Ejemplo n.º 1
0
def main(_):
    # Load training and test data
    data = ld_cifar10()

    # Instantiate model, loss, and optimizer for training
    net = CNN(in_channels=3)
    device = 'cuda' if torch.cuda.is_available() else 'cpu'
    if device == 'cuda':
        net = net.cuda()
    loss_fn = torch.nn.CrossEntropyLoss(reduction='mean')
    optimizer = torch.optim.Adam(net.parameters(), lr=1e-3)

    # Train vanilla model
    net.train()
    for epoch in range(1, FLAGS.nb_epochs + 1):
        train_loss = 0.
        for x, y in data.train:
            x, y = x.to(device), y.to(device)
            if FLAGS.adv_train:
                # Replace clean example with adversarial example for adversarial training
                x = projected_gradient_descent(net, x, FLAGS.eps, 0.01, 40,
                                               np.inf)
                # Stop backward from entering the graph that created the adv example
                x = x.clone().detach()
            optimizer.zero_grad()
            loss = loss_fn(net(x), y)
            loss.backward()
            optimizer.step()
            train_loss += loss.item()
        print('epoch: {}/{}, train loss: {:.3f}'.format(
            epoch, FLAGS.nb_epochs, train_loss))

    # Evaluate on clean and adversarial data
    net.eval()
    report = EasyDict(nb_test=0, correct=0, correct_fgm=0, correct_pgd=0)
    for x, y in data.test:
        x, y = x.to(device), y.to(device)
        x_fgm = fast_gradient_method(net, x, FLAGS.eps, np.inf)
        x_pgd = projected_gradient_descent(net, x, FLAGS.eps, 0.01, 40, np.inf)
        _, y_pred = net(x).max(1)  # model prediction on clean examples
        _, y_pred_fgm = net(x_fgm).max(
            1)  # model prediction on FGM adversarial examples
        _, y_pred_pgd = net(x_pgd).max(
            1)  # model prediction on PGD adversarial examples
        report.nb_test += y.size(0)
        report.correct += y_pred.eq(y).sum().item()
        report.correct_fgm += y_pred_fgm.eq(y).sum().item()
        report.correct_pgd += y_pred_pgd.eq(y).sum().item()
    print('test acc on clean examples (%): {:.3f}'.format(
        report.correct / report.nb_test * 100.))
    print('test acc on FGM adversarial examples (%): {:.3f}'.format(
        report.correct_fgm / report.nb_test * 100.))
    print('test acc on PGD adversarial examples (%): {:.3f}'.format(
        report.correct_pgd / report.nb_test * 100.))
Ejemplo n.º 2
0
def test(opt, net, loader):
    correct = 0
    if opt.adversarial:
        correct_fgm, correct_pgd = 0, 0
    total = 0
    net.eval()
    logger.info('Starting testing...')

    with torch.set_grad_enabled(opt.adversarial):
        # adversarial attacks need grad computations
        n_batches = len(loader)
        for i, (input, target) in enumerate(loader):
            logger.info('batch: {}/{}'.format(i + 1, n_batches))
            input, target = \
                input.to(device, non_blocking=True), target.to(
                    device, non_blocking=True)

            output = net(input, update_centers=False)
            _, predicted = torch.max(output.data, 1)
            total += target.size(0)
            correct += (predicted == target).sum().item()

            if opt.adversarial:

                def net_fn(input):
                    return net(input, update_centers=False)

                input_fgm = fast_gradient_method(net_fn, input,
                                                 opt.adversary_eps,
                                                 opt.adversary_norm)
                input_pgd = projected_gradient_descent(net_fn, input,
                                                       opt.adversary_eps,
                                                       opt.pgd_step_eps,
                                                       opt.pgd_n_steps,
                                                       opt.adversary_norm)
                output_fgm = net(input_fgm, update_centers=False)
                output_pgd = net(input_pgd, update_centers=False)
                _, predicted_fgm = torch.max(output_fgm.data, 1)
                _, predicted_pgd = torch.max(output_pgd.data, 1)
                correct_fgm += (predicted_fgm == target).sum().item()
                correct_pgd += (predicted_pgd == target).sum().item()

    acc = 100 * correct / total
    results = {'accuracy (%)': acc}
    logger.info('Accuracy (%): {:.3f}'.format(acc))

    if opt.adversarial:
        acc_fgm = 100 * correct_fgm / total
        logger.info('Accuracy under FGM (%): {:.3f}'.format(acc_fgm))
        acc_pgd = 100 * correct_pgd / total
        logger.info('Accuracy under PGD (%): {:.3f}'.format(acc_pgd))
        results['accuracy under FGM (%)'] = acc_fgm
        results['accuracy under PGD (%)'] = acc_pgd

    with open(os.path.join(opt.save_dir, 'test.json'), 'w') as out:
        json.dump(results, out, indent=2)
    logger.info('Testing finished!')
Ejemplo n.º 3
0
def test(opt, net, loader):
  correct = 0
  if opt.adversarial:
    correct_fgm, correct_pgd = 0, 0
  total = 0
  net.eval()
  logger.info('Starting testing...')

  with torch.set_grad_enabled(opt.adversarial):
    # adversarial attacks need grad computations
    for i, (input, target) in enumerate(loader):
      logger.info('batch: {}/{}'.format(i, len(loader)))
      input, target = \
        input.to(device, non_blocking=True), target.to(device, non_blocking=True)

      output = net(input, update_centers=False)

      # save tensors for visualization
      raw_data = input if i == 0 else torch.cat((raw_data, input))
      labels = target if i == 0 else torch.cat((labels, target))
      activations = net_head(input)
      all_activations = activations if i == 0 else torch.cat((all_activations, activations))

      _, predicted = torch.max(output.data, 1)
      total += target.size(0)
      correct += (predicted == target).sum().item()
      
      if opt.adversarial:
        net_fn = lambda input: net(input, update_centers=False)
        input_fgm = fast_gradient_method(net_fn, input, opt.adversary_eps, opt.adversary_norm)
        input_pgd = projected_gradient_descent(net_fn, input, opt.adversary_eps,
            opt.pgd_step_eps, opt.pgd_n_steps, opt.adversary_norm)
        output_fgm = net(input_fgm, update_centers=False)
        output_pgd = net(input_pgd, update_centers=False)
        _, predicted_fgm = torch.max(output_fgm.data, 1)
        _, predicted_pgd = torch.max(output_pgd.data, 1)
        correct_fgm += (predicted_fgm == target).sum().item()
        correct_pgd += (predicted_pgd == target).sum().item()
         
  logger.info('Accuracy (%): {:.3f}'.format(100 * correct / total))

  if opt.adversarial:
    logger.info('Accuracy under FGM (%): {:.3f}'.format(100 * correct_fgm / total))
    logger.info('Accuracy under PGD (%): {:.3f}'.format(100 * correct_pgd / total))

  logger.info('Testing finished!')

  return raw_data.cpu().numpy(), labels.cpu().numpy(), all_activations.cpu().numpy()
Ejemplo n.º 4
0
def run_attacks_cleverhans(res_path, ncl=False):
    if ncl:
        MODEL_DIR = '/mnt/md0/orville/Miriam/modular-loss-experiments-morph/results_ncl/CIFAR-10/densenet-82-8-8'
        rel_dirs = ['alpha_0.0_gamma_0.02_n_models_2_1583114412120',
                    'alpha_0.0_gamma_0.05_n_models_2_1583114439810']
        alpha = ['0.02', '0.05']
        res_path = res_path + '_ncl'
    else:
        MODEL_DIR = '/mnt/md0/orville/Miriam/modular-loss-experiments-morph/results/CIFAR-10/densenet-82-8-8'
        # UNCORR_MODEL_DIR = 'alpha_0.0_gamma_0.0_n_models_2_1581641733617'
        # CORR_MODEL_DIR = 'alpha_0.1_gamma_0.0_n_models_2_1581641746832'
        # CORR_MODEL_DIR_2 = 'alpha_0.2_gamma_0.0_n_models_2_1581641777871'
        # UNCORR_MODEL_DIR = 'alpha_0.0_gamma_0.0_n_models_3_1585505819121'
        # CORR_MODEL_DIR = 'alpha_0.1_gamma_0.0_n_models_3_1585505685528'
        # CORR_MODEL_DIR_2 = 'alpha_0.2_gamma_0.0_n_models_3_1585505042819'
        # rel_dirs = [UNCORR_MODEL_DIR, CORR_MODEL_DIR, CORR_MODEL_DIR_2]
        rel_dirs = ['alpha_0.0_gamma_0.0_n_models_3_1585505819121',
                  'alpha_0.1_gamma_0.0_n_models_3_1589795142450',
                  'alpha_0.2_gamma_0.0_n_models_3_1589794987034',
                  'alpha_0.3_gamma_0.0_n_models_3_1589795486214',
                  'alpha_0.4_gamma_0.0_n_models_3_1589796192038',
                  'alpha_0.5_gamma_0.0_n_models_3_1589796200262',
                  'alpha_0.6_gamma_0.0_n_models_3_1589796218204',
                  'alpha_0.7_gamma_0.0_n_models_3_1589796234665']
        alpha = list(map(lambda x: format(x, '2.1f'), np.arange(0.0, 0.8, 0.1)))

    batch_size = 256  # 128  # 516
    n_workers = 20
    dataset = 'CIFAR-10'
    network = 'densenet-82-8-8'
    loaders, _ = get_dataloaders_(batch_size, 0, dataset, False, early_stop=False, n_workers=n_workers)
    n_models = 2 if ncl else 3

    params = {}
    params['densenet-82-8-8'] = {'num_modules': n_models, 'bottleneck': True, 'reduction': 0.5, 'depth': 82, 'growth_rate': 8,
                                 'input_shape': (3, 32, 32), 'output_dim': 10}
    network = 'densenet-82-8-8'
    model = DenseNet(input_shape=params[network]['input_shape'],
                     output_dim=params[network]['output_dim'],
                     growth_rate=params[network]['growth_rate'],
                     depth=params[network]['depth'],
                     reduction=params[network]['reduction'],
                     bottleneck=params[network]['bottleneck'],
                     num_modules=n_models)

    device = torch.device("cuda")
    reports = dict.fromkeys(alpha)
    for model_path, curr_alpha in tqdm(zip(rel_dirs, alpha), total=len(alpha)):
        if ncl:
            weight_path = path.join(MODEL_DIR, model_path, 'trial_0/' + curr_alpha + '/weights/final_weights.pt')
        else:
            weight_path = path.join(MODEL_DIR, model_path, 'trial_0/0.0/weights/final_weights.pt')
        model.reset_parameters()
        model.load_state_dict(torch.load(weight_path))
        model.eval()  # model.train(mode=False)
        net = ModelMeanEP(model).to(device)

        report = dict()
        for x, y in tqdm(loaders['test'], total=len(loaders['test'])):
            x, y = x.to(device), y.to(device)
            report['nb_test'] = report.get('nb_test', 0) + y.size(0)

            _, y_pred = net(x).max(1)  # model prediction on clean examples
            report['acc'] = report.get('acc', 0) + y_pred.eq(y).sum().item()

            # model prediction on FGM adversarial examples
            x_adv = fast_gradient_method(net, x, 0.02, np.inf)
            _, y_pred = net(x_adv).max(1)  # model prediction on FGM adversarial examples
            report['FGM_0.02'] = report.get('FGM_0.02', 0) + y_pred.eq(y).sum().item()

            x_adv = fast_gradient_method(net, x, 0.04, np.inf)
            _, y_pred = net(x_adv).max(1)  # model prediction on FGM adversarial examples
            report['FGM_0.04'] = report.get('FGM_0.04', 0) + y_pred.eq(y).sum().item()

            # model prediction on BIM adversarial examples
            x_adv = projected_gradient_descent(net, x, eps=0.01, eps_iter=0.01 / 10, nb_iter=10, norm=np.inf, rand_init=0)
            _, y_pred = net(x_adv).max(1)
            report['BIM_0.01'] = report.get('BIM_0.01', 0) + y_pred.eq(y).sum().item()

            x_adv = projected_gradient_descent(net, x, eps=0.02, eps_iter=0.02 / 10, nb_iter=10, norm=np.inf, rand_init=0)
            _, y_pred = net(x_adv).max(1)
            report['BIM_0.02'] = report.get('BIM_0.02', 0) + y_pred.eq(y).sum().item()

            # model prediction on PGD adversarial examples
            x_adv = projected_gradient_descent(net, x, eps=0.01, eps_iter=0.01 / 10, nb_iter=10, norm=np.inf)
            _, y_pred = net(x_adv).max(1)
            report['PGD_0.01'] = report.get('PGD_0.01', 0) + y_pred.eq(y).sum().item()

            x_adv = projected_gradient_descent(net, x, eps=0.02, eps_iter=0.02 / 10, nb_iter=10, norm=np.inf)
            _, y_pred = net(x_adv).max(1)
            report['PGD_0.02'] = report.get('PGD_0.02', 0) + y_pred.eq(y).sum().item()

        for key in ['acc', 'FGM_0.02', 'FGM_0.04', 'BIM_0.01', 'BIM_0.02', 'PGD_0.01', 'PGD_0.02']:
            report[key] = (report[key] / report['nb_test']) * 100.

        reports[curr_alpha] = report
        pickle.dump(reports, open(res_path, 'wb'))
    pickle.dump(reports, open(res_path, 'wb'))
Ejemplo n.º 5
0
def main(_):
    # Load training and test data
    data = ld_cifar10()

    # Instantiate model, loss, and optimizer for training
    # net = CNN(in_channels=3)
    net = resnet.ResNet18()
    device = 'cuda' if torch.cuda.is_available() else 'cpu'
    logging.info('Using GPU' if device == 'cuda' else 'Using CPU')
    if device == 'cuda':
        net = net.cuda()
    loss_fn = torch.nn.CrossEntropyLoss(reduction='mean')
    optimizer = torch.optim.Adam(net.parameters(), lr=1e-3)

    # load checkpoint if exists
    if os.path.exists(FLAGS.checkpoint):
        ckpt = torch.load(FLAGS.checkpoint)
        net.load_state_dict(ckpt['net'])
        logging.info('Loaded model %s with accuracy %.3f', FLAGS.checkpoint,
                     ckpt['acc'])
    else:  # Train vanilla model
        if input('No checkpoint found, continue? y/[n]') != 'y':
            return -1
        net.train()
        with trange(1, FLAGS.nb_epochs + 1, desc='Training',
                    unit='Epoch') as t:
            for epoch in t:
                train_loss = 0.
                for x, y in data.train:
                    x, y = x.to(device), y.to(device)
                    if FLAGS.adv_train:
                        # Replace clean example with adversarial example for adversarial training
                        x = projected_gradient_descent(net, x, FLAGS.eps, 0.01,
                                                       40, np.inf)
                    optimizer.zero_grad()
                    loss = loss_fn(net(x), y)
                    loss.backward()
                    optimizer.step()
                    train_loss += loss.item()
                t.set_description('Train Loss=%.3f' % train_loss)

    # Evaluate on clean and adversarial data
    net.eval()
    report = EasyDict(nb_test=0, correct=0, correct_fgm=0, correct_pgd=0)
    for x, y in tqdm(data.test, unit='Samples', desc='Testing'):
        x, y = x.to(device), y.to(device)
        x_fgm = fast_gradient_method(net, x, FLAGS.eps, np.inf)
        x_pgd = projected_gradient_descent(net, x, FLAGS.eps, 0.01, 40, np.inf)
        _, y_pred = net(x).max(1)  # model prediction on clean examples
        _, y_pred_fgm = net(x_fgm).max(
            1)  # model prediction on FGM adversarial examples
        _, y_pred_pgd = net(x_pgd).max(
            1)  # model prediction on PGD adversarial examples
        report.nb_test += y.size(0)
        report.correct += y_pred.eq(y).sum().item()
        report.correct_fgm += y_pred_fgm.eq(y).sum().item()
        report.correct_pgd += y_pred_pgd.eq(y).sum().item()
    print('test acc on clean examples (%): {:.3f}'.format(
        report.correct / report.nb_test * 100.))
    print('test acc on FGM adversarial examples (%): {:.3f}'.format(
        report.correct_fgm / report.nb_test * 100.))
    print('test acc on PGD adversarial examples (%): {:.3f}'.format(
        report.correct_pgd / report.nb_test * 100.))

    return 0