Ejemplo n.º 1
0
    def min_fill_in(self, eliminated):
        min_fill = self.node_number * self.node_number
        for v in self.adjacent: # for each not eliminated nodes
            if( v in eliminated): continue
            neighbour_set = self.adjacent[v].copy()
            neighbour_set.difference_update(eliminated) # all the not eliminated neighbors
            fill_in = 0
            #print(v, neighbour_set)
            for neigh in neighbour_set:
                for other_next in neighbour_set:
                    if(other_next == neigh): continue
                    if(other_next not in self.adjacent[neigh]):
                        fill_in += 1
            #print(fill_in)
            if fill_in < min_fill:
                min_fill = fill_in
                node = v
                if min_fill == 0:
                    break

        # eliminate the min fill in node
        neighbor = self.adjacent[node].copy()
        neighbor.difference_update(eliminated)
        neighbor.add(node)
        for pre_clique in self.cliques:
            if neighbor.intersection(pre_clique.nodes) == neighbor: #neighbor and itself are already provided
                #print(node, 'not add clique')
                return node, min_fill
        clique = Clique(len(neighbor), neighbor)
        self.add_clique(self.clique_number, clique)
        self.clique_number += 1
        #print(node, 'add clique', neighbor)
        return node, min_fill
Ejemplo n.º 2
0
    def fit(self, X):
        clusters = clique.run_clique(X, self.xsi, self.tau)
        clique.save_to_file(clusters, "../output/clique_output.txt")

        two_dim_clusters = filter(lambda c: len(c.dimensions) == 2, clusters)

        labels = np.full(X.shape[0], -1, dtype=np.intp)

        # assign label to values; lookup X[i] in results_dict
        for labl, c in enumerate(two_dim_clusters):
            for index in c.data_point_ids:
                # Dict miss means that the point is an outlier.
                # outliers are assigned a -1 label
                labels[index] = labl

        self.labels_ = labels

        return clusters
Ejemplo n.º 3
0
    def add_pairwise(self,clique):
        new_card = clique.table.size
        self.variable_cardinality.append(new_card)
        #print("Z size", new_card)
        label = self.node_number
        
        Z = Clique(1,[label])
        self.adjacent[self.node_number] = set()
        self.node_sharing_cliques[self.node_number] = set()
        self.node_number += 1
        self.add_clique(self.clique_number, Z)

        table = clique.table.reshape(1,new_card)
        #print("table:",table[0,2])
        #print("origin",clique.table[0,1,0])
        #print(table)
        self.clique_number += 1
        self.add_clique_table(self.clique_number -1, table)
        #print("Z", Z.nodes_list, Z.table)

        time = new_card
        for node in clique.nodes_list:
            labels = [node,label]
            Z_x= Clique(2,labels)
            #print(Z_x.nodes_list)
            self.add_clique(self.clique_number, Z_x)
            self.clique_number += 1
            cardinality = self.variable_cardinality[node]
            table = np.zeros((cardinality,new_card))
            time = time/cardinality
            y = 0
            count = 0
            for i in range(new_card):
                table[y,i] =1
                count += 1
                if count == time:
                    count = 0;
                    y = (y+1)%cardinality
            #print(table[2])
            self.add_clique_table(self.clique_number -1, table)
Ejemplo n.º 4
0
 def test(self):
     all_clique = Clique(self.node_number, range(self.node_number))
     for clique in self.cliques:
         all_clique.times(clique, self.variable_cardinality)
     #print(all_clique.table)
     all_clique.sum()
     print('ground truth?')
     print(all_clique.table)
Ejemplo n.º 5
0
def main():
    # Graph
    g = GUI()
    a = GraphGenerator.generate(0, 10, 40)

    g.addGraph(a, (255, 0, 0), (255, 255, 0))

    # q, _ = Clique.findMaxBruteForceUp(a)
    # g.addGraph(q, (0, 0, 255), (0, 255, 255))

    # q, _ = Clique.findMaxBruteForceDown(a)
    # g.addGraph(q, (0, 0, 255), (0, 255, 255))

    q, _ = Clique.findMaxGreedy(a)
    g.addGraph(q, (0, 0, 255), (0, 255, 255))

    g.run()
    def compute_clique(self, seed):
        """
        This function stores the logic of clique computation. It adds the point p that maximizes the average
        similarity to the current clique and does not belong to an already used sequence
        :param seed:
        :return: clique
        """
        # Initialize cliques and update available indices
        clique = Clique(self.crops_dir, self.sim_matrix.shape[0])
        clique.add_sample(seed, self.flipvals[seed, seed],
                          self.relative_image_pathes[seed])
        self.update_available_indices(clique, seed)

        idx_to_add = 0
        # Add constraint for checking the freq of samples in cliques
        frq = np.max(
            [(self.sample_freq / self.sample_freq.sum()) - self.diff_prob,
             np.zeros(self.sample_freq.shape)],
            axis=0)
        idx_avail = np.where(clique.available_indices)[0]

        while (len(clique.samples) < self.num_samples_per_clique) and (
                idx_to_add < idx_avail.shape[0]):
            idx_avail = np.where(clique.available_indices)[0]
            # FIXME: here we choose the point that has max similarity to some point in clique. We can get a line structure instead of a compact cluster.
            search_order = np.max(
                self.sim_matrix[clique.samples.reshape(-1, 1), idx_avail],
                axis=0).argsort()[::-1]
            # FIXME: BUG? idx_to_add must be always 0. Because on each step idx_avail will be changed.
            # FIXME: So now we don't get the best cliques
            p = idx_avail[search_order[idx_to_add]]
            if p in clique.samples:
                pass
            # Add constraint for freq samples if random from normal distribution is higher than the freq with which
            # sample p has been sampled then add it
            elif frq[p] < self.random_state.rand():
                f = self.calculate_flip(clique, p)
                clique.add_sample(p, f, self.relative_image_pathes[p])
                self.update_available_indices(clique, p)
            idx_to_add += 1
        return clique
Ejemplo n.º 7
0
    evidence = [None, None, None]
    root_idx = 2
    tester_graph = Graph(node_list, ns, edge_u, edge_v, evidence, root_idx)
    tester_graph.print_adj_matrix()

    #define cliques
    phi_1 = np.array([0.9, 0.1])
    phi_one = np.array([1, 1])
    phi_12 = np.array([[0.9, 0.1], [0.2, 0.8]])
    phi_23 = np.array([[0.9, 0.1], [0.7, 0.3]])
    phi_2 = phi_one
    phi_3 = phi_one
    # all single nodes and all pairs of nodes connected by edge
    clique_nodes = [[0], [1], [2], [0, 1], [1, 2]]
    cliques = []
    cliques.append(Clique(0, clique_nodes[0], np.array([2]), phi_1))
    cliques.append(Clique(1, clique_nodes[1], np.array([2]), phi_2))
    cliques.append(Clique(2, clique_nodes[2], np.array([2]), phi_3))
    cliques.append(Clique(3, clique_nodes[3], np.array([2, 2]), phi_12))
    cliques.append(Clique(4, clique_nodes[4], np.array([2, 2]), phi_23))
    #model
    tester_model = Model(tester_graph, cliques, evidence)
    tester_model.print_model()
    #""Execute sum_product algorithm""
    tester_model.sum_product()
    #Print out the marginal probability of each node.
    #marginal = net.marginal_nodes([C])
    #print 'Probability it is cloudy:     ', marginal.T[1]*100, '%'
    #marginal = net.marginal_nodes([S])
    #print 'Probability the sprinkler is on:  ', 0, '%'   #Observed node
    #marginal = net.marginal_nodes([R])
Ejemplo n.º 8
0
def file_reader(file_name, exact_method=True):
    """Parse the graph structure and the look up table from the uai and evid file"""
    dir = os.path.dirname(os.path.realpath(__file__))
    ### read the uai file
    with open(dir + '/uai/' + file_name) as f:
        line = f.readline()
        graph_type = line.strip('\n')
        #print (graph_type)
        node_number = int(f.readline())
        #print (node_number)
        line = f.readline().strip(' \n').strip(' ')
        try:
            line2 = line.split(' ')
            variable_cardinality = list(map(int, line2))
        except Exception as e:
            line2 = line.split("  ")
            variable_cardinality = list(map(int, line2))
        #print (variable_cardinality)
        clique_number = int(f.readline())
        #print (clique_number)
        graph = Graph(graph_type, node_number, variable_cardinality,
                      clique_number)

        for i in range(clique_number):  # start from 0
            line = f.readline().strip('\n').strip(' ')
            #print(line)
            try:
                line = np.array(list(map(int, line.split('\t'))))
            except Exception as e:
                line = np.array(list(map(int, line.split(' '))))
            # print(line)
            size = line[0]
            # print(size)
            nodes = list(line[1:])
            # print(nodes)
            clique = Clique(size, nodes)
            graph.add_clique(i, clique)

        for i in range(clique_number):
            line = f.readline().strip('\n')
            if line == '':
                line = f.readline().strip('\n')
            table_size = int(line)
            # print(table_size)
            read = 0
            psi = []
            while read < table_size:
                line = f.readline().strip('\n').strip(' ').split(' ')
                read = read + len(line)
                psi.append(list(map(float, line)))
            graph.add_clique_table(i, psi)

    ### read the evidence file
    """
    with open(dir + '/uai/' + file_name +'.evid') as evidence:
        line = evidence.readline().strip('\n').strip(' ')
        try:
            line = np.array(list(map(int,line.split('\t'))))
        except Exception as e:
            line = np.array(list(map(int,line.split(' '))))    
        evid_size = line[0]
        if evid_size != 0:
            evidence = {} 
            for i in range(0, evid_size):
                evidence[line[2*i+1]] = line[2*i+2]
            graph.set_evidence(evidence)
    """

    # test for the parse
    #print(graph.adjacent[1])
    #for v in graph.node_sharing_cliques[1]:
    #print(v.table)
    #print(graph.evidence)

    # graph.triangulation()
    # graph.maxcliques()
    #
    #
    #

    if exact_method:
        start = time.clock()
        #print('test result')
        #graph.test()
        JT = graph.generate_JT()
        JT.traverse()

        elapsed = (time.clock() - start)
        print("Time used:", elapsed, 's')

    else:
        #######################
        #Here to run the LBP
        ######################
        start = time.clock()
        graph.pairwise()
        factorgraph = FactorGraph(graph)
        factorgraph.LBP(normalize=True)

        factorgraph.calculate_z()
        print("Time used", time.clock() - start, 's')