              init_W=init_W,
                              init_b=init_b)

    z_3 = FullyConnectedLayer(name='z_3',
                              parent=['z_2'],
                              parent_dim=[z2s_dim],
                              nout=z2s_dim,
                              unit='relu',
                              init_W=init_W,
                              init_b=init_b)

    z_4 = FullyConnectedLayer(name='z_4',
                              parent=['z_3'],
                              parent_dim=[z2s_dim],
                              nout=z2s_dim,
                              unit='relu',
                              init_W=init_W,
                              init_b=init_b)

    rnn = LSTM(name='rnn',
               parent=['x_4', 'z_4'],
               parent_dim=[x2s_dim, z2s_dim],
               nout=rnn_dim,
               unit='tanh',
               init_W=init_W,
               init_U=init_U,
               init_b=init_b)

    phi_1 = FullyConnectedLayer(name='phi_1',
                                parent=['x_4', 's_tm1'],
                                parent_dim=[x2s_dim, rnn_dim],
                                nout=q_z_dim,
                                unit='relu',
                                init_W=init_W,
                                init_b=init_b)

    phi_2 = FullyConnectedLayer(name='phi_2',
                                parent=['phi_1'],
                                parent_dim=[q_z_dim],
                                nout=q_z_dim,
                                unit='relu',
                                init_W=init_W,
                                init_b=init_b)

    phi_3 = FullyConnectedLayer(name='phi_3',
                                parent=['phi_2'],
                                parent_dim=[q_z_dim],
                                nout=q_z_dim,
                                unit='relu',
                                init_W=init_W,
                                init_b=init_b)

    phi_4 = FullyConnectedLayer(name='phi_4',
                                parent=['phi_3'],
                                parent_dim=[q_z_dim],
                                nout=q_z_dim,
                                unit='relu',
                                init_W=init_W,
                                init_b=init_b)

    phi_mu = FullyConnectedLayer(name='phi_mu',
                                 parent=['phi_4'],
                                 parent_dim=[q_z_dim],
                                 nout=z_dim,
                                 unit='linear',
                                 init_W=init_W,
                                 init_b=init_b)

    phi_sig = FullyConnectedLayer(name='phi_sig',
                                  parent=['phi_4'],
                                  parent_dim=[q_z_dim],
                                  nout=z_dim,
                                  unit='softplus',
                                  cons=1e-4,
                                  init_W=init_W,
                                  init_b=init_b_sig)

    prior_1 = FullyConnectedLayer(name='prior_1',
                                  parent=['s_tm1'],
                                  parent_dim=[rnn_dim],
                                  nout=p_z_dim,
                                  unit='relu',
                                  init_W=init_W,
                                  init_b=init_b)

    prior_2 = FullyConnectedLayer(name='prior_2',
                                  parent=['prior_1'],
                                  parent_dim=[p_z_dim],
                                  nout=p_z_dim,
                                  unit='relu',
                                  init_W=init_W,
                                  init_b=init_b)

    prior_3 = FullyConnectedLayer(name='prior_3',
                                  parent=['prior_2'],
                                  parent_dim=[p_z_dim],
                                  nout=p_z_dim,
                                  unit='relu',
                                  init_W=init_W,
                                  init_b=init_b)

    prior_4 = FullyConnectedLayer(name='prior_4',
                                  parent=['prior_3'],
                                  parent_dim=[p_z_dim],
                                  nout=p_z_dim,
                                  unit='relu',
                                  init_W=init_W,
                                  init_b=init_b)

    prior_mu = FullyConnectedLayer(name='prior_mu',
                                   parent=['prior_4'],
                                   parent_dim=[p_z_dim],
                                   nout=z_dim,
                                   unit='linear',
                                   init_W=init_W,
                                   init_b=init_b)

    prior_sig = FullyConnectedLayer(name='prior_sig',
                                    parent=['prior_4'],
                                    parent_dim=[p_z_dim],
                                    nout=z_dim,
                                    unit='softplus',
                                    cons=1e-4,
                                    init_W=init_W,
                                    init_b=init_b_sig)

    theta_1 = FullyConnectedLayer(name='theta_1',
                                  parent=['z_4', 's_tm1'],
                                  parent_dim=[z2s_dim, rnn_dim],
                                  nout=p_x_dim,
                                  unit='relu',
                                  init_W=init_W,
                                  init_b=init_b)

    theta_2 = FullyConnectedLayer(name='theta_2',
                                  parent=['theta_1'],
                                  parent_dim=[p_x_dim],
                                  nout=p_x_dim,
                                  unit='relu',
                                  init_W=init_W,
                                  init_b=init_b)

    theta_3 = FullyConnectedLayer(name='theta_3',
                                  parent=['theta_2'],
                                  parent_dim=[p_x_dim],
                                  nout=p_x_dim,
                                  unit='relu',
                                  init_W=init_W,
                                  init_b=init_b)

    theta_4 = FullyConnectedLayer(name='theta_4',
                                  parent=['theta_3'],
                                  parent_dim=[p_x_dim],
                                  nout=p_x_dim,
                                  unit='relu',
                                  init_W=init_W,
                                  init_b=init_b)

    theta_mu = FullyConnectedLayer(name='theta_mu',
                                   parent=['theta_4'],
                                   parent_dim=[p_x_dim],
                                   nout=target_dim,
                                   unit='linear',
                                   init_W=init_W,
                                   init_b=init_b)

    theta_sig = FullyConnectedLayer(name='theta_sig',
                                    parent=['theta_4'],
                                    parent_dim=[p_x_dim],
                                    nout=target_dim,
                                    unit='softplus',
                                    cons=1e-4,
                                    init_W=init_W,
                                    init_b=init_b_sig)

    coeff = FullyConnectedLayer(name='coeff',
                                parent=['theta_4'],
                                parent_dim=[p_x_dim],
                                nout=k,
                                unit='softmax',
                                init_W=init_W,
                                init_b=init_b)

    nodes = [rnn,
             x_1, x_2, x_3, x_4,
             z_1, z_2, z_3, z_4,
             phi_1, phi_2, phi_3, phi_4, phi_mu, phi_sig,
             prior_1, prior_2, prior_3, prior_4, prior_mu, prior_sig,
             theta_1, theta_2, theta_3, theta_4, theta_mu, theta_sig, coeff]

    params = OrderedDict()

    for node in nodes:
        if node.initialize() is not None:
            params.update(node.initialize())

    params = init_tparams(params)

    step_count = sharedX(0, name='step_count')
    last_rnn = np.zeros((batch_size, rnn_dim*2), dtype=theano.config.floatX)
    rnn_tm1 = sharedX(last_rnn, name='rnn_tm1')
    shared_updates = OrderedDict()
    shared_updates[step_count] = step_count + 1

    s_0 = T.switch(T.eq(T.mod(step_count, reset_freq), 0),
                   rnn.get_init_state(batch_size), rnn_tm1)

    x_shape = x.shape
    x_in = x.reshape((x_shape[0]*x_shape[1], -1))
    x_1_in = x_1.fprop([x_in], params)
    x_2_in = x_2.fprop([x_1_in], params)
    x_3_in = x_3.fprop([x_2_in], params)
    x_4_in = x_4.fprop([x_3_in], params)
    x_4_in = x_4_in.reshape((x_shape[0], x_shape[1], -1))


    def inner_fn(x_t, s_tm1):

        phi_1_t = phi_1.fprop([x_t, s_tm1], params)
        phi_2_t = phi_2.fprop([phi_1_t], params)
        phi_3_t = phi_3.fprop([phi_2_t], params)
        phi_4_t = phi_4.fprop([phi_3_t], params)
        phi_mu_t = phi_mu.fprop([phi_4_t], params)
        phi_sig_t = phi_sig.fprop([phi_4_t], params)

        prior_1_t = prior_1.fprop([s_tm1], params)
        prior_2_t = prior_2.fprop([prior_1_t], params)
        prior_3_t = prior_3.fprop([prior_2_t], params)
        prior_4_t = prior_4.fprop([prior_3_t], params)
        prior_mu_t = prior_mu.fprop([prior_4_t], params)
        prior_sig_t = prior_sig.fprop([prior_4_t], params)

        z_t = Gaussian_sample(phi_mu_t, phi_sig_t)

        z_1_t = z_1.fprop([z_t], params)
        z_2_t = z_2.fprop([z_1_t], params)
        z_3_t = z_3.fprop([z_2_t], params)
        z_4_t = z_4.fprop([z_3_t], params)

        s_t = rnn.fprop([[x_t, z_4_t], [s_tm1]], params)

        return s_t, phi_mu_t, phi_sig_t, prior_mu_t, prior_sig_t, z_4_t

    ((s_temp, phi_mu_temp, phi_sig_temp, prior_mu_temp, prior_sig_temp, z_4_temp), updates) =\
        theano.scan(fn=inner_fn,
                    sequences=[x_4_in],
                    outputs_info=[s_0, None, None, None, None, None])

    for k, v in updates.iteritems():
        k.default_update = v

    shared_updates[rnn_tm1] = s_temp[-1]
    s_temp = concatenate([s_0[None, :, :], s_temp[:-1]], axis=0)
    theta_1_temp = theta_1.fprop([z_4_temp, s_temp], params)
    theta_2_temp = theta_2.fprop([theta_1_temp], params)
    theta_3_temp = theta_3.fprop([theta_2_temp], params)
    theta_4_temp = theta_4.fprop([theta_3_temp], params)
    theta_mu_temp = theta_mu.fprop([theta_4_temp], params)
    theta_sig_temp = theta_sig.fprop([theta_4_temp], params)
    coeff_temp = coeff.fprop([theta_4_temp], params)

    kl_temp = KLGaussianGaussian(phi_mu_temp, phi_sig_temp, prior_mu_temp, prior_sig_temp)

    x_shape = x.shape
    x_in = x.reshape((x_shape[0]*x_shape[1], -1))
    theta_mu_in = theta_mu_temp.reshape((x_shape[0]*x_shape[1], -1))
    theta_sig_in = theta_sig_temp.reshape((x_shape[0]*x_shape[1], -1))
    coeff_in = coeff_temp.reshape((x_shape[0]*x_shape[1], -1))

    recon = GMM(x_in, theta_mu_in, theta_sig_in, coeff_in)
    recon_term = recon.mean()
    kl_term = kl_temp.mean()
    nll_upper_bound = recon_term + kl_term
    nll_upper_bound.name = 'nll_upper_bound'

    m_x_1_temp = x_1.fprop([m_x], params)
    m_x_2_temp = x_2.fprop([m_x_1_temp], params)
    m_x_3_temp = x_3.fprop([m_x_2_temp], params)
    m_x_4_temp = x_4.fprop([m_x_3_temp], params)

    m_s_0 = rnn.get_init_state(m_batch_size)

    ((m_s_temp, m_phi_mu_temp, m_phi_sig_temp, m_prior_mu_temp, m_prior_sig_temp, m_z_4_temp), m_updates) =\
        theano.scan(fn=inner_fn,
                    sequences=[m_x_4_temp],
                    outputs_info=[m_s_0, None, None, None, None, None])

    for k, v in m_updates.iteritems():
        k.default_update = v

    m_s_temp = concatenate([m_s_0[None, :, :], m_s_temp[:-1]], axis=0)
    m_theta_1_temp = theta_1.fprop([m_z_4_temp, m_s_temp], params)
    m_theta_2_temp = theta_2.fprop([m_theta_1_temp], params)
    m_theta_3_temp = theta_3.fprop([m_theta_2_temp], params)
    m_theta_4_temp = theta_4.fprop([m_theta_3_temp], params)
    m_theta_mu_temp = theta_mu.fprop([m_theta_4_temp], params)
    m_theta_sig_temp = theta_sig.fprop([m_theta_4_temp], params)
    m_coeff_temp = coeff.fprop([m_theta_4_temp], params)

    m_kl_temp = KLGaussianGaussian(m_phi_mu_temp, m_phi_sig_temp, m_prior_mu_temp, m_prior_sig_temp)

    m_x_shape = m_x.shape
    m_x_in = m_x.reshape((m_x_shape[0]*m_x_shape[1], -1))
    m_theta_mu_in = m_theta_mu_temp.reshape((m_x_shape[0]*m_x_shape[1], -1))
    m_theta_sig_in = m_theta_sig_temp.reshape((m_x_shape[0]*m_x_shape[1], -1))
    m_coeff_in = m_coeff_temp.reshape((m_x_shape[0]*m_x_shape[1], -1))

    m_recon = GMM(m_x_in, m_theta_mu_in, m_theta_sig_in, m_coeff_in)
    m_recon_term = m_recon.mean()
    m_kl_term = m_kl_temp.mean()
    m_nll_upper_bound = m_recon_term + m_kl_term
    m_nll_upper_bound.name = 'nll_upper_bound'
    m_recon_term.name = 'recon_term'
    m_kl_term.name = 'kl_term'

    max_x = m_x.max()
    mean_x = m_x.mean()
    min_x = m_x.min()
    max_x.name = 'max_x'
    mean_x.name = 'mean_x'
    min_x.name = 'min_x'

    max_theta_mu = m_theta_mu_in.max()
    mean_theta_mu = m_theta_mu_in.mean()
    min_theta_mu = m_theta_mu_in.min()
    max_theta_mu.name = 'max_theta_mu'
    mean_theta_mu.name = 'mean_theta_mu'
    min_theta_mu.name = 'min_theta_mu'

    max_theta_sig = m_theta_sig_in.max()
    mean_theta_sig = m_theta_sig_in.mean()
    min_theta_sig = m_theta_sig_in.min()
    max_theta_sig.name = 'max_theta_sig'
    mean_theta_sig.name = 'mean_theta_sig'
    min_theta_sig.name = 'min_theta_sig'

    max_phi_sig = m_phi_sig_temp.max()
    mean_phi_sig = m_phi_sig_temp.mean()
    min_phi_sig = m_phi_sig_temp.min()
    max_phi_sig.name = 'max_phi_sig'
    mean_phi_sig.name = 'mean_phi_sig'
    min_phi_sig.name = 'min_phi_sig'

    max_prior_sig = m_prior_sig_temp.max()
    mean_prior_sig = m_prior_sig_temp.mean()
    min_prior_sig = m_prior_sig_temp.min()
    max_prior_sig.name = 'max_prior_sig'
    mean_prior_sig.name = 'mean_prior_sig'
    min_prior_sig.name = 'min_prior_sig'

    model.inputs = [x]
    model.params = params
    model.nodes = nodes
    model.set_updates(shared_updates)

    optimizer = Adam(
        lr=lr
    )

    monitor_fn = theano.function(inputs=[m_x],
                                 outputs=[m_nll_upper_bound, m_recon_term, m_kl_term,
                                          max_phi_sig, mean_phi_sig, min_phi_sig,
                                          max_prior_sig, mean_prior_sig, min_prior_sig,
                                          max_theta_sig, mean_theta_sig, min_theta_sig,
                                          max_x, mean_x, min_x,
                                          max_theta_mu, mean_theta_mu, min_theta_mu],
                                 on_unused_input='ignore')

    extension = [
        GradientClipping(batch_size=batch_size, check_nan=1),
        EpochCount(epoch),
        Monitoring(freq=monitoring_freq,
                   monitor_fn=monitor_fn,
                   ddout=[m_nll_upper_bound, m_recon_term, m_kl_term,
                          max_phi_sig, mean_phi_sig, min_phi_sig,
                          max_prior_sig, mean_prior_sig, min_prior_sig,
                          max_theta_sig, mean_theta_sig, min_theta_sig,
                          max_x, mean_x, min_x,
                          max_theta_mu, mean_theta_mu, min_theta_mu],
                   data=[Iterator(train_data, m_batch_size, start=0, end=112640),
                         Iterator(valid_data, m_batch_size, start=2040064, end=2152704)]),
        Picklize(freq=monitoring_freq, force_save_freq=force_saving_freq, path=save_path),
        EarlyStopping(freq=monitoring_freq, force_save_freq=force_saving_freq, path=save_path, channel=channel_name),
        WeightNorm()
    ]

    mainloop = Training(
        name=pkl_name,
        data=Iterator(train_data, batch_size, start=0, end=2040064),
        model=model,
        optimizer=optimizer,
        cost=nll_upper_bound,
        outputs=[nll_upper_bound],
        extension=extension
    )
    mainloop.run()
Ejemplo n.º 16
0
    theano.scan(fn=inner_fn,
                sequences=[x],
                outputs_info=[coder.get_init_state(),
                              None, None, None, None, None, None])

for k, v in updates.iteritems():
    k.default_update = v

reshaped_x = x.reshape((x.shape[0]*x.shape[1], -1))
reshaped_theta_mu = theta_mu_t.reshape((theta_mu_t.shape[0]*theta_mu_t.shape[1], -1))
reshaped_theta_sig = theta_sig_t.reshape((theta_sig_t.shape[0]*theta_sig_t.shape[1], -1))
reshaped_coeff = coeff_t.reshape((coeff_t.shape[0]*coeff_t.shape[1], -1))
reshaped_mask = mask.flatten()

kl_term = kl_t.reshape((kl_t.shape[0]*kl_t.shape[1], -1))
recon_term = GMM(reshaped_x, reshaped_theta_mu, reshaped_theta_sig, reshaped_coeff)
# Apply mask
kl_term = kl_term[reshaped_mask.nonzero()].mean()
recon_term = recon_term[reshaped_mask.nonzero()].mean()
cost = recon_term + kl_term
cost.name = 'cost'
recon_term.name = 'recon_term'
kl_term.name = 'kl_term'

max_x = x.max()
mean_x = x.mean()
min_x = x.min()
max_x.name = 'max_x'
mean_x.name = 'mean_x'
min_x.name = 'min_x'
Ejemplo n.º 17
0
def main(args):

    theano.optimizer = 'fast_compile'
    theano.config.exception_verbosity = 'high'

    trial = int(args['trial'])
    pkl_name = 'vrnn_gmm_%d' % trial
    channel_name = 'mse_val'

    data_path = args['data_path']
    save_path = args[
        'save_path']  #+'/gmm/'+datetime.datetime.now().strftime("%y-%m-%d_%H-%M")
    flgMSE = int(args['flgMSE'])

    genCase = int(args['genCase'])
    period = int(args['period'])
    n_steps = int(args['n_steps'])
    stride_train = int(args['stride_train'])
    stride_test = n_steps  # int(args['stride_test'])

    monitoring_freq = int(args['monitoring_freq'])
    epoch = int(args['epoch'])
    batch_size = int(args['batch_size'])
    x_dim = int(args['x_dim'])
    y_dim = int(args['y_dim'])
    flgAgg = int(args['flgAgg'])
    z_dim = int(args['z_dim'])
    rnn_dim = int(args['rnn_dim'])
    k = int(args['num_k'])  #a mixture of K Gaussian functions
    lr = float(args['lr'])
    debug = int(args['debug'])
    num_sequences_per_batch = int(args['numSequences'])  #based on appliance
    loadParam = args['loadAsKelly']
    target_inclusion_prob = float(args['target_inclusion_prob'])
    loadAsKelly = True
    if (loadParam == 'N' or loadParam == 'n' or loadParam == 'no'
            or loadParam == 'NO' or loadParam == 'No'):
        loadAsKelly = False

    print "trial no. %d" % trial
    print "batch size %d" % batch_size
    print "learning rate %f" % lr
    print "saving pkl file '%s'" % pkl_name
    print "to the save path '%s'" % save_path

    q_z_dim = 60  #150
    p_z_dim = 60  #150
    p_x_dim = 30  #250
    x2s_dim = 40  #250
    z2s_dim = 40  #150
    target_dim = k  #x_dim #(x_dim-1)*k

    model = Model()
    Xtrain, ytrain, Xval, yval, reader = fetch_ukdale(
        data_path,
        windows,
        appliances,
        numApps=flgAgg,
        period=period,
        n_steps=n_steps,
        stride_train=stride_train,
        stride_test=stride_test,
        flgAggSumScaled=1,
        flgFilterZeros=1,
        isKelly=loadAsKelly,
        seq_per_batch=num_sequences_per_batch,
        target_inclusion_prob=target_inclusion_prob)

    instancesPlot = {
        0: [10, 20],
        2: [20, 30]
    }  #for now use hard coded instancesPlot for kelly sampling
    if (not loadAsKelly):
        instancesPlot = reader.build_dict_instances_plot(
            listDates, batch_size, Xval.shape[0])

    ############# We switch x with y
    train_data = UKdale(
        name='train',
        prep='normalize',
        cond=False,
        #path=data_path,
        validTime=0,
        inputX=ytrain,
        labels=Xtrain)

    X_mean = train_data.X_mean
    X_std = train_data.X_std

    valid_data = UKdale(
        name='valid',
        prep='normalize',
        cond=False,
        #path=data_path,
        X_mean=X_mean,
        X_std=X_std,
        validTime=1,
        inputX=yval,
        labels=Xval)

    init_W = InitCell('rand')
    init_U = InitCell('ortho')
    init_b = InitCell('zeros')
    init_b_sig = InitCell('const', mean=0.6)

    x, mask = train_data.theano_vars()
    #valTime  = train_data.theano_valTime_vars()

    if (genCase == 1):
        inputX = x[:-1, :]
        targetX = x[1:, :]
        n_steps = n_steps - 1
    else:
        inputX = x
        targetX = x

    inputX.name = 'x_original'
    if debug:
        inputX.tag.test_value = np.zeros((15, batch_size, x_dim),
                                         dtype=np.float32)
        temp = np.ones((15, batch_size), dtype=np.float32)
        temp[:, -2:] = 0.
        mask.tag.test_value = temp

    x_1 = FullyConnectedLayer(name='x_1',
                              parent=['x_t'],
                              parent_dim=[x_dim],
                              nout=x2s_dim,
                              unit='relu',
                              init_W=init_W,
                              init_b=init_b)

    z_1 = FullyConnectedLayer(name='z_1',
                              parent=['z_t'],
                              parent_dim=[z_dim],
                              nout=z2s_dim,
                              unit='relu',
                              init_W=init_W,
                              init_b=init_b)

    rnn = LSTM(name='rnn',
               parent=['x_1', 'z_1'],
               parent_dim=[x2s_dim, z2s_dim],
               nout=rnn_dim,
               unit='tanh',
               init_W=init_W,
               init_U=init_U,
               init_b=init_b)

    phi_1 = FullyConnectedLayer(name='phi_1',
                                parent=['x_1', 's_tm1'],
                                parent_dim=[x2s_dim, rnn_dim],
                                nout=q_z_dim,
                                unit='relu',
                                init_W=init_W,
                                init_b=init_b)

    phi_mu = FullyConnectedLayer(name='phi_mu',
                                 parent=['phi_1'],
                                 parent_dim=[q_z_dim],
                                 nout=z_dim,
                                 unit='linear',
                                 init_W=init_W,
                                 init_b=init_b)

    phi_sig = FullyConnectedLayer(name='phi_sig',
                                  parent=['phi_1'],
                                  parent_dim=[q_z_dim],
                                  nout=z_dim,
                                  unit='softplus',
                                  cons=1e-4,
                                  init_W=init_W,
                                  init_b=init_b_sig)

    prior_1 = FullyConnectedLayer(name='prior_1',
                                  parent=['s_tm1'],
                                  parent_dim=[rnn_dim],
                                  nout=p_z_dim,
                                  unit='relu',
                                  init_W=init_W,
                                  init_b=init_b)

    prior_mu = FullyConnectedLayer(name='prior_mu',
                                   parent=['prior_1'],
                                   parent_dim=[p_z_dim],
                                   nout=z_dim,
                                   unit='linear',
                                   init_W=init_W,
                                   init_b=init_b)

    prior_sig = FullyConnectedLayer(name='prior_sig',
                                    parent=['prior_1'],
                                    parent_dim=[p_z_dim],
                                    nout=z_dim,
                                    unit='softplus',
                                    cons=1e-4,
                                    init_W=init_W,
                                    init_b=init_b_sig)

    theta_1 = FullyConnectedLayer(name='theta_1',
                                  parent=['z_1', 's_tm1'],
                                  parent_dim=[z2s_dim, rnn_dim],
                                  nout=p_x_dim,
                                  unit='relu',
                                  init_W=init_W,
                                  init_b=init_b)

    theta_mu = FullyConnectedLayer(name='theta_mu',
                                   parent=['theta_1'],
                                   parent_dim=[p_x_dim],
                                   nout=target_dim,
                                   unit='linear',
                                   init_W=init_W,
                                   init_b=init_b)

    theta_sig = FullyConnectedLayer(name='theta_sig',
                                    parent=['theta_1'],
                                    parent_dim=[p_x_dim],
                                    nout=target_dim,
                                    unit='softplus',
                                    cons=1e-4,
                                    init_W=init_W,
                                    init_b=init_b_sig)

    coeff = FullyConnectedLayer(name='coeff',
                                parent=['theta_1'],
                                parent_dim=[p_x_dim],
                                nout=k,
                                unit='softmax',
                                init_W=init_W,
                                init_b=init_b)

    corr = FullyConnectedLayer(name='corr',
                               parent=['theta_1'],
                               parent_dim=[p_x_dim],
                               nout=k,
                               unit='tanh',
                               init_W=init_W,
                               init_b=init_b)

    binary = FullyConnectedLayer(name='binary',
                                 parent=['theta_1'],
                                 parent_dim=[p_x_dim],
                                 nout=1,
                                 unit='sigmoid',
                                 init_W=init_W,
                                 init_b=init_b)

    nodes = [
        rnn,
        x_1,
        z_1,  #dissag_pred,
        phi_1,
        phi_mu,
        phi_sig,
        prior_1,
        prior_mu,
        prior_sig,
        theta_1,
        theta_mu,
        theta_sig,
        coeff
    ]  #, corr, binary

    params = OrderedDict()

    for node in nodes:
        if node.initialize() is not None:
            params.update(node.initialize())  #Creates matrices

    params = init_tparams(params)  #Make the parameters theano.shared

    s_0_tr = rnn.get_init_state(batch_size)
    s_0_val = T.zeros((batch_size, 2 * rnn_dim), dtype=theano.config.floatX)
    s_0_val = T.unbroadcast(
        s_0_val, *range(s_0_val.ndim)
    )  #[0,1] this is to raise an error if length of dimensions are not 1

    #x_1_temp = x_1.fprop([x], params)

    def inner_val_fn(s_tm1):
        '''
        phi_1_t = phi_1.fprop([x_t, s_tm1], params)
        phi_mu_t = phi_mu.fprop([phi_1_t], params)
        phi_sig_t = phi_sig.fprop([phi_1_t], params)
        '''
        prior_1_t = prior_1.fprop([s_tm1], params)
        prior_mu_t = prior_mu.fprop([prior_1_t], params)
        prior_sig_t = prior_sig.fprop([prior_1_t], params)

        z_t = Gaussian_sample(prior_mu_t, prior_sig_t)
        z_1_t = z_1.fprop([z_t], params)

        theta_1_t = theta_1.fprop([z_1_t, s_tm1], params)
        theta_mu_t = theta_mu.fprop([theta_1_t], params)
        theta_sig_t = theta_sig.fprop([theta_1_t], params)
        coeff_t = coeff.fprop([theta_1_t], params)

        x_t = GMM_sample(theta_mu_t, theta_sig_t,
                         coeff_t)  #Gaussian_sample(theta_mu_t, theta_sig_t)
        x_1_t = x_1.fprop([x_t], params)

        s_t = rnn.fprop([[x_1_t, z_1_t], [s_tm1]], params)

        return s_t, x_t, z_t, theta_1_t, theta_mu_t, theta_sig_t, coeff_t
        # prior_mu_temp_val, prior_sig_temp_val
    ((s_temp_val, prediction_val, z_t_temp_val, theta_1_temp_val, theta_mu_temp_val, theta_sig_temp_val, coeff_temp_val), updates_val) =\
        theano.scan(fn=inner_val_fn , n_steps=n_steps, #already 1 subtracted if doing next step
                    outputs_info=[s_0_val, None, None,  None, None, None, None])

    for k, v in updates_val.iteritems():
        k.default_update = v

    def inner_train_fn(x_t, s_tm1):
        x_1_t = x_1.fprop([x_t], params)
        phi_1_t = phi_1.fprop([x_1_t, s_tm1], params)
        phi_mu_t = phi_mu.fprop([phi_1_t], params)
        phi_sig_t = phi_sig.fprop([phi_1_t], params)

        prior_1_t = prior_1.fprop([s_tm1], params)
        prior_mu_t = prior_mu.fprop([prior_1_t], params)
        prior_sig_t = prior_sig.fprop([prior_1_t], params)

        z_t = Gaussian_sample(phi_mu_t, phi_sig_t)
        z_1_t = z_1.fprop([z_t], params)

        theta_1_t = theta_1.fprop([z_1_t, s_tm1], params)
        theta_mu_t = theta_mu.fprop([theta_1_t], params)
        theta_sig_t = theta_sig.fprop([theta_1_t], params)

        coeff_t = coeff.fprop([theta_1_t], params)
        #corr_t = corr.fprop([theta_1_t], params)
        #binary_t = binary.fprop([theta_1_t], params)

        pred = GMM_sample(theta_mu_t, theta_sig_t,
                          coeff_t)  #Gaussian_sample(theta_mu_t, theta_sig_t)
        s_t = rnn.fprop([[x_1_t, z_1_t], [s_tm1]], params)
        #y_pred = dissag_pred.fprop([s_t], params)

        return s_t, phi_mu_t, phi_sig_t, prior_mu_t, prior_sig_t, z_t, z_1_t, theta_1_t, theta_mu_t, theta_sig_t, coeff_t, pred  #, y_pred
        #corr_temp, binary_temp

    ((s_temp, phi_mu_temp, phi_sig_temp, prior_mu_temp, prior_sig_temp,z_t_temp, z_1_temp, theta_1_temp, theta_mu_temp, theta_sig_temp, coeff_temp, prediction), updates) =\
        theano.scan(fn=inner_train_fn, sequences=[inputX],#[x_1_temp],
                    outputs_info=[s_0_tr, None, None, None, None, None, None,  None, None, None, None, None])

    for k, v in updates.iteritems():
        k.default_update = v

    #########   TRAINING GRAPH  #########
    s_temp = concatenate(
        [s_0_tr[None, :, :], s_temp[:-1]], axis=0
    )  # seems like this is for creating an additional dimension to s_0

    s_temp.name = 'h_1'  #gisse
    z_1_temp.name = 'z_1'  #gisse
    z_t_temp.name = 'z'
    theta_mu_temp.name = 'theta_mu_temp'
    theta_sig_temp.name = 'theta_sig_temp'
    coeff_temp.name = 'coeff'

    prediction.name = 'pred_' + str(flgAgg)
    mse = T.mean(
        (prediction - targetX)**2)  # As axis = None is calculated for all
    mae = T.mean(T.abs_(prediction - targetX))
    mse.name = 'mse'
    mae.name = 'mae'
    x_in = inputX.reshape((batch_size * n_steps, -1))

    kl_temp = KLGaussianGaussian(phi_mu_temp, phi_sig_temp, prior_mu_temp,
                                 prior_sig_temp)

    target_shape = x[:, 1:].shape
    theta_mu_in = theta_mu_temp.reshape((batch_size * n_steps, -1))
    theta_sig_in = theta_sig_temp.reshape((batch_size * n_steps, -1))
    coeff_in = coeff_temp.reshape((batch_size * n_steps, -1))

    recon = GMM(
        x_in, theta_mu_in, theta_sig_in, coeff_in
    )  # BiGMM(x_in, theta_mu_in, theta_sig_in, coeff_in, corr_in, binary_in)
    recon = recon.reshape((batch_size, n_steps))
    recon.name = 'gmm_out'

    recon_term = recon.sum(axis=0).mean()
    recon_term.name = 'recon_term'

    kl_term = kl_temp.sum(axis=0).mean()
    kl_term.name = 'kl_term'

    nll_upper_bound = recon_term + kl_term  #+ mse
    if (flgMSE):
        nll_upper_bound = nll_upper_bound + mse
    nll_upper_bound.name = 'nll_upper_bound'

    #########   TESTING GRAPH  #########
    s_temp_val = concatenate(
        [s_0_val[None, :, :], s_temp_val[:-1]], axis=0
    )  # seems like this is for creating an additional dimension to s_0

    s_temp_val.name = 'h_1_val'  #gisse
    #z_1_temp_val.name = 'z_1_val'#gisse
    z_t_temp_val.name = 'z_val'
    theta_mu_temp_val.name = 'theta_mu_temp_val'
    theta_sig_temp_val.name = 'theta_sig_temp_val'
    coeff_temp_val.name = 'coeff_val'

    prediction_val.name = 'generated_' + str(flgAgg)
    mse_val = T.mean(
        (prediction_val - targetX)**2)  # As axis = None is calculated for all
    mae_val = T.mean(T.abs_(prediction_val - targetX))
    mse_val.name = 'mse_val'
    mae_val.name = 'mae_val'
    x_in_val = inputX.reshape((batch_size * n_steps, -1))

    # No sense in calculate distance to a distribution because we are not calculating phi
    #kl_temp_val = KLGaussianGaussian(phi_mu_temp, phi_sig_temp, prior_mu_temp, prior_sig_temp)

    theta_mu_in_val = theta_mu_temp_val.reshape((batch_size * n_steps, -1))
    theta_sig_in_val = theta_sig_temp_val.reshape((batch_size * n_steps, -1))
    coeff_in_val = coeff_temp_val.reshape((batch_size * n_steps, -1))

    recon_val = GMM(
        x_in_val, theta_mu_in_val, theta_sig_in_val, coeff_in_val
    )  # BiGMM(x_in, theta_mu_in, theta_sig_in, coeff_in, corr_in, binary_in)
    recon_val = recon_val.reshape((batch_size, n_steps))
    recon_val.name = 'gmm_out_val'

    recon_term_val = recon_val.sum(axis=0).mean()
    recon_term_val.name = 'recon_term_val'

    ######################################
    model.inputs = [x, mask]
    model.params = params
    model.nodes = nodes

    optimizer = Adam(lr=lr)

    header = "epoch,log,kl,nll,mse,mae\n"

    extension = [
        GradientClipping(batch_size=batch_size),
        EpochCount(epoch, save_path, header),
        Monitoring(
            freq=monitoring_freq,
            ddout=[
                recon_term_val, mse_val, mae_val, prediction_val,
                theta_mu_temp_val
            ],
            indexSep=3,
            indexDDoutPlot=[(0, prediction_val)],
            instancesPlot=instancesPlot,  #, 80,150
            data=[Iterator(valid_data, batch_size)],
            savedFolder=save_path),
        Picklize(freq=monitoring_freq, path=save_path),
        EarlyStopping(freq=monitoring_freq,
                      path=save_path,
                      channel=channel_name),
        WeightNorm()
    ]

    lr_iterations = {0: lr}

    mainloop = Training(
        name=pkl_name,
        data=Iterator(train_data, batch_size),
        model=model,
        optimizer=optimizer,
        cost=nll_upper_bound,
        outputs=[recon_term, kl_term, nll_upper_bound, mse, mae],
        extension=extension,
        lr_iterations=lr_iterations)
    mainloop.run()

    fLog = open(save_path + '/output.csv', 'w')
    fLog.write(str(lr_iterations) + "\n")
    fLog.write(str(windows) + "\n")
    fLog.write("q_z_dim,p_z_dim,p_x_dim,x2s_dim,z2s_dim\n")
    fLog.write("{},{},{},{},{}\n".format(q_z_dim, p_z_dim, p_x_dim, x2s_dim,
                                         z2s_dim))
    header = "epoch,log,mse,mae\n"
    fLog.write(header)
    for i, item in enumerate(mainloop.trainlog.monitor['recon_term_val']):
        f = mainloop.trainlog.monitor['epoch'][i]
        a = mainloop.trainlog.monitor['recon_term_val'][i]
        d = mainloop.trainlog.monitor['mse_val'][i]
        e = mainloop.trainlog.monitor['mae_val'][i]
        fLog.write("{},{},{},{}\n".format(f, a, d, e))
Ejemplo n.º 18
0
def main(args):
    
    #theano.optimizer='fast_compile'
    #theano.config.exception_verbosity='high'

    trial = int(args['trial'])
    pkl_name = 'vrnn_gmm_%d' % trial
    channel_name = 'nll_upper_bound'

    data_path = args['data_path']
    save_path = args['save_path'] #+'/gmm/'+datetime.datetime.now().strftime("%y-%m-%d_%H-%M")
    flgMSE = int(args['flgMSE'])

    genCase = int(args['genCase'])
    period = int(args['period'])
    n_steps = int(args['n_steps'])
    stride_train = int(args['stride_train'])
    stride_test = n_steps#int(args['stride_test'])

    monitoring_freq = int(args['monitoring_freq'])
    epoch = int(args['epoch'])
    batch_size = int(args['batch_size'])
    x_dim = int(args['x_dim'])
    y_dim = int(args['y_dim'])
    flgAgg = int(args['flgAgg'])
    z_dim = int(args['z_dim'])
    rnn_dim = int(args['rnn_dim'])
    k = int(args['num_k']) #a mixture of K Gaussian functions
    lr = float(args['lr'])
    debug = int(args['debug'])
    num_sequences_per_batch = int(args['numSequences']) #based on appliance
    typeLoad = int(args['typeLoad'])
    target_inclusion_prob = float(args['target_inclusion_prob'])


    print "trial no. %d" % trial
    print "batch size %d" % batch_size
    print "learning rate %f" % lr
    print "saving pkl file '%s'" % pkl_name
    print "to the save path '%s'" % save_path

    q_z_dim = 150
    p_z_dim = 150
    p_x_dim = 200
    x2s_dim = 100
    y2s_dim = 100
    z2s_dim = 100
    target_dim = k#x_dim #(x_dim-1)*k

    model = Model()
    Xtrain, ytrain, Xval, yval, Xtest, ytest, reader = fetch_ukdale(data_path, windows, appliances,numApps=flgAgg, period=period,
                                              n_steps= n_steps, stride_train = stride_train, stride_test = stride_test,
                                              typeLoad= typeLoad, flgAggSumScaled = 1, flgFilterZeros = 1,
                                              seq_per_batch=num_sequences_per_batch, target_inclusion_prob=target_inclusion_prob)
    
    instancesPlot = {0:[4,20], 2:[5,10]} #for now use hard coded instancesPlot for kelly sampling
    if(typeLoad==0):
      instancesPlot = reader.build_dict_instances_plot(listDates, batch_size, Xval.shape[0])

    train_data = UKdale(name='train',
                         prep='normalize',
                         cond=True,# False
                         #path=data_path,
                         inputX=Xtrain,
                         labels=ytrain)

    X_mean = train_data.X_mean
    X_std = train_data.X_std

    valid_data = UKdale(name='valid',
                         prep='normalize',
                         cond=True,# False
                         #path=data_path,
                         X_mean=X_mean,
                         X_std=X_std,
                         inputX=Xval,
                         labels = yval)

    test_data = UKdale(name='valid',
                         prep='normalize',
                         cond=True,# False
                         #path=data_path,
                         X_mean=X_mean,
                         X_std=X_std,
                         inputX=Xtest,
                         labels = ytest)

    init_W = InitCell('rand')
    init_U = InitCell('ortho')
    init_b = InitCell('zeros')
    init_b_sig = InitCell('const', mean=0.6)

    x, mask, y , y_mask = train_data.theano_vars()

    if (genCase ==1):
      inputX = x[:-1,:]
      targetX = x[1:,:]
      n_steps = n_steps-1
    else:
      inputX = x
      targetX = x  

    x.name = 'x_original'
    if debug:
        x.tag.test_value = np.zeros((15, batch_size, x_dim), dtype=np.float32)
        temp = np.ones((15, batch_size), dtype=np.float32)
        temp[:, -2:] = 0.
        mask.tag.test_value = temp

    x_1 = FullyConnectedLayer(name='x_1',
                              parent=['x_t'],
                              parent_dim=[x_dim],
                              nout=x2s_dim,
                              unit='relu',
                              init_W=init_W,
                              init_b=init_b)

    y_1 = FullyConnectedLayer(name='y_1',
                              parent=['y_t'],
                              parent_dim=[y_dim],
                              nout=y2s_dim,
                              unit='relu',
                              init_W=init_W,
                              init_b=init_b)

    z_1 = FullyConnectedLayer(name='z_1',
                              parent=['z_t'],
                              parent_dim=[z_dim],
                              nout=z2s_dim,
                              unit='relu',
                              init_W=init_W,
                              init_b=init_b)

    rnn = LSTM(name='rnn',
               parent=['x_1', 'z_1','y_1'],
               parent_dim=[x2s_dim, z2s_dim, y_dim],
               nout=rnn_dim,
               unit='tanh',
               init_W=init_W,
               init_U=init_U,
               init_b=init_b)

    phi_1 = FullyConnectedLayer(name='phi_1',
                                parent=['x_1', 's_tm1','y_1'],
                                parent_dim=[x2s_dim, rnn_dim,y2s_dim],
                                nout=q_z_dim,
                                unit='relu',
                                init_W=init_W,
                                init_b=init_b)

    phi_mu = FullyConnectedLayer(name='phi_mu',
                                 parent=['phi_1'],
                                 parent_dim=[q_z_dim],
                                 nout=z_dim,
                                 unit='linear',
                                 init_W=init_W,
                                 init_b=init_b)

    phi_sig = FullyConnectedLayer(name='phi_sig',
                                  parent=['phi_1'],
                                  parent_dim=[q_z_dim],
                                  nout=z_dim,
                                  unit='softplus',
                                  cons=1e-4,
                                  init_W=init_W,
                                  init_b=init_b_sig)

    prior_1 = FullyConnectedLayer(name='prior_1',
                                  parent=['s_tm1'],
                                  parent_dim=[rnn_dim],
                                  nout=p_z_dim,
                                  unit='relu',
                                  init_W=init_W,
                                  init_b=init_b)

    prior_mu = FullyConnectedLayer(name='prior_mu',
                                   parent=['prior_1'],
                                   parent_dim=[p_z_dim],
                                   nout=z_dim,
                                   unit='linear',
                                   init_W=init_W,
                                   init_b=init_b)

    prior_sig = FullyConnectedLayer(name='prior_sig',
                                    parent=['prior_1'],
                                    parent_dim=[p_z_dim],
                                    nout=z_dim,
                                    unit='softplus',
                                    cons=1e-4,
                                    init_W=init_W,
                                    init_b=init_b_sig)

    theta_1 = FullyConnectedLayer(name='theta_1',
                                  parent=['z_1', 's_tm1'],
                                  parent_dim=[z2s_dim, rnn_dim],
                                  nout=p_x_dim,
                                  unit='relu',
                                  init_W=init_W,
                                  init_b=init_b)

    theta_mu = FullyConnectedLayer(name='theta_mu',
                                   parent=['theta_1'],
                                   parent_dim=[p_x_dim],
                                   nout=target_dim,
                                   unit='linear',
                                   init_W=init_W,
                                   init_b=init_b)

    theta_sig = FullyConnectedLayer(name='theta_sig',
                                    parent=['theta_1'],
                                    parent_dim=[p_x_dim],
                                    nout=target_dim,
                                    unit='softplus',
                                    cons=1e-4,
                                    init_W=init_W,
                                    init_b=init_b_sig)

    coeff = FullyConnectedLayer(name='coeff',
                                parent=['theta_1'],
                                parent_dim=[p_x_dim],
                                nout=k,
                                unit='softmax',
                                init_W=init_W,
                                init_b=init_b)

    corr = FullyConnectedLayer(name='corr',
                               parent=['theta_1'],
                               parent_dim=[p_x_dim],
                               nout=k,
                               unit='tanh',
                               init_W=init_W,
                               init_b=init_b)

    binary = FullyConnectedLayer(name='binary',
                                 parent=['theta_1'],
                                 parent_dim=[p_x_dim],
                                 nout=1,
                                 unit='sigmoid',
                                 init_W=init_W,
                                 init_b=init_b)

    nodes = [rnn,
             x_1, y_1, z_1, #dissag_pred,
             phi_1, phi_mu, phi_sig,
             prior_1, prior_mu, prior_sig,
             theta_1, theta_mu, theta_sig, coeff]#, corr, binary

    params = OrderedDict()

    for node in nodes:
        if node.initialize() is not None:
            params.update(node.initialize())

    params = init_tparams(params)

    s_0 = rnn.get_init_state(batch_size)

    x_1_temp = x_1.fprop([x], params)
    y_1_temp = y_1.fprop([y], params)

    def inner_fn_val(x_t, s_tm1):

        prior_1_t = prior_1.fprop([s_tm1], params)
        prior_mu_t = prior_mu.fprop([prior_1_t], params)
        prior_sig_t = prior_sig.fprop([prior_1_t], params)

        z_t = Gaussian_sample(prior_mu_t, prior_sig_t)
        z_1_t = z_1.fprop([z_t], params)

        theta_1_t = theta_1.fprop([z_1_t, s_tm1], params)
        theta_mu_t = theta_mu.fprop([theta_1_t], params)
        theta_sig_t = theta_sig.fprop([theta_1_t], params)

        coeff_t = coeff.fprop([theta_1_t], params)

        pred_t = GMM_sample(theta_mu_t, theta_sig_t, coeff_t) #Gaussian_sample(theta_mu_t, theta_sig_t)
        pred_1_t = y_1.fprop([pred_t], params)
        s_t = rnn.fprop([[x_t, z_1_t, pred_1_t], [s_tm1]], params)
        #y_pred = dissag_pred.fprop([s_t], params)

        return s_t, prior_mu_t, prior_sig_t, z_t,  z_1_t, theta_1_t, theta_mu_t, theta_sig_t, coeff_t, pred_t#, y_pred
        #corr_temp, binary_temp
    ((s_temp_val, prior_mu_temp_val, prior_sig_temp_val, z_t_temp_val, z_1_temp_val, theta_1_temp_val, theta_mu_temp_val, theta_sig_temp_val, coeff_temp_val, prediction_val), updates_val) =\
        theano.scan(fn=inner_fn_val,
                    sequences=[x_1_temp],
                    outputs_info=[s_0, None, None, None, None, None, None,  None, None, None])

    for k, v in updates_val.iteritems():
        k.default_update = v

    s_temp_val = concatenate([s_0[None, :, :], s_temp_val[:-1]], axis=0)

    def inner_fn_train(x_t, y_t, s_tm1):

        phi_1_t = phi_1.fprop([x_t, s_tm1,y_t], params)
        phi_mu_t = phi_mu.fprop([phi_1_t], params)
        phi_sig_t = phi_sig.fprop([phi_1_t], params)

        prior_1_t = prior_1.fprop([s_tm1], params)
        prior_mu_t = prior_mu.fprop([prior_1_t], params)
        prior_sig_t = prior_sig.fprop([prior_1_t], params)

        z_t = Gaussian_sample(phi_mu_t, phi_sig_t)
        z_1_t = z_1.fprop([z_t], params)

        theta_1_t = theta_1.fprop([z_1_t, s_tm1], params)
        theta_mu_t = theta_mu.fprop([theta_1_t], params)
        theta_sig_t = theta_sig.fprop([theta_1_t], params)

        coeff_t = coeff.fprop([theta_1_t], params)
        #corr_t = corr.fprop([theta_1_t], params)
        #binary_t = binary.fprop([theta_1_t], params)

        pred = GMM_sample(theta_mu_t, theta_sig_t, coeff_t) #Gaussian_sample(theta_mu_t, theta_sig_t)
        s_t = rnn.fprop([[x_t, z_1_t, y_t], [s_tm1]], params)
        #y_pred = dissag_pred.fprop([s_t], params)

        return s_t, phi_mu_t, phi_sig_t, prior_mu_t, prior_sig_t, z_t,  z_1_t, theta_1_t, theta_mu_t, theta_sig_t, coeff_t, pred#, y_pred
        #corr_temp, binary_temp
    ((s_temp, phi_mu_temp, phi_sig_temp, prior_mu_temp, prior_sig_temp,z_t_temp, z_1_temp, theta_1_temp, theta_mu_temp, theta_sig_temp, coeff_temp, prediction), updates) =\
        theano.scan(fn=inner_fn_train,
                    sequences=[x_1_temp, y_1_temp],
                    outputs_info=[s_0, None, None, None, None, None, None,  None, None, None, None, None])

    
    for k, v in updates.iteritems():
        k.default_update = v
    
    s_temp = concatenate([s_0[None, :, :], s_temp[:-1]], axis=0)# seems like this is for creating an additional dimension to s_0

    s_temp.name = 'h_1'#gisse
    z_1_temp.name = 'z_1'#gisse
    z_t_temp.name = 'z'
    theta_mu_temp.name = 'theta_mu_temp'
    theta_sig_temp.name = 'theta_sig_temp'
    coeff_temp.name = 'coeff'

    if (flgAgg == -1 ):
      prediction.name = 'x_reconstructed'
      mse = T.mean((prediction - x)**2) # CHECK RESHAPE with an assertion
      mae = T.mean( T.abs(prediction - x) )
      mse.name = 'mse'
      pred_in = x.reshape((x_shape[0]*x_shape[1], -1))
    else:
      prediction.name = 'pred_'+str(flgAgg)
      mse = T.mean((prediction - y)**2) # As axis = None is calculated for all
      mae = T.mean( T.abs_(prediction - y) )
      mse.name = 'mse'
      mae.name = 'mae'
      pred_in = y.reshape((y.shape[0]*y.shape[1],-1))

    kl_temp = KLGaussianGaussian(phi_mu_temp, phi_sig_temp, prior_mu_temp, prior_sig_temp)

    x_shape = x.shape
    
    theta_mu_in = theta_mu_temp.reshape((x_shape[0]*x_shape[1], -1))
    theta_sig_in = theta_sig_temp.reshape((x_shape[0]*x_shape[1], -1))
    coeff_in = coeff_temp.reshape((x_shape[0]*x_shape[1], -1))
    #corr_in = corr_temp.reshape((x_shape[0]*x_shape[1], -1))
    #binary_in = binary_temp.reshape((x_shape[0]*x_shape[1], -1))

    recon = GMM(pred_in, theta_mu_in, theta_sig_in, coeff_in)# BiGMM(x_in, theta_mu_in, theta_sig_in, coeff_in, corr_in, binary_in)
    recon = recon.reshape((x_shape[0], x_shape[1]))
    recon.name = 'gmm_out'

    recon_term = recon.sum(axis=0).mean()
    recon_term.name = 'recon_term'
    
    kl_term = kl_temp.sum(axis=0).mean()
    kl_term.name = 'kl_term'

    nll_upper_bound = recon_term + kl_term #+ mse
    if (flgMSE):
      nll_upper_bound = nll_upper_bound + mse
    nll_upper_bound.name = 'nll_upper_bound'

    ######################## TEST (GENERATION) TIME
    prediction_val.name = 'generated__'+str(flgAgg)
    mse_val = T.mean((prediction_val - y)**2) # As axis = None is calculated for all
    mae_val = T.mean( T.abs_(prediction_val - y) )
    mse_val.name = 'mse_val'
    mae_val.name = 'mae_val'
    pred_in_val = y.reshape((y.shape[0]*y.shape[1],-1))

    theta_mu_in_val = theta_mu_temp_val.reshape((x_shape[0]*x_shape[1], -1))
    theta_sig_in_val = theta_sig_temp_val.reshape((x_shape[0]*x_shape[1], -1))
    coeff_in_val = coeff_temp_val.reshape((x_shape[0]*x_shape[1], -1))

    recon_val = GMM(pred_in_val, theta_mu_in_val, theta_sig_in_val, coeff_in_val)# BiGMM(x_in, theta_mu_in, theta_sig_in, coeff_in, corr_in, binary_in)
    recon_val = recon_val.reshape((x_shape[0], x_shape[1]))
    recon_val.name = 'gmm_out_val'

    recon_term_val= recon_val.sum(axis=0).mean()
    recon_term_val.name = 'recon_term_val'

    model.inputs = [x, mask, y, y_mask]
    model.params = params
    model.nodes = nodes

    optimizer = Adam(
        lr=lr
    )

    header = "epoch,log,kl,nll_upper_bound,mse,mae\n"
    extension = [
        GradientClipping(batch_size=batch_size),
        EpochCount(epoch, save_path, header),
        Monitoring(freq=monitoring_freq,
                   ddout=[nll_upper_bound, recon_term, kl_term, mse, mae,
                          theta_mu_temp,prediction],
                   indexSep=5,
                   instancesPlot = instancesPlot, #{0:[4,20],2:[5,10]},#, 80,150
                   data=[Iterator(valid_data, batch_size)],
                   savedFolder = save_path),
        Picklize(freq=monitoring_freq, path=save_path),
        EarlyStopping(freq=monitoring_freq, path=save_path, channel=channel_name),
        WeightNorm()
    ]

    lr_iterations = {0:lr, 75:(lr/10), 150:(lr/100)}

    mainloop = Training(
        name=pkl_name,
        data=Iterator(train_data, batch_size),
        model=model,
        optimizer=optimizer,
        cost=nll_upper_bound,
        outputs=[recon_term, kl_term, nll_upper_bound, mse, mae],
        extension=extension,
        lr_iterations=lr_iterations

    )
    mainloop.run()

    z_t_temp_val.name='z_temp_val'
    s_temp_val.name='s_temp_val'
    theta_mu_temp_val.name='mu_temp'

    data=Iterator(test_data, batch_size)

    test_fn = theano.function(inputs=[x, y],#[x, y],
                              #givens={x:Xtest},
                              #on_unused_input='ignore',
                              #z=( ,200,1)
                              allow_input_downcast=True,
                              outputs=[z_t_temp_val, s_temp_val, theta_mu_temp_val, prediction_val, recon_term_val, mse_val, mae_val]#prediction_val, mse_val, mae_val
                              ,updates=updates_val#, allow_input_downcast=True, on_unused_input='ignore'
                              )
    testOutput = []
    numBatchTest = 0
    for batch in data:
      outputGeneration = test_fn(batch[0], batch[2])
      testOutput.append(outputGeneration[4:])
      #{0:[4,20], 2:[5,10]} 
      #if (numBatchTest==0):
      '''
      plt.figure(1)
      plt.plot(np.transpose(outputGeneration[0],[1,0,2])[4])
      plt.savefig(save_path+"/vrnn_dis_generated{}_z_0-4".format(numBatchTest))
      plt.clf()

      plt.figure(2)
      plt.plot(np.transpose(outputGeneration[1],[1,0,2])[4])
      plt.savefig(save_path+"/vrnn_dis_generated{}_s_0-4".format(numBatchTest))
      plt.clf()

      plt.figure(3)
      plt.plot(np.transpose(outputGeneration[2],[1,0,2])[4])
      plt.savefig(save_path+"/vrnn_dis_generated{}_theta_0-4".format(numBatchTest))
      plt.clf()
      '''
      plt.figure(4)
      plt.plot(np.transpose(outputGeneration[3],[1,0,2])[4])
      plt.plot(np.transpose(batch[2],[1,0,2])[4])
      plt.savefig(save_path+"/vrnn_dis_generated{}_RealAndPred_0-4".format(numBatchTest))
      plt.clf()

      plt.figure(4)
      plt.plot(np.transpose(batch[0],[1,0,2])[4])
      plt.savefig(save_path+"/vrnn_dis_generated{}_Realagg_0-4".format(numBatchTest))
      plt.clf()
      numBatchTest+=1

    testOutput = np.asarray(testOutput)
    print(testOutput.shape)
    recon_test = this_mean = testOutput[:, 0].mean()
    mse_test = this_mean = testOutput[:, 1].mean()
    mae_test = this_mean = testOutput[:, 2].mean()

    fLog = open(save_path+'/output.csv', 'w')
    fLog.write(str(lr_iterations)+"\n")
    fLog.write(str(windows)+"\n")
    fLog.write("logTest,mseTest,maeTest\n")
    fLog.write("{},{},{}\n".format(recon_test,mse_test,mae_test))
    fLog.write("q_z_dim,p_z_dim,p_x_dim,x2s_dim,y2s_dim,z2s_dim\n")
    fLog.write("{},{},{},{},{},{}\n".format(q_z_dim,p_z_dim,p_x_dim,x2s_dim,y2s_dim,z2s_dim))
    header = "epoch,log,kl,mse,mae\n"
    fLog.write(header)
    for i , item in enumerate(mainloop.trainlog.monitor['recon_term']):
      f = mainloop.trainlog.monitor['epoch'][i]
      a = mainloop.trainlog.monitor['recon_term'][i]
      b = mainloop.trainlog.monitor['kl_term'][i]
      d = mainloop.trainlog.monitor['mse'][i]
      e = mainloop.trainlog.monitor['mae'][i]
      fLog.write("{:d},{:.2f},{:.2f},{:.3f},{:.3f}\n".format(f,a,b,d,e))
def main(args):

    theano.optimizer = 'fast_compile'
    #theano.config.exception_verbosity='high'

    trial = int(args['trial'])
    pkl_name = 'vrnn_gmm_%d' % trial
    channel_name = 'valid_nll_upper_bound'

    data_path = args['data_path']
    save_path = args[
        'save_path']  #+'/aggVSdisag_distribEach/'+datetime.datetime.now().strftime("%y-%m-%d_%H-%M")
    period = int(args['period'])
    n_steps = int(args['n_steps'])
    stride_train = int(args['stride_train'])
    stride_test = int(args['stride_test'])

    # monitoring is a value that represents how many batches from training have to be seen to measure the validation set
    monitoring_freq = int(args['monitoring_freq'])
    epoch = int(args['epoch'])
    batch_size = int(args['batch_size'])
    x_dim = int(args['x_dim'])
    y_dim = int(args['y_dim'])
    z_dim = int(args['z_dim'])
    rnn_dim = int(args['rnn_dim'])
    k = int(args['num_k'])  #a mixture of K Gaussian functions
    lr = float(args['lr'])
    debug = int(args['debug'])

    print "trial no. %d" % trial
    print "batch size %d" % batch_size
    print "learning rate %f" % lr
    print "saving pkl file '%s'" % pkl_name
    print "to the save path '%s'" % save_path

    q_z_dim = 8  #150
    p_z_dim = 8  #150
    p_x_dim = 7  #250
    x2s_dim = 7  #250
    z2s_dim = 8  #150
    target_dim = y_dim * k  #(x_dim-1)*k

    model = Model()
    train_data = UKdale(
        name='train',
        prep='normalize',
        cond=True,  # False
        path=data_path,
        period=period,
        n_steps=n_steps,
        x_dim=x_dim,
        stride_train=stride_train,
        stride_test=stride_test)

    X_mean = train_data.X_mean
    X_std = train_data.X_std

    valid_data = UKdale(
        name='valid',
        prep='normalize',
        cond=True,  # False
        path=data_path,
        X_mean=X_mean,
        X_std=X_std,
        period=period,
        n_steps=n_steps,
        x_dim=x_dim,
        stride_train=stride_train,
        stride_test=stride_test)

    init_W = InitCell('rand')
    init_U = InitCell('ortho')
    init_b = InitCell('zeros')
    init_b_sig = InitCell('const', mean=0.6)

    x, mask, y, y_mask = train_data.theano_vars()
    x.name = 'x_original'
    if debug:
        x.tag.test_value = np.zeros((15, batch_size, x_dim), dtype=np.float32)
        temp = np.ones((15, batch_size), dtype=np.float32)
        temp[:, -2:] = 0.
        mask.tag.test_value = temp

    x_1 = FullyConnectedLayer(name='x_1',
                              parent=['x_t'],
                              parent_dim=[x_dim],
                              nout=x2s_dim,
                              unit='relu',
                              init_W=init_W,
                              init_b=init_b)

    z_1 = FullyConnectedLayer(name='z_1',
                              parent=['z_t'],
                              parent_dim=[z_dim],
                              nout=z2s_dim,
                              unit='relu',
                              init_W=init_W,
                              init_b=init_b)

    rnn = LSTM(name='rnn',
               parent=['x_1', 'z_1'],
               parent_dim=[x2s_dim, z2s_dim],
               nout=rnn_dim,
               unit='tanh',
               init_W=init_W,
               init_U=init_U,
               init_b=init_b)

    phi_1 = FullyConnectedLayer(name='phi_1',
                                parent=['x_1', 's_tm1'],
                                parent_dim=[x2s_dim, rnn_dim],
                                nout=q_z_dim,
                                unit='relu',
                                init_W=init_W,
                                init_b=init_b)

    phi_mu = FullyConnectedLayer(name='phi_mu',
                                 parent=['phi_1'],
                                 parent_dim=[q_z_dim],
                                 nout=z_dim,
                                 unit='linear',
                                 init_W=init_W,
                                 init_b=init_b)

    phi_sig = FullyConnectedLayer(name='phi_sig',
                                  parent=['phi_1'],
                                  parent_dim=[q_z_dim],
                                  nout=z_dim,
                                  unit='softplus',
                                  cons=1e-4,
                                  init_W=init_W,
                                  init_b=init_b_sig)

    prior_1 = FullyConnectedLayer(name='prior_1',
                                  parent=['s_tm1'],
                                  parent_dim=[rnn_dim],
                                  nout=p_z_dim,
                                  unit='relu',
                                  init_W=init_W,
                                  init_b=init_b)

    prior_mu = FullyConnectedLayer(name='prior_mu',
                                   parent=['prior_1'],
                                   parent_dim=[p_z_dim],
                                   nout=z_dim,
                                   unit='linear',
                                   init_W=init_W,
                                   init_b=init_b)

    prior_sig = FullyConnectedLayer(name='prior_sig',
                                    parent=['prior_1'],
                                    parent_dim=[p_z_dim],
                                    nout=z_dim,
                                    unit='softplus',
                                    cons=1e-4,
                                    init_W=init_W,
                                    init_b=init_b_sig)

    theta_1 = FullyConnectedLayer(name='theta_1',
                                  parent=['z_1', 's_tm1'],
                                  parent_dim=[z2s_dim, rnn_dim],
                                  nout=p_x_dim,
                                  unit='relu',
                                  init_W=init_W,
                                  init_b=init_b)

    theta_mu = FullyConnectedLayer(name='theta_mu',
                                   parent=['theta_1'],
                                   parent_dim=[p_x_dim],
                                   nout=target_dim,
                                   unit='linear',
                                   init_W=init_W,
                                   init_b=init_b)

    theta_sig = FullyConnectedLayer(name='theta_sig',
                                    parent=['theta_1'],
                                    parent_dim=[p_x_dim],
                                    nout=target_dim,
                                    unit='softplus',
                                    cons=1e-4,
                                    init_W=init_W,
                                    init_b=init_b_sig)

    coeff = FullyConnectedLayer(
        name='coeff',
        parent=['theta_1'],
        parent_dim=[p_x_dim],
        nout=k,
        unit='softmax',  #to ensure that the sum adds to one
        init_W=init_W,
        init_b=init_b)

    corr = FullyConnectedLayer(name='corr',
                               parent=['theta_1'],
                               parent_dim=[p_x_dim],
                               nout=k,
                               unit='tanh',
                               init_W=init_W,
                               init_b=init_b)

    binary = FullyConnectedLayer(name='binary',
                                 parent=['theta_1'],
                                 parent_dim=[p_x_dim],
                                 nout=1,
                                 unit='sigmoid',
                                 init_W=init_W,
                                 init_b=init_b)

    nodes = [
        rnn,
        x_1,
        z_1,  #dissag_pred,
        phi_1,
        phi_mu,
        phi_sig,
        prior_1,
        prior_mu,
        prior_sig,
        theta_1,
        theta_mu,
        theta_sig,
        coeff
    ]  #, corr, binary

    params = OrderedDict()

    for node in nodes:
        if node.initialize() is not None:
            params.update(node.initialize())

    params = init_tparams(params)

    s_0 = rnn.get_init_state(batch_size)

    x_1_temp = x_1.fprop([x], params)

    def inner_fn(x_t, s_tm1):

        phi_1_t = phi_1.fprop([x_t, s_tm1], params)
        phi_mu_t = phi_mu.fprop([phi_1_t], params)
        phi_sig_t = phi_sig.fprop([phi_1_t], params)

        prior_1_t = prior_1.fprop([s_tm1], params)
        prior_mu_t = prior_mu.fprop([prior_1_t], params)
        prior_sig_t = prior_sig.fprop([prior_1_t], params)

        z_t = Gaussian_sample(
            phi_mu_t, phi_sig_t
        )  #in the original code it is gaussian. GMM is for the generation
        z_1_t = z_1.fprop([z_t], params)

        theta_1_t = theta_1.fprop([z_1_t, s_tm1], params)
        theta_mu_t = theta_mu.fprop([theta_1_t], params)
        theta_sig_t = theta_sig.fprop([theta_1_t], params)

        coeff_t = coeff.fprop([theta_1_t], params)
        #corr_t = corr.fprop([theta_1_t], params)
        #binary_t = binary.fprop([theta_1_t], params)

        # I was missing this reshape that is done before BiGMM in the original code
        '''
        theta_mu_in = theta_mu_t.reshape((x_t[0]*x_t[1], -1))
        theta_sig_in = theta_sig_t.reshape((x_t[0]*x_t[1], -1))
        coeff_in = coeff_t.reshape((x_t[0]*x_t[1], -1))
        '''
        y_pred = GMM_sampleY(
            theta_mu_t, theta_sig_t,
            coeff_t)  #Gaussian_sample(theta_mu_t, theta_sig_t)

        s_t = rnn.fprop([[x_t, z_1_t], [s_tm1]], params)
        #y_pred = dissag_pred.fprop([s_t], params)

        return s_t, phi_mu_t, phi_sig_t, prior_mu_t, prior_sig_t, z_t, z_1_t, theta_1_t, theta_mu_t, theta_sig_t, coeff_t, y_pred
        #corr_temp, binary_temp
    ((s_temp, phi_mu_temp, phi_sig_temp, prior_mu_temp, prior_sig_temp,z_t_temp, z_1_temp, theta_1_temp, theta_mu_temp, theta_sig_temp, coeff_temp, y_pred_temp), updates) =\
        theano.scan(fn=inner_fn,
                    sequences=[x_1_temp],
                    outputs_info=[s_0, None, None, None, None, None, None,  None, None, None, None, None])

    for k, v in updates.iteritems():
        k.default_update = v

    s_temp = concatenate(
        [s_0[None, :, :], s_temp[:-1]], axis=0
    )  # seems like this is for creating an additional dimension to s_0
    '''
    theta_1_temp = theta_1.fprop([z_1_temp, s_temp], params)
    theta_mu_temp = theta_mu.fprop([theta_1_temp], params)
    theta_sig_temp = theta_sig.fprop([theta_1_temp], params)
    coeff_temp = coeff.fprop([theta_1_temp], params)
    corr_temp = corr.fprop([theta_1_temp], params)
    binary_temp = binary.fprop([theta_1_temp], params)
    '''

    s_temp.name = 'h_1'  #gisse
    z_1_temp.name = 'z_1'  #gisse
    z_t_temp.name = 'z'
    theta_mu_temp.name = 'theta_mu'
    theta_sig_temp.name = 'theta_sig'
    coeff_temp.name = 'coeff'
    #corr_temp.name = 'corr'
    #binary_temp.name = 'binary'
    #x_pred_temp.name = 'x_reconstructed'
    y_pred_temp.name = 'disaggregation'

    #mse = T.mean((y_pred_temp - y)**2) # cause mse can be 26000
    #mse.name = 'mse'
    kl_temp = KLGaussianGaussian(phi_mu_temp, phi_sig_temp, prior_mu_temp,
                                 prior_sig_temp)

    x_shape = x.shape
    y_shape = y.shape
    x_in = x.reshape((x_shape[0] * x_shape[1], -1))
    y_in = y.reshape((y_shape[0] * y_shape[1], -1))

    theta_mu_in = theta_mu_temp.reshape((x_shape[0] * x_shape[1], -1))
    theta_sig_in = theta_sig_temp.reshape((x_shape[0] * x_shape[1], -1))
    coeff_in = coeff_temp.reshape((x_shape[0] * x_shape[1], -1))
    #corr_in = corr_temp.reshape((x_shape[0]*x_shape[1], -1))
    #binary_in = binary_temp.reshape((x_shape[0]*x_shape[1], -1))

    #print("Printing shapes")
    #print (y_in.shape, theta_mu_in.shape, theta_sig_in.shape, coeff_in.shape)
    recon = GMM(
        y_in, theta_mu_in, theta_sig_in, coeff_in
    )  # BiGMM(x_in, theta_mu_in, theta_sig_in, coeff_in, corr_in, binary_in)
    recon = recon.reshape((x_shape[0], x_shape[1]))
    recon.name = 'gmm_out'

    #recon = recon * mask

    recon_term = recon.sum(axis=0).mean()
    recon_term.name = 'recon_term'

    #kl_temp = kl_temp * mask

    kl_term = kl_temp.sum(axis=0).mean()
    kl_term.name = 'kl_term'

    #nll_upper_bound_0 = recon_term + kl_term
    #nll_upper_bound_0.name = 'nll_upper_bound_0'
    nll_upper_bound = recon_term + kl_term  #+ mse
    nll_upper_bound.name = 'nll_upper_bound'

    max_x = x.max()
    mean_x = x.mean()
    min_x = x.min()
    max_x.name = 'max_x'
    mean_x.name = 'mean_x'
    min_x.name = 'min_x'

    max_theta_mu = theta_mu_in.max()
    mean_theta_mu = theta_mu_in.mean()
    min_theta_mu = theta_mu_in.min()
    max_theta_mu.name = 'max_theta_mu'
    mean_theta_mu.name = 'mean_theta_mu'
    min_theta_mu.name = 'min_theta_mu'

    max_theta_sig = theta_sig_in.max()
    mean_theta_sig = theta_sig_in.mean()
    min_theta_sig = theta_sig_in.min()
    max_theta_sig.name = 'max_theta_sig'
    mean_theta_sig.name = 'mean_theta_sig'
    min_theta_sig.name = 'min_theta_sig'

    coeff_max = coeff_in.max()
    coeff_min = coeff_in.min()
    coeff_mean_max = coeff_in.mean(axis=0).max()
    coeff_mean_min = coeff_in.mean(axis=0).min()
    coeff_max.name = 'coeff_max'
    coeff_min.name = 'coeff_min'
    coeff_mean_max.name = 'coeff_mean_max'
    coeff_mean_min.name = 'coeff_mean_min'

    max_phi_sig = phi_sig_temp.max()
    mean_phi_sig = phi_sig_temp.mean()
    min_phi_sig = phi_sig_temp.min()
    max_phi_sig.name = 'max_phi_sig'
    mean_phi_sig.name = 'mean_phi_sig'
    min_phi_sig.name = 'min_phi_sig'

    max_prior_sig = prior_sig_temp.max()
    mean_prior_sig = prior_sig_temp.mean()
    min_prior_sig = prior_sig_temp.min()
    max_prior_sig.name = 'max_prior_sig'
    mean_prior_sig.name = 'mean_prior_sig'
    min_prior_sig.name = 'min_prior_sig'

    model.inputs = [x, mask, y, y_mask]
    model.params = params
    model.nodes = nodes

    optimizer = Adam(lr=lr)

    extension = [
        GradientClipping(batch_size=batch_size),
        EpochCount(epoch),
        Monitoring(
            freq=monitoring_freq,
            ddout=[
                nll_upper_bound,
                recon_term,
                kl_term,  #mse,
                max_phi_sig,
                mean_phi_sig,
                min_phi_sig,
                max_prior_sig,
                mean_prior_sig,
                min_prior_sig,
                max_theta_sig,
                mean_theta_sig,
                min_theta_sig,
                max_x,
                mean_x,
                min_x,
                max_theta_mu,
                mean_theta_mu,
                min_theta_mu,
                coeff_max,
                coeff_min,
                coeff_mean_max,
                coeff_mean_min,  #23
                theta_mu_temp,
                theta_sig_temp,
                z_t_temp,
                y_pred_temp,  #corr_temp, binary_temp, 
                coeff_temp,  #22
                s_temp,
                z_1_temp
            ],
            indexSep=22,
            indexDDoutPlot=[(0, theta_mu_temp), (2, z_t_temp), (3, y_pred_temp)
                            ],  # adding indexes of ddout for the plotting
            instancesPlot=[0, 150],
            data=[Iterator(valid_data, batch_size)],
            savedFolder=save_path),
        Picklize(freq=monitoring_freq, path=save_path),
        EarlyStopping(freq=monitoring_freq,
                      path=save_path,
                      channel=channel_name),
        WeightNorm()
    ]

    mainloop = Training(name=pkl_name,
                        data=Iterator(train_data, batch_size),
                        model=model,
                        optimizer=optimizer,
                        cost=nll_upper_bound,
                        outputs=[nll_upper_bound],
                        extension=extension)
    mainloop.run()
    fLog = open(save_path + '/output.csv', 'w')
    print('Printing')
    print(len(mainloop.trainlog.monitor['nll_upper_bound']))
    fLog.write("log,kl,mse,nll_upper_bound\n")
    for i, item in enumerate(mainloop.trainlog.monitor['nll_upper_bound']):
        a = mainloop.trainlog.monitor['recon_term'][i]
        b = mainloop.trainlog.monitor['kl_term'][i]
        #c = mainloop.trainlog.monitor['mse'][i]
        d = mainloop.trainlog.monitor['nll_upper_bound']
        #print(a,b)
        fLog.write("{},{},{}\n".format(a, b, d))
    fLog.close()
Ejemplo n.º 20
0
theta_2_in = theta_2.fprop([theta_1_in])
theta_3_in = theta_3.fprop([theta_2_in])
theta_4_in = theta_4.fprop([theta_3_in])
theta_mu_in = theta_mu.fprop([theta_4_in])
theta_sig_in = theta_sig.fprop([theta_4_in])
coeff_in = coeff.fprop([theta_4_in])

z_shape = phi_mu_t.shape
phi_mu_in = phi_mu_t.reshape((z_shape[0]*z_shape[1], -1))
phi_sig_in = phi_sig_t.reshape((z_shape[0]*z_shape[1], -1))
prior_mu_in = prior_mu_t.reshape((z_shape[0]*z_shape[1], -1))
prior_sig_in = prior_sig_t.reshape((z_shape[0]*z_shape[1], -1))
kl_in = kl.fprop([phi_mu_in, phi_sig_in, prior_mu_in, prior_sig_in])
kl_t = kl_in.reshape((z_shape[0], z_shape[1]))

recon = GMM(x_in, theta_mu_in, theta_sig_in, coeff_in)
recon = recon.reshape((x_shape[0], x_shape[1]))
recon_term = recon.mean()
kl_term = kl_t.mean()
nll_lower_bound = recon_term + kl_term
nll_lower_bound.name = 'nll_lower_bound'
recon_term.name = 'recon_term'
kl_term.name = 'kl_term'

kl_ratio = kl_term / T.abs_(recon_term)
kl_ratio.name = 'kl_term proportion'

max_x = x.max()
mean_x = x.mean()
min_x = x.min()
max_x.name = 'max_x'