Ejemplo n.º 1
0
    def __call__(self, data):
        import pandas as pd
        from pathlib import Path
        from deformationcytometer.detection.includes.regionprops import mask_to_cells_edge, mask_to_cells_edge2
        from deformationcytometer.evaluation.helper_functions import filterCells

        output_path = Path(data["filename"][:-4] + "_result_new.csv")

        if data["type"] != "image":
            if data["type"] == "start":
                # add ellipse marker type
                if write_clickpoints_file and write_clickpoints_markers:
                    import clickpoints
                    with clickpoints.DataFile(data["filename"][:-4] + ".cdb") as cdb:
                        cdb.setMarkerType("cell", "#FF0000", mode=cdb.TYPE_Ellipse)
                # delete an existing outputfile
                if output_path.exists():
                    output_path.unlink()
            return data

        log("3find_cells", "detect", 1, data["index"])

        new_cells = mask_to_cells_edge2(data["mask"], data["im"], data["config"], r_min,
                                       frame_data={"frames": data["index"], "timestamp": data["timestamp"]})
        new_cells = pd.DataFrame(new_cells,
                                 columns=["frames", "timestamp", "x", "y", "rp", "long_axis",
                                          "short_axis",
                                          "angle", "irregularity", "solidity", "sharpness", "velocity", "cell_id", "tt",
                                          "tt_r2"])

        if not output_path.exists():
            with output_path.open("w") as fp:
                new_cells.to_csv(fp, index=False, header=True)
        else:
            with output_path.open("a") as fp:
                new_cells.to_csv(fp, index=False, header=False)

        # filter cells according to solidity and irregularity
        new_cells = filterCells(new_cells, solidity_threshold=self.solidity_threshold,
                                irregularity_threshold=self.irregularity_threshold)

        if write_clickpoints_file and write_clickpoints_markers:
            import clickpoints
            with clickpoints.DataFile(data["filename"][:-4] + ".cdb") as cdb:
                for i, d in new_cells.iterrows():
                    cdb.setEllipse(frame=int(d.frames), x=d.x, y=d.y,
                                  width=d.long_axis / data["config"]["pixel_size"],
                                  height=d.short_axis / data["config"]["pixel_size"],
                                  angle=d.angle, type="cell")

        data["config"]["solidity"] = self.solidity_threshold
        data["config"]["irregularity"] = self.irregularity_threshold

        data["cells"] = new_cells
        del data["mask"]

        log("3find_cells", "detect", 0, data["index"])

        return data
Ejemplo n.º 2
0
    def __call__(self, data):
        import numpy as np
        import skimage.draw
        import clickpoints
        from pathlib import Path

        if data["type"] == "start" or data["type"] == "end":
            yield data
            return

        data_storage_mask_numpy = self.data_storage.get_stored(data["mask_info"])
        #with clickpoints.DataFile(r"E:\FlowProject\2021.4.14\0.1 atm\2021_04_14_11_37_36_ellipse.cdb") as cdb: # + 10000
        with clickpoints.DataFile(data["filename"][:-4]+"_ellipse.cdb") as cdb: # + 30000
        #with clickpoints.DataFile(r"E:\FlowProject\2021.4.14\0.2 atm\2021_04_14_13_44_55_Fl_ellipse.cdb") as cdb: # + 40000
        #with clickpoints.DataFile(r"E:\FlowProject\2021.4.14\0.5 atm\2021_04_14_13_04_12_Fl.cdb") as cdb: # + 0
            path_entry = cdb.getPath(".")#Path(data["filename"]).parent)
            for i, index in enumerate(range(data["index"], data["end_index"])):
                img = cdb.table_image.get(cdb.table_image.filename==str(Path(data["filename"]).name), cdb.table_image.frame==index)#, path=path_entry)
                for ellipse in img.ellipses:
                    data_storage_mask_numpy[i][skimage.draw.ellipse(ellipse.y, ellipse.x, ellipse.width / 2, ellipse.height / 2,
                                                                 data_storage_mask_numpy[i].shape, np.pi / 2 - np.deg2rad(ellipse.angle))] = 1
                    data_storage_mask_numpy[i][
                        skimage.draw.ellipse(ellipse.y, ellipse.x, ellipse.width / 2 - 3, ellipse.height / 2 - 3,
                                             data_storage_mask_numpy[i].shape,
                                             np.pi / 2 - np.deg2rad(ellipse.angle))] = 0
        yield data
Ejemplo n.º 3
0
def setup_database_for_tfm(folder, name):
    '''
    Sorting images into a clickpoints database. Frames are identified by leading numbers. Layers are identified by
    the file name.
    :param folder: Folder where images are searched.
    :param name: Name of the database. Needs to end with .cdb.
    :param return_db: Choose weather function returns the database object, or weather the connection to the
    database is closed
    :param key1,key2,key3: regular expression that define how to sort images. Can be single string
    or a list. If any of the regex is matched for one key, the image will be classified accordingly.
    Don't include the file ending. Typical image endings (.png,.tif ... ) are added automatically.
    key1: image after bead removal, key2: image before bead removal, key3: image of the
    cells.
    :param frame_key: reguar expression that defines how the frame number is searched. You must
    mark the group that contains the frame with parenthesis "()".
    :return:
    '''

    # creating a new cdb database, will override an existing one.
    db = clickpoints.DataFile(os.path.join(folder, name), "w")
    folders = {
        "folder1_txt": os.getcwd(),
        "folder2_txt": os.getcwd(),
        "folder3_txt": os.getcwd(),
        "folder_out_txt": os.getcwd()
    }
    search_keys = {
        "after": "\d{1,4}after",
        "before": "\d{1,4}before",
        "cells": "\d{1,4}bf_before",
        "frames": "(\d{1,4})"
    }
    setup_database_internal(db, search_keys, folders)
Ejemplo n.º 4
0
 def load_tracks_from_clickpoints(self, path, type):
     db = clickpoints.DataFile(path)
     type = db.getMarkerType(name=type)
     array = np.asarray(db.db.execute_sql("select sort_index, x, y, id from marker join image on marker.image_id = image.id  where type_id = ? order by sort_index",
                                        [type.id]).fetchall(), dtype=float)
     dictionary = dict(zip(range(len(array), array[:,3])))
     print("Marker loaded!")
     return db, array[:,:-1], type, dictionary
Ejemplo n.º 5
0
 def __init__(self, db, method="r", raise_Error=True):
     self.raise_Error = raise_Error
     if isinstance(db, clickpoints.DataFile):
         self.file = db
         self.db_obj = True
     else:
         self.file = clickpoints.DataFile(db, method)
         self.db_obj = False
    def __call__(self, data):
        import time
        predict_start_first = time.time()
        from deformationcytometer.detection.includes.UNETmodel import UNet
        import numpy as np
        from deformationcytometer.detection.includes.regionprops import preprocess, getTimestamp

        if data["type"] == "start" or data["type"] == "end":
            yield data
            return

        log("2detect", "prepare", 1, data["index"])

        def preprocess(img):
            img = img - np.mean(img, axis=(1, 2))[:, None, None]
            img = img / np.std(img, axis=(1, 2))[:, None, None]
            return img.astype(np.float32)

        data_storage_numpy = self.data_storage.get_stored(data["data_info"])
        data_storage_mask_numpy = self.data_storage.get_stored(
            data["mask_info"])

        # initialize the unet if necessary
        im = data_storage_numpy[0]  # batch[0]["im"]
        if self.unet is None or self.unet.shape[:2] != im.shape:
            im = data_storage_numpy[0]  #batch[0]["im"]
            if self.network_weights is not None and self.network_weights != "":
                self.unet = UNet((im.shape[0], im.shape[1], 1),
                                 1,
                                 d=8,
                                 weights=self.network_weights)
            else:
                self.unet = UNet((im.shape[0], im.shape[1], 1), 1, d=8)

        # predict cell masks from the image batch
        im_batch = preprocess(data_storage_numpy)
        import time
        predict_start = time.time()
        import tensorflow as tf
        with tf.device('/GPU:0'):
            prediction_mask_batch = self.unet.predict(
                im_batch[:, :, :, None])[:, :, :, 0] > 0.5
        dt = time.time() - predict_start
        data_storage_mask_numpy[:] = prediction_mask_batch

        import clickpoints
        if self.write_clickpoints_masks:
            with clickpoints.DataFile(data["filename"][:-4] + ".cdb") as cdb:
                # iterate over all images and return them
                for mask, index in zip(data_storage_mask_numpy,
                                       range(data["index"],
                                             data["end_index"])):
                    cdb.setMask(frame=index, data=mask.astype(np.uint8))

        data["config"].update({"network": self.network_weights})

        log("2detect", "prepare", 0, data["index"])
        yield data
Ejemplo n.º 7
0
    def __init__(self, db_path=None, **kwargs):
        if db_path is not None:
            self.db = clickpoints.DataFile(db_path)

        im_shape = self.db.getImages()[0].getShape()
        self.nx, self.ny = im_shape[1], im_shape[0]
        x, y = np.meshgrid(np.arange(self.nx), np.arange(self.ny))
        x, y = x.flatten(), y.flatten()
        self.points = np.vstack((x, y)).T
Ejemplo n.º 8
0
 def load_tracks_from_clickpoints(self, path, type):
     db = clickpoints.DataFile(path)
     tracks = db.getTracks(type=type)
     track_dict = dict(enumerate([t.id for t in tracks]))
     if self.Frames is None:
         array = np.asarray([db.db.execute_sql("select (SELECT x from marker as m WHERE m.image_id = i.id AND m.track_id=?) as x, (SELECT y from marker as m WHERE m.image_id = i.id AND m.track_id=?) as y from image as i order by sort_index",[track_dict[k],track_dict[k]]).fetchall() for k in sorted(track_dict.keys())], dtype=float)
         self.Frames = range(array.shape[1])
     else:
         array = np.asarray([db.db.execute_sql("select (SELECT x from marker as m WHERE m.image_id = i.id AND m.track_id=?) as x, (SELECT y from marker as m WHERE m.image_id = i.id AND m.track_id=?) as y from image as i WHERE image.sort_index in ? order by sort_index",[track_dict[k], track_dict[k], self.Frames]).fetchall() for k in sorted(track_dict.keys())], dtype=float)
     print("Tracks loaded!")
     return db, array, track_dict
    def __call__(self, data):
        import time
        predict_start_first = time.time()
        from deformationcytometer.detection.includes.UNETmodel import UNet
        import numpy as np
        import cv2
        from skimage.filters import gaussian
        from skimage.morphology import area_opening
        from skimage import feature
        from scipy.ndimage import generate_binary_structure, binary_fill_holes
        from skimage import morphology
        from deformationcytometer.detection.includes.regionprops import preprocess, getTimestamp

        if data["type"] == "start" or data["type"] == "end":
            yield data
            return

        log("2detect", "prepare", 1, data["index"])


        data_storage_numpy = self.data_storage.get_stored(data["data_info"])
        data_storage_mask_numpy = self.data_storage.get_stored(data["mask_info"])

        for i, im in enumerate(data_storage_numpy):
            f = im
            ff = f / f.max() * 255
            ffl = ff
            ffl = np.uint8(ffl / ffl.max() * 255)
            fban = gaussian(f, sigma=1) - gaussian(f, sigma=6)
            fban = fban - fban.min()
            fban = np.uint8(fban / fban.max() * 255)
            kernel = cv2.getStructuringElement(cv2.MORPH_ELLIPSE, (4, 4))
            gradient = cv2.morphologyEx(fban, cv2.MORPH_GRADIENT, kernel)
            fban = np.uint8(gradient / gradient.max() * 255)
            edges = feature.canny(fban, sigma=2, low_threshold=0.99, high_threshold=0.99, use_quantiles=True)
            struct = generate_binary_structure(2, 1)
            ffil = binary_fill_holes(edges, structure=struct).astype(int)
            ffil = np.uint8(ffil * 255)
            mask = area_opening(ffil, area_threshold=600, connectivity=1)
            import matplotlib.pyplot as plt
            data_storage_mask_numpy[i] = mask

        import clickpoints
        if self.write_clickpoints_masks:
            with clickpoints.DataFile(data["filename"][:-4] + ".cdb") as cdb:
                # iterate over all images and return them
                for mask, index in zip(data_storage_mask_numpy, range(data["index"], data["end_index"])):
                    cdb.setMask(frame=index, data=mask.astype(np.uint8))

        data["config"].update({"network": self.network_weights})

        log("2detect", "prepare", 0, data["index"])
        yield data
Ejemplo n.º 10
0
def set_up_additional_databases(ev_addon, db_name,  illustration=False):

    folder = os.path.split(db_name)[0]
    os.makedirs(folder,exist_ok=True)
    export_db_path = os.path.join(folder,db_name)
    notes_txt = open(export_db_path[:-4] + "_notes.txt", "+a")
    if os.path.exists(export_db_path):
        exp_db = clickpoints.DataFile(export_db_path, "r")
    else:
        exp_db = clickpoints.DataFile(export_db_path, "w")
        exp_db.deletePaths()
        exp_db.setPath(folder)
        if illustration:
            mt1 = exp_db.setMaskType(name=ev_addon.net1_db_name, color=ev_addon.net1_db_color, index=1)
            mt2 = exp_db.setMaskType(name=ev_addon.net2_db_name, color=ev_addon.net2_db_color, index=2)
            mt_ov = exp_db.setMaskType(name=ev_addon.overlap_mask, color=ev_addon.overlap_mask_color, index=3)
            elt1 = exp_db.setMarkerType(name=ev_addon.net1_db_name, color=ev_addon.net1_db_color,
                                             mode=clickpoints.DataFile.TYPE_Ellipse)
            elt2 = exp_db.setMarkerType(name=ev_addon.net2_db_name, color=ev_addon.net2_db_color,
                                             mode=clickpoints.DataFile.TYPE_Ellipse)
    return exp_db, notes_txt
Ejemplo n.º 11
0
def process_load_images(filename):
    """
    Loads an .tif file stack and yields all the images.
    """
    import imageio
    from deformationcytometer.detection import pipey
    from deformationcytometer.detection.includes.regionprops import preprocess, getTimestamp
    from deformationcytometer.includes.includes import getConfig
    import clickpoints

    print("start load images", filename)
    log("1load_images", "prepare", 1)

    # open the image reader
    reader = imageio.get_reader(filename)
    # get the config file
    config = getConfig(filename)
    # get the total image count
    image_count = len(reader)

    print("create cdb", filename[:-4]+".cdb")
    if write_clickpoints_file:
        cdb = clickpoints.DataFile(filename[:-4]+".cdb", "w")
        cdb.setMaskType("prediction", color="#FF00FF", index=1)

    yield dict(filename=filename, index=-1, type="start")
    log("1load_images", "prepare", 0)

    log("1load_images", "read", 1)
    # iterate over all images in the file
    for image_index, im in enumerate(reader):
        if image_index == image_count:
            break
        # ensure image has only one channel
        if len(im.shape) == 3:
            im = im[:, :, 0]
        # get the timestamp from the file
        timestamp = float(getTimestamp(reader, image_index))

        if write_clickpoints_file:
            cdb.setImage(filename, frame=image_index)#, timestamp=timestamp)
        log("1load_images", "read", 0, image_index)
        # return everything in a nicely packed dictionary
        yield dict(filename=filename, index=image_index, type="image", timestamp=timestamp, im=im, config=config,
                   image_count=image_count)
        if image_index < image_count - 1:
            log("1load_images", "read", 1, image_index + 1)

    yield dict(filename=filename, index=image_count, type="end")
Ejemplo n.º 12
0
 def load_from_clickpoints(self, file, marker_type, label=0, tag=None, n=None):
     import clickpoints
     db = clickpoints.DataFile(file)
     if tag is None:
         tag = file.split("/")[-1].split("\\")[-1]
     marker_type = db.getMarkerType(marker_type)
     if n is None:
         self.extend([dotdict({"image":self.__sample__(m.image.data,m.x,m.y),
                       "label":label,
                       "meta":self.__meta__(m.image,tag,m.x,m.y)}) for m in db.getMarkers(type=marker_type)])
     else:
         i = int(db.getMarkers(type=marker_type).count()/n)
         try:
             self.extend([dotdict({"image":self.__sample__(m.image.data,m.x,m.y),
                           "label":label,
                           "meta":self.__meta__(m.image,tag,m.x,m.y)}) for m in db.getMarkers(type=marker_type)[:n*i:i]])
         except ValueError:
             self.extend([dotdict({"image":self.__sample__(m.image,m.x,m.y),
                           "label":label,
                           "meta":self.__meta__(m.image.data,tag,m.x,m.y)}) for m in db.getMarkers(type=marker_type)])
             raise Warning("Not enough data found in Database. n=%s , found %s "%(n,db.getMarkers(type=marker_type).count()))
Ejemplo n.º 13
0
def Create_DB(Name,pic_path,db_path,pic_pos="pos0"):
    """
    Creates a Clickpointsdatabase
        Parameters
    --------------
    Name: String
    Specifies path with the name for the database
    pic_path: String
    The path to all the pictures
    db_path: String
    The path to the folder in which the pictures can be found
    pic_pos: String
    """
    db = clickpoints.DataFile(Name, 'w')
    images = glob.glob(pic_path)
    print(len(images))
    layer_dict = {"MinP": 0, "MinIndices": 1, "MaxP":2, "MaxIndices": 3}
    db.setPath(db_path, 1)
    for image in images:
        path = os.path.sep.join(image.split(os.path.sep)[:-1])
        file = image.split("/")[-1]
        idx = file.split("_")[2][3:]
        layer_str = file.split("_")[-1][1:-4]
        if not file.count(pic_pos):
            continue
        if layer_str.count("MinProj"):
            layer = 0
        elif layer_str.count("MinIndices"):
            layer = 1
        elif layer_str.count("MaxProj"):
            layer = 2
        elif layer_str.count("MaxIndices"):
            layer = 3
        else:
            raise ValueError("No known layer!")
        print(idx, layer)
        image = db.setImage(filename=file, path=1, layer=layer)#, frame=int(idx))
        image.sort_index = int(idx)
        image.save()
Ejemplo n.º 14
0
def setup_masks_and_layers(db_name,
                           input_folder,
                           output_folder,
                           markers=None,
                           masks=None,
                           layers=None,
                           tracks=None):

    cdb_filepath = output_folder / db_name

    print(cdb_filepath)
    db = clickpoints.DataFile(cdb_filepath,
                              'w')  # creates and opens the cdb file
    db.setPath(input_folder, 1)  # sets path entry of input images in cdb file
    #db.setPath(output_folder, 2)  # sets path entry of outputfolder images in cdb file
    # setting up marker types
    if not markers is None:
        for name, color in markers.items():
            db.setMarkerType(name=name, color=color)

    # setting up track types
    if not tracks is None:
        for name, color in tracks.items():
            db.setMarkerType(name=name, color=color, mode=db.TYPE_Track)

    # setting up mask types
    if not masks is None:
        for name, (color, index) in masks.items():
            db.setMaskType(name=name, color=color, index=index)

    # setting up layers
    if not layers is None:
        base_layer = db.getLayer(layers[0], create=True, id=0)
        for name in layers[1:]:
            db.getLayer(name, base_layer=base_layer, create=True)

    return db
Ejemplo n.º 15
0
    def __call__(self, data):
        import time
        predict_start_first = time.time()
        import pandas as pd
        from pathlib import Path
        from deformationcytometer.detection.includes.regionprops import mask_to_cells_edge, mask_to_cells_edge2
        from deformationcytometer.evaluation.helper_functions import filterCells
        import numpy as np

        output_path = Path(data["filename"][:-4] + "_result_new.csv")

        if data["type"] != "image":
            if data["type"] == "start":
                # add ellipse marker type
                if self.write_clickpoints_markers:
                    import clickpoints
                    with clickpoints.DataFile(data["filename"][:-4] +
                                              ".cdb") as cdb:
                        cdb.setMarkerType("cell",
                                          "#FF0000",
                                          mode=cdb.TYPE_Ellipse)
                # delete an existing outputfile
                if output_path.exists():
                    output_path.unlink()
            return data

        data_storage_mask_numpy = self.data_storage.get_stored(
            data["mask_info"])

        log("3find_cells", "detect", 1, data["index"])
        new_cells = []
        row_indices = [0]
        for mask, timestamp, index in zip(
                data_storage_mask_numpy, data["timestamps"],
                range(data["index"],
                      data["index"] + data_storage_mask_numpy.shape[0])):
            cells = mask_to_cells_edge2(mask,
                                        None,
                                        data["config"],
                                        self.r_min,
                                        frame_data={
                                            "frames": index,
                                            "timestamp": timestamp
                                        },
                                        hollow_masks=self.hollow_masks)
            row_indices.append(row_indices[-1] + len(cells))
            new_cells.extend(cells)

        new_cells = pd.DataFrame(new_cells,
                                 columns=[
                                     "frames", "timestamp", "x", "y", "rp",
                                     "long_axis", "short_axis", "angle",
                                     "irregularity", "solidity", "sharpness",
                                     "velocity", "cell_id", "tt", "tt_r2",
                                     "omega"
                                 ])

        if not output_path.exists():
            with output_path.open("w") as fp:
                new_cells.to_csv(fp, index=False, header=True)
        else:
            with output_path.open("a") as fp:
                new_cells.to_csv(fp, index=False, header=False)

        # filter cells according to solidity and irregularity
        #new_cells = filterCells(new_cells, solidity_threshold=self.solidity_threshold,
        #                        irregularity_threshold=self.irregularity_threshold)

        if self.write_clickpoints_markers:
            import clickpoints
            with clickpoints.DataFile(data["filename"][:-4] + ".cdb") as cdb:
                for i, d in new_cells.iterrows():
                    cdb.setEllipse(
                        frame=int(d.frames),
                        x=d.x,
                        y=d.y,
                        width=d.long_axis / data["config"]["pixel_size"],
                        height=d.short_axis / data["config"]["pixel_size"],
                        angle=d.angle,
                        type="cell")

        data["config"]["solidity"] = self.solidity_threshold
        data["config"]["irregularity"] = self.irregularity_threshold

        #new_cells.set_index("frames", inplace=True)

        data["cells"] = new_cells
        data["row_indices"] = row_indices
        #del data["mask"]

        log("3find_cells", "detect", 0, data["index"])
        return data
def spheroid_analysis_with_bf_core(inputfolder_path, save_images,
                                   use_existing_mean_images, analyze,
                                   pixelsizes_dict, outputfolder_mode, cdb):

    fl_images = collect_files(
        inputfolder_path,
        selector_path=["SphInv", "Fluo1"],
        selectors_file=["rep", "z0"],
        negative_selectors_file=[])  # finding all fl-images
    bf_images = collect_files(
        inputfolder_path,
        selector_path=["SphForce"],
        selectors_file=["rep0000", "modeBF"],
        negative_selectors_file=["above",
                                 "below"])  # finding all bf images at t=0

    if outputfolder_mode == "mode1":  # will create outpfolder by replacing a folder "raw data" with "analyzed data and copy the folder structure deeper
        outputfolder_path = re.sub("Raw Data|Raw_data",
                                   "Analyzed_Data",
                                   inputfolder_path,
                                   flags=re.I)
        outputfolder_path_profile = os.path.join(outputfolder_path,
                                                 "Invasion_Profiles")
        outputfolder_path_mean = os.path.join(outputfolder_path, "Mean_images")

    if outputfolder_mode == "mode2":
        outputfolder_path = os.path.join(inputfolder_path, "Analyzed_Data")
        outputfolder_path_profile = os.path.join(outputfolder_path,
                                                 "Invasion_Profiles")
        outputfolder_path_mean = os.path.join(outputfolder_path, "Mean_images")

    if save_images:  # creating output folder if they don't exist already
        createFolder(outputfolder_path_profile)
    if analyze:
        createFolder(outputfolder_path_mean)

    with open(os.path.join(outputfolder_path, 'invasion_analysis.txt'),
              'w') as f:  # setting up tab delimited file
        f.write(
            "input_path\twell\tmode\tpos\tradius\td/2\tlambda\tradius_of_constant_cell_density\tpixelsize_fl_image"
            + "\n")

    for key1, value1 in fl_images.items():
        for key2, value2 in fl_images[key1].items():
            for key3, value3 in fl_images[key1][key2].items():
                files_fl = value3
                try:
                    file_bf = bf_images[key1][key2][key3][
                        0]  ## check if this looses me something
                except:
                    print(
                        "\n--------------------------------------->no complementary file to:"
                    )
                    print(files_fl[0])
                    print("!!! Position skipped !!!")
                    continue
                print("using", files_fl[0], "\n", file_bf)

                #Insert here single positions to analyse
                #if not ("pos014" in files_fl[0]):
                #continue
                # Insert here single positions to skip
                # if ("pos014" in files_fl[0]):
                # continue

                meta_info_dict = get_meta_info2(files_fl, well=key2, pos=key3)
                # default output file for mean blended images
                output_filename_path = os.path.join(
                    outputfolder_path_mean,
                    ('Mean_Blend_' + meta_info_dict["date"] + "_" +
                     meta_info_dict["well"] + "_" + meta_info_dict["pos"]) +
                    ".tif")
                #reading fl images
                if os.path.exists(
                        output_filename_path
                ) and use_existing_mean_images:  # use existing mean blended images
                    img_16bit = np.array(Image.open(output_filename_path))
                else:  # generate new mean blended images
                    im_list = [np.array(Image.open(file)) for file in files_fl]
                    stack = np.array(
                        im_list, ndmin=3
                    )  # stacking al images, dimensions fixed to 3 , otherwise problems with single images
                    mean_img = np.mean(stack,
                                       axis=0)  # mean blending of imgaes
                    img_16bit = mean_img.astype("uint16")

                    if save_images:  # saving mean blended image
                        im = Image.fromarray(img_16bit)
                        im.save(output_filename_path)

                # read bright field image
                img_bf = plt.imread(file_bf)

                if analyze:  # performing analysis on mean blended images
                    # try:
                    res = analyze_profiles(img_fl=img_16bit,
                                           img_bf=img_bf,
                                           pixelsizes_dict=pixelsizes_dict,
                                           Mic=meta_info_dict["Mic"],
                                           nuc_size=nuc_size)
                    p, rad, inv_front, blob, mask, dens, dt, img, img1, px_um = res
                    plotting_invasion_profiles1(res, meta_info_dict,
                                                outputfolder_path_profile,
                                                output_filename_path)

                    #if "well1" in files_fl[0] or "well2" in files_fl[0] or "015" in files_fl[0] or "016" in files_fl[0] or "017" in files_fl[0] or "018" in files_fl[0]:
                    #pass

                    #plotting_segementation(res, meta_info_dict, outputfolder_path_profile, output_filename_path)

                    # writing information to text file
                    output_text = [
                        meta_info_dict["file_path"], meta_info_dict["well"],
                        meta_info_dict["mode"], meta_info_dict["pos"],
                        str(rad.round(2)),
                        str(inv_front.round(2)),
                        str(p[1].round(2)),
                        str(p[0].round(2)),
                        str(px_um)
                    ]
                    with open(
                            os.path.join(outputfolder_path,
                                         'invasion_analysis.txt'), 'a') as f:
                        f.write("\t".join(output_text) + "\n")
                if cdb and analyze and save_images:
                    path_file = os.path.split(output_filename_path)
                    db = clickpoints.DataFile(
                        os.path.join(outputfolder_path_profile,
                                     path_file[1][:-4] + ".cdb"), "w")
                    db.setImage(output_filename_path, frame=0)
                    db.setMaskType("mask_cells", color="#1fff00", index=1)
                    db.setMaskType("mask_blob", color="#ff0f1b", index=2)
                    cdb_mask = copy.deepcopy(mask) * 1
                    cdb_mask[blob] = 2
                    db.setMask(image=db.getImages()[0],
                               data=np.array(cdb_mask, dtype="uint8"))
                    db.db.close()
Ejemplo n.º 17
0
from skimage.filters import threshold_otsu
from skimage.morphology import skeletonize,remove_small_objects
import cv2
from skimage.measure import regionprops


def normalizing(img,lq=0,uq=100):
    img = img - np.percentile(img, lq)  # 1 Percentile
    img = img / np.percentile(img,uq)  # norm to 99 Percentile
    img[img < 0] = 0.0
    img[img > 1] = 1.0
    return img


im = np.asarray(Image.open("/home/user/Desktop/biophysDS/dboehringer/Platte_3/Twitching-Experiments/Confocal-Experiments/2020-02-12-LuB1-Timelapse/stack 1/pos002/Pos002_S001_t314_z6_ch00.tif").convert("L"))
db = clickpoints.DataFile("/home/user/Desktop/mask_spheroid_david.cdb")
mask = db.getMask(frame=0).data.astype(bool)
db.db.close()
#im = ndi.gaussian_filter(im, 4)
# Compute the Canny filter for two values of sigma
im = normalizing(im, lq=10, uq=90)
plt.figure()
plt.imshow(im)
med_filter = median_filter(im, size = 30)
im_f = im - med_filter
plt.figure();plt.imshow(im_f)



#edges = feature.canny(im, sigma=i,mask=~mask.astype(bool))
#plt.figure()
from cell_moement_analysis.cell_movement_orientation import *
from cell_moement_analysis.angel_calculations import FilterAndWeighting
import clickpoints

db_path = "/home/user/Desktop/biophysDS/abauer/ants_out/not_stitcheddatabase.cdb"
db=clickpoints.DataFile(db_path,"r")

'''
for i in range(0,18):
    output_folder = "/home/user/Desktop/biophysDS/abauer/ants_out/analysis_frame_" + str(i)
    createFolder(output_folder)

    # frame window
    min_frame = i*10000
    max_frame = (i+1)*10000

    angle_to_center_analysis(db, output_folder, output_file="nw_mean_angles.txt", min_frame=min_frame,
                             max_frame=max_frame,
                             ws_angles=1, ws_mean=30, bs_mean=2, weighting="nw", mark_center=True)

    angle_distance_distribution(db, output_folder, min_frame=min_frame, max_frame=max_frame, ws_angles=1,
                                window_length=int(300 / (4.095 / 10) + 1), ymin=0, ymax=90,
                                px_scale=4.0954 / 10)


'''

filter_list=[(FilterAndWeighting.length_threshold,{"threshold":7}),(FilterAndWeighting.spatial_filter_radius,{"center":(332,736), "radius":70})]
weighting_list=[(FilterAndWeighting.linear_weigthing,{})]
output_folder = "/home/user/Desktop/biophysDS/abauer/ants_out/analysis_filters"
createFolder(output_folder)
Ejemplo n.º 19
0
    #slice2 = polar_array[r2[0]:r2[1], :]

    fig=plt.figure();plt.imshow(polar_array)
    pa1=patches.Rectangle(xy=[0,r1[1]],width=2000,height=window_size,fill=False,edgecolor="red",linewidth=2)
    plt.gca().add_patch(pa1)
    pa2=patches.Rectangle(xy=[0,r2[1]],width=2000,height=window_size,fill=False,edgecolor="yellow",linewidth=2)
    plt.gca().add_patch(pa2)
    return fig


if __name__ == '__main__':
        
        
    # fibres with spheroid
    im = np.asarray(Image.open(r"\\131.188.117.96\biophysDS\dboehringer\Platte_3\Twitching-Experiments\Confocal-Experiments\2020-02-12-LuB1-Timelapse\stack 1\\pos002\\Pos002_S001_t314_z6_ch00.tif").convert("L"))
    db = clickpoints.DataFile(r"\\131.188.117.96\biophysDS\dboehringer\Platte_3\Migration-and-fiberorientation\Evaluation-Andi-David\Fiber orientation\2 - polar trafo correlation\testing_orientation/mask_spheroid_david.cdb")
    mask = db.getMask(frame=0).data.astype(bool)
    db.db.close()
    center=regionprops(mask.astype(int))[0].centroid
    
    
    polar_array, max_radius, center = polar_coordinate_transform(im, center, radius_res=2000, angle_res=2000)
    #ax_factor = r_factor * pixel_size # y_axis[pixel]*ax_factor --> y_axis[µn]
    
    
    
    #plt.figure();plt.imshow(im)
    #plt.figure();plt.imshow(polar_array)
    
    #correlation coefficient
    window_size = 30
Ejemplo n.º 20
0
        try:
            analysis_function(frame, parameter_dict, res_dict, db=db, db_info=db_info, masks=masks, **kwargs)
        except Exception as e:
            if type(e) in (Mask_Error, FileNotFoundError, FindingBorderError, ShapeMismatchError):
                print(e)
            else:
                raise (e)
    return db_info, masks, res_dict


### code to work on clickpoint outside of the addon
if __name__ == "__main__":

    ## setting up necessary paramteres
    # db=clickpoints.DataFile("/home/user/Desktop/Monolayers_new_images/monolayers_new_images/KO_DC1_tomatoshift/database.cdb","r")
    db = clickpoints.DataFile("/home/andy/test_data_pyTFM/KOshift/database.cdb", "r")
    parameter_dict = default_parameters
    res_dict = defaultdict(lambda: defaultdict(list))
    db_info, all_frames = get_db_info_for_analysis(db)

    # db_info, masks, res_dict = apply_to_frames(db, parameter_dict, deformation, res_dict, frames="12",
    #                                            db_info=db_info, masks=None)
    #db_info, masks, res_dict = apply_to_frames(db, parameter_dict, general_properties, res_dict=res_dict,
   #                                            frames=all_frames,
    #                                           db_info=db_info, masks=None)
    db_info, masks, res_dict = apply_to_frames(db, parameter_dict, FEM_full_analysis, res_dict=res_dict, frames="01",
                                               db_info=db_info, masks=None)

    # parameter_dict["filter_type"]=None
# default_fig_parameters["file_names"]["traction"] = "t_none.png"
# db_info, masks, res_dict = apply_to_frames(db, parameter_dict, traction_force, res_dict, frames="12",
Ejemplo n.º 21
0
import clickpoints

db = clickpoints.DataFile("./Developement/Databases/click0.cdb")

Y, X = db.getImage(frame=0).getShape()

for marker in db.getMarkers():
    marker.x = X - marker.x
    marker.y = Y - marker.y
    # db.setMarker(id=marker.id, x=x, y=y)
    print(marker)
    marker.save()
Ejemplo n.º 22
0
from PenguTrack.Filters import KalmanFilter
from PenguTrack.Filters import MultiFilter
from PenguTrack.Models import VariableSpeed
# from PenguTrack.Detectors import ViBeSegmentation
from PenguTrack.Detectors import SiAdViBeSegmentation
# from PenguTrack.Detectors import BlobDetector
from PenguTrack.Detectors import AreaDetector
from PenguTrack.Detectors import BlobSegmentation
# from PenguTrack.Detectors import Measurement as Pengu_Meas

import scipy.stats as ss

#resource.setrlimit(resource.RLIMIT_AS, (12000 * 1048576L, -1L))

# Connect to database
db = clickpoints.DataFile("C:\\Users\\User\\Desktop\\241.cdb")
start_frame = 0

#Initialise PenguTrack
object_size = 2  # Object diameter (smallest)
penguin_height = 0.462  #0.575
penguin_width = 0.21
object_number = 100  # Number of Objects in First Track

# Initialize physical model as 2d variable speed model with 0.5 Hz frame-rate
model = VariableSpeed(1, 1, dim=2, timeconst=0.5)

uncertainty = 8 * object_size
X = np.zeros(4).T  # Initial Value for Position
Q = np.diag([uncertainty, uncertainty])  # Prediction uncertainty
R = np.diag([uncertainty * 2, uncertainty * 2])  # Measurement uncertainty
Ejemplo n.º 23
0
    Tracker = HungarianTracker(KalmanFilter,
                               model,
                               np.diag(Q),
                               np.diag(R),
                               meas_dist=Meas_Dist,
                               state_dist=State_Dist)
    Tracker.LogProbabilityThreshold = log_prob_threshold

    i_x = Tracker.Model.Measured_Variables.index("PositionX")
    i_y = Tracker.Model.Measured_Variables.index("PositionY")

    # Clickpoints DataBase
    import clickpoints

    # Open ClickPoints Database
    db = clickpoints.DataFile("./ExampleData/cell_data.cdb")
    # Define ClickPoints Marker
    track_marker_type = db.setMarkerType(name="Track_Marker",
                                         color="#00FF00",
                                         mode=db.TYPE_Track)
    # Delete Old Tracks
    db.deleteMarkers(type=track_marker_type)
    db.deleteTracks(type=track_marker_type)

    # Start Iteration over Images
    print('Starting Iteration')
    images = db.getImageIterator()
    for image in images:

        i = image.sort_index
        # Prediction step, without applied control(vector of zeros)
Ejemplo n.º 24
0
# You should have received a copy of the GNU General Public License
# along with ClickPoints. If not, see <http://www.gnu.org/licenses/>

from __future__ import print_function
import clickpoints
import os

# to get query results as dictionaries
def dict_factory(cursor, row):
    d = {}
    for idx, col in enumerate(cursor.description):
        d[col[0]] = row[idx]
    return d

# create a temporary ClickPoints table
db = clickpoints.DataFile("tmp.cdb", "w")
# enable dictionaries as query results
db.db.connection().row_factory = dict_factory

# open schema.sql
with open("schema.sql", "w") as fp:
    # get al entries in the database table schema
    for row in db.db.execute_sql("SELECT * FROM sqlite_master").fetchall():
        # write the sql commends to the file
        fp.write(row["sql"]+";\n")

    # query and write the version of the database
    row = db.db.execute_sql("SELECT * FROM meta WHERE key='version'").fetchone()
    fp.write("INSERT OR REPLACE INTO meta (id,key,value) VALUES\
            ((SELECT id FROM meta WHERE key='version'),'version',%s);\n" % row["value"])
# close the database
Ejemplo n.º 25
0
                      frame=frame_number,
                      x=line[1],
                      y=line[2],
                      width=line[4] / (config["pixel_size"] * 1e6),
                      height=line[5] / (config["pixel_size"] * 1e6),
                      angle=line[6],
                      text=f"{line[3]}\n{line[7]}\n{line[8]}\n{line[9]}",
                      type=ellipse_type)


video_file = getInputFile()
data_file = video_file.replace(".avi",
                               "_result.txt").replace(".tif", "_result.txt")
cdb_file = video_file.replace(".avi", ".cdb").replace(".tif", ".cdb")

name_ex = os.path.basename(video_file)
filename_base, file_extension = os.path.splitext(name_ex)
output_path = os.path.dirname(video_file)
configfile = output_path + r'/' + filename_base + '_config.txt'

config = getConfig(configfile)

# create a new clickpoints database
db = clickpoints.DataFile(cdb_file, "w")

# add the video to clickpoints
addVideoToClickpoints(video_file, db)

# add the ellipses from the results data
addEllipses(data_file, db, video_file)
Ejemplo n.º 26
0
#!/usr/bin/env python
# -*- coding: utf-8 -*-
import numpy as np
import matplotlib.pyplot as plt
import seaborn as sn
import my_plot
sn.set_color_codes()

my_plot.set_style("white_clickpoints")

import clickpoints
from PenguTrack.Detectors import SiAdViBeSegmentation
db_start = clickpoints.DataFile("/home/alex/Masterarbeit/Data/Adelies/DataBases/252_GT_Detections.cdb")

images = db_start.getImageIterator()
init_buffer = []
for i in range(2):
    while True:
        img = images.next().data
        if img is not None:
            # print("Got img from cam")
            init_buffer.append(img)
            # print(init_buffer[-1].shape)
            # print(init_buffer[-1].dtype)
            break

init = np.array(np.median(init_buffer, axis=0))


# Load horizon-markers
horizont_type = db_start.getMarkerType(name="Horizon")
def spheroid_analysis_with_fl_core(inputfolder_path, save_images,
                                   folder_selector, analyze, magnification,
                                   pixel_size, outputfolder_mode, cdb):
    fl_images = collect_files(inputfolder_path,
                              selector_path="SphInv",
                              selectors_file=["rep",
                                              "Fluo"])  # finding all fl-images
    bf_images = collect_files(
        inputfolder_path,
        selector_path="SphForce",
        selectors_file=["rep0000", "modeBF"])  # finding all bf images at t=0

    if outputfolder_mode == "mode1":  # will create outpfolder by replacing a folder "raw data" with "analyzed data and copy the folder structure deeper

        outputfolder_path = re.sub("Raw Data|Raw_data",
                                   "Analyzed_Data",
                                   inputfolder_path,
                                   flags=re.I)
        outputfolder_name_profile = os.path.join(outputfolder_path,
                                                 "Invasion_Profiles")
        outputfolder_path_invasion = os.path.join(outputfolder_path,
                                                  "Mean_images")

    if outputfolder_mode == "mode2":
        outputfolder_path = os.path.join(inputfolder_path, "Analyzed_Data")
        outputfolder_path_profile = os.path.join(outputfolder_path,
                                                 "Invasion_Profiles")
        outputfolder_path_mean = os.path.join(outputfolder_path, "Mean_images")

    if save_images:  # creating output folder if they don't exist already
        createFolder(outputfolder_path_profile)
    if analyze:
        createFolder(outputfolder_path_mean)

    with open(os.path.join(outputfolder_path, 'invasion_analysis.txt'),
              'w') as f:  # setting up tab delimited file
        f.write(
            "input_path\twell\tmode\tpos\tradius\td/2\tlambda\tradius of constant cell density"
            + "\n")

    for key1, value1 in fl_images.items():
        for key2, value2 in fl_images[key1].items():
            for key3, value3 in fl_images[key1][key2].items():
                files_fl = value3

                print("using", files_fl[0])

                im_list = [plt.imread(file) for file in files_fl]
                stack = np.array(
                    im_list, ndmin=3
                )  # stacking al images, dimensions fixed to 3 , otherwise problems with single images
                mean_img = np.mean(stack, axis=0)  # mean blending of imgaes
                img_16bit = mean_img.astype("uint16")
                meta_info_dict = get_meta_info2(files_fl, well=key2, pos=key3)
                output_filename_path = os.path.join(
                    outputfolder_path_mean,
                    ('Mean_Blend_' + meta_info_dict["date"] + "_" +
                     meta_info_dict["well"] + "_" + meta_info_dict["pos"]) +
                    ".tif")

                if save_images:  # saving image
                    im = Image.fromarray(img_16bit)
                    im.save(output_filename_path)

                if analyze:  # performing analysis on mean blended images
                    res = analyze_profiles(img_fl=img_16bit,
                                           px_um=px_um,
                                           Mic=meta_info_dict["Mic"],
                                           nuc_size=nuc_size)
                    p, rad, inv_front, blob, mask, dens, dt, img, img1 = res
                    plotting_invasion_profiles1(res, meta_info_dict,
                                                outputfolder_path_profile,
                                                output_filename_path,
                                                magnification, pixel_size)
                    #plotting_segementation(res, meta_info_dict, outputfolder_path_profile, output_filename_path)

                    # writing information to text file
                    output_text = [
                        meta_info_dict["file_path"], meta_info_dict["well"],
                        meta_info_dict["mode"], meta_info_dict["pos"],
                        str(rad.round(2)),
                        str(p[1].round(2)),
                        str(inv_front.round(2)),
                        str(p[0].round(2))
                    ]
                    with open(
                            os.path.join(outputfolder_path,
                                         'invasion_analysis.txt'), 'a') as f:
                        f.write("\t".join(output_text) + "\n")
                    if cdb and analyze and save_images:
                        path_file = os.path.split(output_filename_path)
                        db = clickpoints.DataFile(
                            os.path.join(outputfolder_path_profile,
                                         path_file[1][:-4] + ".cdb"), "w")
                        db.setImage(output_filename_path, frame=0)
                        db.setMaskType("mask_cells", color="#1fff00", index=1)
                        db.setMaskType("mask_blob", color="#ff0f1b", index=2)
                        cdb_mask = copy.deepcopy(mask) * 1
                        cdb_mask[blob] = 2
                        db.setMask(image=db.getImages()[0],
                                   data=np.array(cdb_mask, dtype="uint8"))
                        db.db.close()
Ejemplo n.º 28
0
    def __init__(self,
                 database,
                 command=None,
                 name="",
                 database_class=None,
                 icon=None):
        # initialize the Widget base class
        QtWidgets.QWidget.__init__(self)

        # initialize the command class to communicate with ClickPoints
        self.cp = Command(command, self)

        # get the database instance, either it is already a database object or a filename
        if isinstance(database, str):
            # if we have a filename, open the file with the provided database class type or the default type
            if database_class:
                self.db = database_class(database)
            else:
                self.db = clickpoints.DataFile(database)
        else:
            # store the database object
            self.db = database
            # if the object should have a different class, convert it
            if database_class is not None:
                # store some pointers to the options
                _options = self.db._options
                _options_by_key = self.db._options_by_key
                # initiate a new database class instance with the new class type
                self.db = database_class(self.db.db.database)
                # and put the options pointers back in place
                self.db._options = _options
                self.db._options_by_key = _options_by_key

        # remember the add-on name
        self.addon_name = name
        # create an option category for the add-on
        self._options_category = "Addon - " + name
        self._option_widgets = {}
        self.db._last_category = self._options_category

        # set the icon for the add-on, if provided
        if icon is not None:
            self.setWindowIcon(icon)

        # wrap the run function, so that it automatically updates the current state of the add-on (for the button state in ClickPoints)
        function = self.run
        if not asyncio.iscoroutinefunction(self.run):
            # overload two matplotlib functions to help use them from the run function from a different thread
            plt.show = show
            plt.figure = figure

            function = self.run

            def run_wrapper(*args, **kwargs):
                self.run_started()
                try:
                    return function(*args, **kwargs)
                finally:
                    self.run_stopped()

            self.run = run_wrapper
        else:
            function = self.run

            async def run_wrapper(*args, **kwargs):
                self.run_started()
                try:
                    return await function(*args, **kwargs)
                finally:
                    self.run_stopped()

            self.run = run_wrapper
            self.run_threaded = self.run_async

        self._input_widgets = []

        # connect the status changed signal (to be able to change the status from another thread)
        self._change_status.connect(self.cp.setStatus)
Ejemplo n.º 29
0
from qtpy import QtGui, QtCore, QtWidgets
from qimage2ndarray import array2qimage
import qtawesome as qta
sys.path.insert(
    0,
    os.path.join(os.path.dirname(__file__), "..", "includes",
                 "qextendedgraphicsview"))
from QExtendedGraphicsView import QExtendedGraphicsView

__icon__ = "fa.tag"

import clickpoints

# Connect to database
start_frame, database, port = clickpoints.GetCommandLineArgs()
db = clickpoints.DataFile(database)
com = clickpoints.Commands(port)

# parameter
marker_type_name = "marker"
marker_type_class0 = "no-bead"
marker_type_class1 = "bead"
view_size = 30

view_o1 = int(view_size / 2)
view_o2 = int(view_size / 2 + 0.5)

# Check if the marker type is present
for marker_type in [marker_type_name, marker_type_class0, marker_type_class1]:
    if not db.getMarkerType(marker_type):
        print("ERROR: Marker type %s does not exist" % marker_type)
Ejemplo n.º 30
0
def exp_border_real_data():
    out_folder = "/home/user/Desktop/backup_from_harddrive/data_traction_force_microscopy/ev_paper_rd_expansion_fs3"
    createFolder(out_folder)
    border_ex_test = (list(range(0, 100, 2)))
    f_type = "non-circular"
    young = 1
    h = 100
    pixelsize = 1
    filter = "gaussian"
    #  retrieving clickpoints mask and traction forces
    folder = "/home/user/Desktop/backup_from_harddrive/data_traction_force_microscopy/WT_vs_KO_images/KOshift/"
    db = clickpoints.DataFile(os.path.join(folder, "database.cdb"), "r")
    mask = db.getMask(frame=2).data == 3
    db.db.close()
    u, v = np.load(os.path.join(out_folder, "u.npy")), np.load(
        os.path.join(out_folder, "v.npy"))
    fx_f, fy_f = traction_wrapper(
        u, v, pixelsize, h, young, mask=mask, filter="gaussian",
        fs=3)  # this filtersize is equal to 3*0.85 ~3.5 µm for real data
    mask = interpolation(mask, dims=fx_f.shape, min_cell_size=100)
    mask = binary_fill_holes(mask)
    np.save(os.path.join(out_folder, "mask.npy"), mask)
    stress_tensors, mean_normal_list, mask_exp_list = exp_border(
        exp_range=border_ex_test,
        fx_f=fx_f,
        fy_f=fy_f,
        mask=mask,
        out_folder=out_folder,
        method="binary_dilation")

    stress_tensor_b = stress_tensors[0]
    max_dict = get_max_values(fx_f=fx_f,
                              fy_f=fy_f,
                              stress_tensor_b=stress_tensor_b,
                              exp_test=len(border_ex_test) > 0,
                              mean_normal_list=mean_normal_list)
    # getting comparison scalar fields
    mask_fm = standard_measures(mask=mask,
                                mean_normal_list=mean_normal_list,
                                stress_tensor_b=stress_tensor_b)
    save_arr = np.array([
        np.round(np.array(avg_normal_stress_be), 5),
        np.array(border_ex_test)
    ]).T
    np.savetxt(os.path.join(out_folder, "avg_norm_stress.txt"),
               save_arr,
               fmt="%.5f",
               delimiter=",")

    mask_exp = binary_dilation(mask, iterations=15)
    scalar_comaprisons = full_field_comparision(
    )  # r gives  mostly the spatial distribution
    with suppress(KeyError):
        del scalar_comaprisons["forces"]
    plot_types = ["test for border expansion"]
    plot_types.extend(
        ["forces_forward", "correlation", "test for border expansion"])
    # plot_types = [ "forces_backward", "full_stress_tensor_backward"]
    general_display(plot_types=plot_types,
                    mask=mask,
                    pixelsize=pixelsize,
                    max_dict=max_dict,
                    f_type=f_type,
                    mean_normal_list=mean_normal_list,
                    mask_exp_list=mask_exp_list,
                    out_folder=out_folder,
                    fx_f=fx_f,
                    fy_f=fy_f,
                    mask_exp=mask_exp,
                    scalar_comaprisons=scalar_comaprisons,
                    border_ex_test=border_ex_test,
                    plot_gt_exp=False)
    plt.close("all")