#                         conv=path+'initial.conv.sh',
#                         dist=4.52, # distance to cluster in kpc
#                         z=0.0038)

#binflag = snap.data['binflag']
#m0 = snap.data['m0_MSUN']; m1 = snap.data['m1_MSUN']
#r0 = snap.data['bin_star_radius0_RSUN']; r1 = snap.data['bin_star_radius1_RSUN']
#k0 = snap.data['bin_startype0']; k1 = snap.data['bin_startype1']
#sma = snap.data['a_AU']; ecc = snap.data['e']
#id0 = snap.data['id0']; id1 = snap.data['id1']
#id_star = snap.data['id']

##################cmc-3.2####################################
snap = cmct.Snapshot(
    fname=path + 'initial.snap0651.dat.gz',
    conv=path + 'initial.conv.sh',
    dist=4.52,  # distance to cluster in kpc
    z=0.0038)

binflag = snap.data['binflag']
m0 = snap.data['m0[MSUN]']
m1 = snap.data['m1[MSUN]']
r0 = snap.data['bin_star_radius0[RSUN]']
r1 = snap.data['bin_star_radius1[RSUN]']
k0 = snap.data['bin_startype0']
k1 = snap.data['bin_startype1']
sma = snap.data['a[AU]']
ecc = snap.data['e']
id0 = snap.data['id0']
id1 = snap.data['id1']
id_star = snap.data['id']
Ejemplo n.º 2
0
def velocity_dispersion_old(path, string, thekey, Starinbin=200, mcut=0):
    snapno = read_keys(thekey)[0]
    snaptime = float(read_keys(thekey)[1])

    units = read_units(path + string)
    lpc = units[0]['l_pc']
    kms = 1e-5 * units[0]['l_cgs'] / units[0]['nbt_cgs']

    f4 = open(
        path + string + '.snap' + snapno + '.vel_dispersion_vr_pm_' +
        str(Starinbin) + '_' + str(mcut) + '.dat', 'w+')

    print(
        '#0)r2D(pc) 1)sigma_v(1D; km/s) 2)sigma_v_err(km/s) 3)sigma_pmr(1D; km/s) 4)sigma_pmr_err(km/s) 5)sigma_pmt(1D; km/s) 6)sigma_pmt_err(km/s) 7)sigma_pm(km/s) 8)sigma_pm_err(km/s) 9)sigma_pm2(km/s) 10)sigma_pm2_err(km/s)',
        file=f4)
    ####################
    snapfile = cmct.Snapshot(
        fname=path + 'initial.snapshots.h5',
        snapshot_name=thekey,
        conv=path + 'initial.conv.sh',
        dist=4.52,  # distance to cluster in kpc
        z=0.0038)

    print('read snap hdf5')
    #####################
    ###################
    Vr = []
    Vpm_r = []
    Vpm_t = []
    Vpm = []
    R = []
    count = 0
    print(len(snapfile.data['r']))

    v_r = snapfile.data['vr'] * kms  # converts from code units to km/s
    v_t = snapfile.data['vt'] * kms
    r_pc = snapfile.data['r'] * lpc  #convert r from code units to pc

    r_all, v_all = convert_to_3d(r_pc, v_r, v_t)

    binflag = snapfile.data['binflag']
    ktype = snapfile.data['startype']
    k0 = snapfile.data['bin_startype0']
    k1 = snapfile.data['bin_startype1']
    m = snapfile.data['m_MSUN']
    m0 = snapfile.data['m0_MSUN']
    m1 = snapfile.data['m1_MSUN']

    #print(v_all)

    for i in range(len(r_all[0])):
        if binflag[i] == 1:
            if mcut == 0 and (2 <= k0[i] <= 9 or 2 <= k1[i] <= 9):
                #for k in range(0,70):
                Vr.append(v_all[0,
                                i])  # Use this if you want 1d vel dispersion
                Vpm_r.append(v_all[1, i])
                Vpm_t.append(v_all[2, i])
                Vpm.append(np.sqrt(v_all[1, i]**2 + v_all[2, i]**2))
                rd = np.sqrt(r_all[1, i]**2. + r_all[2, i]**2.)
                R.append(rd)
                count = count + 1

            elif (k0[i] < 10 and m0[i] >= mcut) or (k1[i] < 10
                                                    and m1[i] >= mcut):
                #print(snapfile.data['bin_startype0'][i], snapfile.data['m0_MSUN'][i], snapfile.data['binflag'][i])
                Vr.append(v_all[0,
                                i])  # Use this if you want 1d vel dispersion
                Vpm_r.append(v_all[1, i])
                Vpm_t.append(v_all[2, i])
                Vpm.append(np.sqrt(v_all[1, i]**2 + v_all[2, i]**2))
                rd = np.sqrt(r_all[1, i]**2. + r_all[2, i]**2.)
                R.append(rd)
                count = count + 1

        else:
            if mcut == 0 and 2 <= ktype[i] <= 9:
                Vr.append(v_all[0,
                                i])  # Use this if you want 1d vel dispersion
                Vpm_r.append(v_all[1, i])
                Vpm_t.append(v_all[2, i])
                Vpm.append(np.sqrt(v_all[1, i]**2 + v_all[2, i]**2))
                rd = np.sqrt(r_all[1, i]**2. + r_all[2, i]**2.)
                R.append(rd)
                count = count + 1

            elif ktype[i] < 10 and m[i] >= mcut:
                #print(snapfile.data['startype'][i], snapfile.data['m_MSUN'][i], snapfile.data['binflag'][i])
                Vr.append(v_all[0,
                                i])  # Use this if you want 1d vel dispersion
                Vpm_r.append(v_all[1, i])
                Vpm_t.append(v_all[2, i])
                Vpm.append(np.sqrt(v_all[1, i]**2 + v_all[2, i]**2))
                rd = np.sqrt(r_all[1, i]**2. + r_all[2, i]**2.)
                R.append(rd)
                count = count + 1

    print(Vr)
    print('get vr vt done')
    ################################################
    mean_model = np.mean(Vr)  #Find global mean of all model RVs
    mean_model_pmr = np.mean(Vpm_r)
    mean_model_pmt = np.mean(Vpm_t)
    mean_model_pm = np.mean(Vpm)
    print('mean=', mean_model, mean_model_pm)
    array = np.zeros((len(Vr), 5))
    for i in range(0, len(Vr)):
        array[i, 0] = R[i]
        array[i, 1] = Vr[i]
        array[i, 2] = Vpm_r[i]
        array[i, 3] = Vpm_t[i]
        array[i, 4] = Vpm[i]
    array = array[array[:, 0].argsort(
    )]  # sorts each measurement in order of radial position

    #####################################
    sigma_vel_array = []
    sigma_pmr_array = []
    sigma_pmt_array = []
    sigma_pm_array = []
    R_array = []
    #mean_array = []
    #flag = 0
    sum_vel = 0
    sum_pmr = 0
    sum_pmt = 0
    sum_pm = 0

    vel_array = [
    ]  # Makes an array with velocites of all stars within each bin
    pmr_array = []
    pmt_array = []
    pm_array = []
    r_array = []
    #bin_count = 0
    total_count = 0
    for j in range(0, len(array)):
        if total_count <= Starinbin:
            vel_array.append(array[j, 1])
            pmr_array.append(array[j, 2])
            pmt_array.append(array[j, 3])
            pm_array.append(array[j, 4])
            r_array.append(array[j, 0])
            total_count = total_count + 1
        else:
            count = 0.
            for k in range(0, len(vel_array)):
                r = np.mean(r_array)
                sum_vel = sum_vel + (vel_array[k] - mean_model)**2.
                sum_pmr = sum_pmr + (pmr_array[k] - mean_model_pmr)**2.
                sum_pmt = sum_pmt + (pmt_array[k] - mean_model_pmt)**2.
                sum_pm = sum_pm + (pm_array[k] - mean_model_pm)**2.
                count = count + 1.
            sigma_vel = np.sqrt(sum_vel / count)
            error_vel = np.sqrt(sigma_vel**2.0 / (2. * count))
            sigma_pmr = np.sqrt(sum_pmr / count)
            error_pmr = np.sqrt(sigma_pmr**2.0 / (2. * count))
            sigma_pmt = np.sqrt(sum_pmt / count)
            error_pmt = np.sqrt(sigma_pmt**2.0 / (2. * count))
            sigma_pm = np.sqrt(sum_pm / count)
            error_pm = np.sqrt(sigma_pm**2.0 / (2. * count))

            print(r,
                  sigma_vel,
                  error_vel,
                  sigma_pmr,
                  error_pmr,
                  sigma_pmt,
                  error_pmt,
                  sigma_pm,
                  error_pm,
                  file=f4)
            #print r, 'sigma=',sigma, 'error=',error, 'count=',count, 'N_binaries=',bin_count,'N_stars=',total_count,'binary fraction=',float(bin_count)/float(total_count)
            sigma_vel_array.append(sigma_vel)
            sigma_pmr_array.append(sigma_pmr)
            sigma_pmt_array.append(sigma_pmt)
            sigma_pm_array.append(sigma_pm)
            R_array.append(np.mean(r_array))
            sum_vel = 0
            sum_pmr = 0
            sum_pmt = 0
            sum_pm = 0
            #flag = 0
            #bin_count = 0
            total_count = 0
            vel_array = []
            pmr_array = []
            pmt_array = []
            pm_array = []
            r_array = []
Ejemplo n.º 3
0
def velocity_dispersion_hdf5(modelpath,
                             thekey,
                             Starinbin=200,
                             mcut=0,
                             hdf5flag=0):
    snapno = read_keys(thekey)[0]
    snaptime = float(read_keys(thekey)[1])

    fvel = open(
        modelpath + 'initial.snap' + snapno + '.vel_dispersion_vr_pm_' +
        str(Starinbin) + '_' + str(mcut) + '.dat', 'w+')
    print(
        '#0)r2D(pc) 1)sigma_v(1D; km/s) 2)sigma_v_err(km/s) 3)sigma_pmr(1D; km/s) 4)sigma_pmr_err(km/s) 5)sigma_pmt(1D; km/s) 6)sigma_pmt_err(km/s)',
        file=fvel)

    if hdf5flag == 1:
        snap_h5 = modelpath + 'initial.snapshots.h5'
        snap = cmct.Snapshot(
            fname=snap_h5,
            snapshot_name=thekey,
            conv=modelpath + 'initial.conv.sh',
            dist=4.52,  # distance to cluster in kpc
            z=0.0038)
        snap.make_2d_projection(seed=8675309)
        VX = snap.data['vx[KM/S]']
        VY = snap.data['vy[KM/S]']
        VZ = snap.data['vz[KM/S]']
        rd = snap.data['d[PC]']
        ktype = snap.data['startype']
        k0 = snap.data['bin_startype0']
        k1 = snap.data['bin_startype1']
        m = snap.data['m_MSUN']
        m0 = snap.data['m0_MSUN']
        m1 = snap.data['m1_MSUN']
        binflag = snap.data['binflag']
        print('read snap data')

    if hdf5flag == 0:
        binflag = []
        VX = []
        VY = []
        VZ = []
        rd = []
        ktype = []
        k0 = []
        k1 = []
        m = []
        m0 = []
        m1 = []
        snap2d = modelpath + 'initial.snap' + snapno + '.2Dproj.dat.gz'
        with gzip.open(snap2d, 'r') as f2d:
            next(f2d)
            next(f2d)
            for line in f2d:
                data = line.split()
                binflag.append(int(data[2]))
                VX.append(float(data[18]))
                VY.append(float(data[19]))
                VZ.append(float(data[20]))
                rd.append(float(data[0]))
                ktype.append(int(data[3]))
                k0.append(int(data[5]))
                k1.append(int(data[6]))
                m.append(float(data[9]))
                m0.append(float(data[10]))
                m1.append(float(data[11]))

        print('read snap data')

    vel_r = []
    vel_pmr = []
    vel_pmt = []
    rpc = []
    for xx in range(len(ktype)):
        if binflag[xx] == 1:
            if mcut == 0 and 2 <= k0[xx] <= 9 or 2 <= k1[xx] <= 9:
                rpc.append(rd[xx])
                vel_r.append(VX[xx])
                vel_pmr.append(VY[xx])
                vel_pmt.append(VZ[xx])

            elif (k0[xx] < 10 and m0[xx] >= mcut) or (k1[xx] < 10
                                                      and m1[xx] >= mcut):
                rpc.append(rd[xx])
                vel_r.append(VX[xx])
                vel_pmr.append(VY[xx])
                vel_pmt.append(VZ[xx])

        else:
            if mcut == 0 and 2 <= ktype[xx] <= 9:
                rpc.append(rd[xx])
                vel_r.append(VX[xx])
                vel_pmr.append(VY[xx])
                vel_pmt.append(VZ[xx])

            elif ktype[xx] < 10 and m[xx] >= mcut:
                rpc.append(rd[xx])
                vel_r.append(VX[xx])
                vel_pmr.append(VY[xx])
                vel_pmt.append(VZ[xx])

    array = np.zeros((len(vel_r), 4))
    for i in range(0, len(vel_r)):
        array[i, 0] = rpc[i]
        array[i, 1] = vel_r[i]
        array[i, 2] = vel_pmr[i]
        array[i, 3] = vel_pmt[i]
    array = array[array[:, 0].argsort(
    )]  # sorts each measurement in order of radial position

    mean_r = np.mean(vel_r)
    mean_pmr = np.mean(vel_pmr)
    mean_pmt = np.mean(vel_pmt)
    print(mean_r, mean_pmr, mean_pmt)

    sigma_r_array = []
    sigma_pmr_array = []
    sigma_pmt_array = []
    R_array = []
    velr_array = []
    velpmr_array = []
    velpmt_array = []
    r_array = []
    sum_r = 0
    sum_pmr = 0
    sum_pmt = 0

    total_count = 0
    for ii in range(0, len(array)):
        if total_count <= Starinbin:
            velr_array.append(array[ii, 1])
            velpmr_array.append(array[ii, 2])
            velpmt_array.append(array[ii, 3])
            r_array.append(array[ii, 0])
            total_count = total_count + 1
        else:
            count = 0.
            for k in range(0, len(velr_array)):
                r = np.mean(r_array)
                sum_r = sum_r + (velr_array[k] - mean_r)**2.
                sum_pmr = sum_pmr + (velpmr_array[k] - mean_pmr)**2.
                sum_pmt = sum_pmt + (velpmt_array[k] - mean_pmt)**2.
                count = count + 1.
            sigma_r = np.sqrt(sum_r / count)
            error_r = np.sqrt(sigma_r**2.0 / (2. * count))
            sigma_pmr = np.sqrt(sum_pmr / count)
            error_pmr = np.sqrt(sigma_pmr**2.0 / (2. * count))
            sigma_pmt = np.sqrt(sum_pmt / count)
            error_pmt = np.sqrt(sigma_pmt**2.0 / (2. * count))

            print(r,
                  sigma_r,
                  error_r,
                  sigma_pmr,
                  error_pmr,
                  sigma_pmt,
                  error_pmt,
                  file=fvel)

            sigma_r_array.append(sigma_r)
            sigma_pmr_array.append(sigma_pmr)
            sigma_pmt_array.append(sigma_pmt)
            R_array.append(np.mean(r_array))

            sum_r = 0
            sum_pmr = 0
            sum_pmt = 0
            total_count = 0
            velr_array = []
            velpmr_array = []
            velpmt_array = []
            r_array = []
Ejemplo n.º 4
0
def make_2D_projection(modelpath,
                       thekey,
                       units,
                       writefilename,
                       SEEDY=10,
                       PROJ=(0, 1)):
    #units = scripts.read_units(filestring)

    snapno = read_keys(thekey)[0]
    snaptime = float(read_keys(thekey)[1])
    print(type(snapno))

    lpc = units[0]['l_pc']
    kms = 1e-5 * units[0]['l_cgs'] / units[0]['nbt_cgs']
    t_myr = snaptime * units[0]['t_myr']

    #read the snapfile
    snapfile = cmct.Snapshot(
        fname=modelpath + 'initial.snapshots.h5',
        snapshot_name=thekey,
        conv=modelpath + 'initial.conv.sh',
        dist=4.52,  # distance to cluster in kpc
        z=0.0038)

    print('read_snapfile')

    #writefilename=modelpath+'initial.snap'+snapno+'.2Dproj.dat'
    writefile = open(writefilename, 'w+')
    writefile.write(
        "#t=%g\n#1.r2D(pc) 2.Ltot(Lsun) 3.binflag 4.startype 5.L(Lsun) 6.startype0 7.startype1 8.L0(Lsun) 9.L1(Lsun) 10.Mtot(Msun) 11.M0(Msun) 12.M1(Msun) 13.id 14.id0 15.id1 16.rx(pc) 17.ry(pc) 18.rz(pc) 19.vx(km/s) 20.vy(km/s) 21.vz(km/s)\n"
        % (t_myr))

    print('write file')

    colnos = (2, 7, 14, 15, 17, 18, 19, 20, 1, 8, 9, 3, 4, 0, 10, 11)
    #0-r, 1-binflag, 2-startype, 3-L, 4-startype0, 5-startype1, 6-L0, 7-L1, 8-Mtot, 9-M0, 10-M1, 11-vr, 12-vt, 13-id, 14-id0, 15-id1

    #data = np.genfromtxt(snapfile)
    r = snapfile.data['r'] * lpc
    vr = snapfile.data['vr'] * kms
    vt = snapfile.data['vt'] * kms
    r3d, v3d = convert_to_3d(r, vr, vt, SEEDY=SEEDY)
    r2d, ind = project_and_radially_sort(r3d, PROJ=PROJ)
    print('N:', len(ind))

    #valid_line=0
    valid_line = 1
    for i in range(len(ind)):
        #try:
        #    for j in range(len(data[ind[i]])):
        #        if str(data[ind[i],j])=='nan' or str(data[ind[i],j])=='inf':
        #            valid_line = 0
        #            print(data[ind[i],:])
        #            raise StopIteration()
        #        else:
        #            valid_line = 1
        #except StopIteration:
        #    pass
        if valid_line == 1:
            if snapfile.data['binflag'][ind[i]] == 1.:
                Ltot = snapfile.data['bin_star_lum0_LSUN'][
                    ind[i]] + snapfile.data['bin_star_lum1_LSUN'][ind[i]]
                Mtot = snapfile.data['m_MSUN'][ind[i]]
            else:
                Ltot = snapfile.data['luminosity_LSUN'][ind[i]]
                Mtot = snapfile.data['m_MSUN'][ind[i]]
            writefile.write(
                "%g %g %g %g %g %g %g %g %g %g %g %g %d %d %d %g %g %g %g %g %g\n"
                %
                (r2d[ind[i]], Ltot, snapfile.data['binflag'][ind[i]],
                 snapfile.data['startype'][ind[i]], Ltot,
                 snapfile.data['bin_startype0'][ind[i]],
                 snapfile.data['bin_startype1'][ind[i]],
                 snapfile.data['bin_star_lum0_LSUN'][ind[i]],
                 snapfile.data['bin_star_lum1_LSUN'][ind[i]], Mtot,
                 snapfile.data['m0_MSUN'][ind[i]],
                 snapfile.data['m1_MSUN'][ind[i]], snapfile.data['id'][ind[i]],
                 snapfile.data['id0'][ind[i]], snapfile.data['id1'][ind[i]],
                 r3d[0, ind[i]], r3d[1, ind[i]], r3d[2, ind[i]],
                 v3d[0, ind[i]], v3d[1, ind[i]], v3d[2, ind[i]]))
    writefile.close()
    return r, vr, vt, r3d, v3d
Ejemplo n.º 5
0
def make_SBP_VDP_NDP_hdf5_smooth(modelpath, dgc):  ##dgc in kpc
    snap_h5 = modelpath + 'initial.snapshots.h5'

    t_conv = conv('t', modelpath + 'initial.conv.sh')

    with pd.HDFStore(snap_h5) as snaps:
        snap_keys = snaps.keys()

    snap_no = []
    snap_time = []
    for ii in range(len(snap_keys)):
        temp_key = read_keys(snap_keys[ii])
        temp_no = int(temp_key[0])
        temp_time = float(temp_key[1])

        snap_no.append(int(temp_key[0]))
        snap_time.append(float(temp_key[1]))

        #if temp_time*t_conv < 10000. or temp_time*t_conv >13000. or temp_no%2!=0:
        #    continue

        if temp_time * t_conv < 7000. or temp_time * t_conv > 9000. or temp_no % 2 != 0:
            continue

        else:
            temp_snap = cmct.Snapshot(
                fname=snap_h5,
                snapshot_name=snap_keys[ii],
                conv=modelpath + 'initial.conv.sh',
                dist=dgc,  # distance to cluster in kpc
                z=0.0038)

            ##Make surface brightness profile
            temp_snap.add_photometry(
                '/projects/b1095/syr904/MyCodes/cmctoolkit/filt_index.txt')
            v_bincenter, v_profile = temp_snap.make_smoothed_brightness_profile(
                'V',
                bins=80,
                min_mass=None,
                max_mass=None,
                max_lum=12,
                fluxdict=None,
                startypes=np.array([0, 1, 2, 3, 4, 5, 6, 7, 8, 9]),
                min_logr=-2.0)

            # Make velocity dispersion profiles
            star_velbin_center, star_veldisp_profile, star_e_veldisp_profile = temp_snap.make_smoothed_veldisp_profile(
                bins=80,
                min_mass=0.85,
                max_mass=None,
                dmax=None,
                fluxdict=None,
                startypes=np.array([0, 1, 2, 3, 4, 5, 6, 7, 8, 9]),
                min_logr=-1.5)

            star_velbin_arcsec = uc.pc2arcsec(dgc, star_velbin_center)

            ##Make number density profile
            star_numbin_center, star_profile, star_e_profile = temp_snap.make_smoothed_number_profile(
                bins=80,
                min_mass=0.85,
                max_mass=None,
                fluxdict=None,
                startypes=np.array([0, 1, 2, 3, 4, 5, 6, 7, 8, 9]),
                min_logr=-2.0)

            star_numbin_arcsec = uc.pc2arcsec(dgc, star_numbin_center)
            star_profile_arcsec = star_profile / (uc.pc2arcsec(dgc, 1.)**2)
            star_e_profile_arcsec = star_e_profile / (uc.pc2arcsec(dgc, 1.)**2)

            fsbp = modelpath + 'SBP' + str(temp_no) + '_LCUT12.txt'
            fvdp = modelpath + 'VDP' + str(temp_no) + '_MCUT0d85.txt'
            fndp = modelpath + 'NDP' + str(temp_no) + '_MCUT0d85.txt'

            np.savetxt(fsbp,
                       np.c_[v_bincenter, v_profile],
                       fmt='%f %f',
                       header='1.r(arcsec) 2.miu_v(mag/arcsec^2) t=' +
                       str(temp_time),
                       comments='#')
            np.savetxt(
                fvdp,
                np.c_[star_velbin_arcsec, star_veldisp_profile,
                      star_e_veldisp_profile],
                fmt='%f %f %f',
                header='1.r(arcsec) 2.sigma_v(km/s) 3.sigma_v_err(km/s) t=' +
                str(temp_time),
                comments='#')
            np.savetxt(
                fndp,
                np.c_[star_numbin_arcsec, star_profile_arcsec,
                      star_e_profile_arcsec],
                fmt='%f %f %f',
                header='1.r(arcsec) 2.num(1/arcsec^2) 3.num_err(1/arcsec^2) t='
                + str(temp_time),
                comments='#')

            print(snap_keys[ii])

    snap_no_sort, snap_time_sort = (list(t) for t in zip(
        *sorted(zip(snap_no, snap_time))))

    np.savetxt(modelpath + 'snap_keys.txt',
               np.c_[snap_no_sort, snap_time_sort],
               fmt='%d %.8f',
               header='1.snap_no 2.snap_time',
               comments='#')
Ejemplo n.º 6
0
def print_Nns_snap(modelpath):
    all_keys = np.genfromtxt(modelpath+'snap_keys.txt', dtype = str)

    t_conv = conv('t', modelpath+'initial.conv.sh')

    try:
        fh = open(modelpath+'initial.ns.dat', 'r')
    except:
        #if True:
        fhandle=open(modelpath+'initial.ns.dat', 'a+')
        fhandle.write('#1.Totaltime, 2.Nns,tot, 3.Nns,single, 4.Nns,binary, 5.Nns,mtb, 6.Npulsar, 7.Nmsp, 8.Nns-ns, 9.Nns-bh, 10.Nns-wd, 11.Nns-ms, 12.Nns-postms\n')
        for xx in range(len(all_keys[:,0])):
            keys_str = '/'+all_keys[:,0][xx]+'(t='+all_keys[:,1][xx]+')'

            snap = cmct.Snapshot(fname=modelpath+'initial.snapshots.h5', 
                                snapshot_name=keys_str, conv=modelpath+'initial.conv.sh', 
                                dist=4.52, # distance to cluster in kpc
                                z=0.0038)

            T = float(all_keys[:,1][xx])*t_conv

            binflag = snap.data['binflag']
            ktype = snap.data['startype']
            #print(ktype)
            k0 = snap.data['bin_startype0']; k1 = snap.data['bin_startype1']
            ospin = snap.data['ospin']
            ospin0 = snap.data['ospin0']; ospin1 = snap.data['ospin1']
            B = snap.data['B']
            B0 = snap.data['B0']; B1 = snap.data['B1']
            rad0 = snap.data['radrol0']; rad1 = snap.data['radrol1']

            N_NS=0; N_NS_SIN=0; N_NS_BIN=0; N_NS_MTB=0; N_PULS=0; N_MSP=0; N_NSNS=0; N_NSBH=0; N_NSWD=0; N_NSMS=0; N_NSPOSTMS=0

            for kk in range(len(binflag)): 
                if binflag[kk]!=1:
                    #print('yes1')
                    if ktype[kk]==13: 
                        #print('yes2')
                        N_NS+=1; N_NS_SIN+=1
                        spin=twopi*yearsc/ospin[kk]
                        deathcut=(spin**2)*(0.17*10**12)
                        if deathcut<B[kk]: 
                            N_PULS+=1
                            if spin<=0.03: N_MSP+=1
                else:
                    if k0[kk]==13:
                        #print('yes3')
                        N_NS+=1; N_NS_BIN+=1
                        spin0=twopi*yearsc/ospin0[kk]
                        deathcut0=(spin0**2)*(0.17*10**12)
                        if rad1[kk]>=1: N_NS_MTB+=1
                        if deathcut0<B0[kk]: 
                            N_PULS+=1   
                            if spin0<=0.03: N_MSP+=1

                        if k1[kk]<2: N_NSMS+=1
                        elif k1[kk]>=10 and k1[kk]<=12: N_NSWD+=1
                        elif k1[kk]==13: N_NSNS+=1
                        elif k1[kk]==14: N_NSBH+=1
                        else: N_NSPOSTMS+=1

                    if k1[kk]==13:
                        #print('yes4')
                        N_NS+=1; N_NS_BIN+=1
                        spin1=twopi*yearsc/ospin1[kk]
                        deathcut1=(spin1**2)*(0.17*10**12)
                        if rad0[kk]>=1: N_NS_MTB+=1
                        if deathcut1<B1[kk]: 
                            N_PULS+=1
                            if spin1<=0.03: N_MSP+=1

                        if k0[kk]<2: N_NSMS+=1
                        elif k0[kk]>=10 and k0[kk]<=12: N_NSWD+=1
                        elif k0[kk]==13: print('already counted')
                        elif k0[kk]==14: N_NSBH+=1
                        else: N_NSPOSTMS+=1


            fhandle.write('%f %d %d %d %d %d %d %d %d %d %d %d\n'%(T, N_NS, N_NS_SIN, N_NS_BIN, N_NS_MTB, N_PULS, N_MSP, N_NSNS, N_NSBH, N_NSWD, N_NSMS, N_NSPOSTMS))

            print(xx)

        fhandle.close()
Ejemplo n.º 7
0
def get_allpsr_atsnap(modelpath, mspfg, snapno):
    T=[]; BF=[]; S=[]; F=[]; ID_0=[]; ID_1=[]; M_0=[]; M_1=[]; K_0=[]; K_1=[]; Aaxis=[]; E=[]; DMDT0=[]; DMDT1=[]; RAD0=[]; RAD1=[]; RADIUS=[]; TCFLAG=[]

    all_keys = np.genfromtxt(modelpath+'snap_keys.txt', dtype = 'str')
    all_snapno = all_keys[:,0]; all_snaptime = all_keys[:,1]

    thekey = '/'+str(snapno)+'(t='+all_snaptime[snapno]+')'
        
    pref='initial'
    filestr=modelpath+pref
    t_conv=conv('t', filestr+'.conv.sh')
    l_conv=conv('l', filestr+'.conv.sh')

    snap = cmct.Snapshot(fname=modelpath+'initial.snapshots.h5', snapshot_name=thekey, conv=modelpath+'initial.conv.sh', 
                        dist=4.52, # distance to cluster in kpc
                        z=0.0038)

    print('read snap')

    t_age = snap.age

    Bf, Spin, Id0, Id1, M0, M1, K0, K1, A, Ecc, Fc, Dmdt0, Dmdt1, Radrol0, Radrol1, R=get_allpsr_snapshot(snap, mspfg)

    print('get psr data')

    prop_init, prop_finl, prop_des=ntc.find_tc_properties_final(modelpath)
    tc_id0 = prop_init['id0']; tc_id1 = prop_init['id1']; tc_type = prop_init['type']

    tcflag = []
    for i in range(len(Id0)):
        tcflag.append(4)
        for j in range(len(tc_id0)):
            if Id1[i]!=-100:
                if (Id0[i]==tc_id0[j] and Id1[i]==tc_id1[j]) or (Id1[i]==tc_id0[j] and Id0[i]==tc_id1[j]):
                    if tc_type[j]=='SS_COLL_Giant':
                        tcflag[i]=81
                        break
                    if tc_type[j]=='SS_COLL_TC_P':
                        tcflag[i]=91
                        break

                elif Id0[i]==tc_id0[j] or Id0[i]==tc_id1[j]:
                    if tc_type[j]=='SS_COLL_Giant':
                        tcflag[i]=82
                        break
                    if tc_type[j]=='SS_COLL_TC_P':
                        tcflag[i]=92
                        break

            else:
                if Id0[i]==tc_id0[j] or Id0[i]==tc_id1[j]:
                    if tc_type[j]=='SS_COLL_Giant':
                        tcflag[i]=83
                        break
                    if tc_type[j]=='SS_COLL_TC_P':
                        tcflag[i]=93
                        break


    Time=list(np.full_like(Id0, t_age, dtype=np.double))
    #print(Time, Model, Mst)

    T=T+Time; BF=BF+Bf; S=S+Spin; F=F+Fc; ID_0=ID_0+Id0; ID_1=ID_1+Id1; M_0=M_0+M0; M_1=M_1+M1; K_0=K_0+K0; K_1=K_1+K1; Aaxis=Aaxis+A; E=E+Ecc
    DMDT0=DMDT0+Dmdt0; DMDT1=DMDT1+Dmdt1; RAD0=RAD0+Radrol0; RAD1=RAD1+Radrol1; RADIUS=RADIUS+R
    TCFLAG=TCFLAG+tcflag

    RADIUS=np.array(RADIUS)*l_conv
    print('done')

    print(len(T), len(RADIUS), len(BF), len(S), len(DMDT0), len(DMDT1), len(RAD0), len(RAD1), len(M_0), len(M_1), len(ID_0), len(ID_1), len(K_0), len(K_1), len(Aaxis), len(E), len(F), len(TCFLAG))
    np.savetxt(modelpath+mspfg+str(snapno)+'.dat', np.c_[T, RADIUS, BF, S, DMDT0, DMDT1, RAD0, RAD1, M_0, M_1, ID_0, ID_1, K_0, K_1, Aaxis, E, F, TCFLAG], fmt ='%f %f %e %f %f %f %f %f %f %f %d %d %d %d %f %f %d %d', delimiter= ' ', header = '1.Time(Myr) 2.r(pc) 3.B(G) 4.P(sec) 5.dmdt0(Msun/yr) 6.dmdt1(Msun/yr) 7.rolrad0 8.rolrad1 9.m0(Msun) 10.m1(Msun) 11.ID0 12.ID1 13.k0 14.k1 15.a(AU) 16.ecc 17.Formation 18.TCflag', comments = '#')
Ejemplo n.º 8
0
def find_WD_XX_atsnap_hdf5(filepath, lowlim, highlim, snapno, savename):
    property_init, property_finl, property_des = nhf.find_tc_properties(
        filepath)
    ID0 = property_init['id0']
    ID1 = property_init['id1']
    T = property_init['time']
    Types = property_init['type']

    all_keys = np.genfromtxt(filepath + 'snap_keys.txt', dtype='str')
    all_snapno = all_keys[:, 0]
    all_snaptime = all_keys[:, 1]

    thekey = '/' + str(snapno) + '(t=' + all_snaptime[snapno] + ')'

    filestr = filepath + 'initial'
    snap = cmct.Snapshot(
        fname=filepath + 'initial.snapshots.h5',
        snapshot_name=thekey,
        conv=filepath + 'initial.conv.sh',
        dist=4.52,  # distance to cluster in kpc
        z=0.0038)

    t_conv = dyn.conv('t', filestr + '.conv.sh')
    l_conv = dyn.conv('l', filestr + '.conv.sh')

    #os.system('rm '+savepath)
    fmsb = open(filepath + savename + str(snapno) + '.dat', 'w+')
    fmsb.write(
        '#1.ID0 2.ID1 3.M0 4.M1 5.K0 6.K1 7.a(AU) 8.ecc 9.radrol0 10.radrol1 11.B(G) 12.P(sec) 13.tcflag 14.SN 15.TC_time(Myr) 16.R(pc)\n'
    )

    binflag = snap.data['binflag']
    k0 = snap.data['bin_startype0']
    k1 = snap.data['bin_startype1']
    id0 = snap.data['id0']
    id1 = snap.data['id1']
    m0 = snap.data['m0_MSUN']
    m1 = snap.data['m1_MSUN']
    sma = snap.data['a_AU']
    ecc = snap.data['e']
    rad0 = snap.data['radrol0']
    rad1 = snap.data['radrol1']
    B0 = snap.data['B0']
    B1 = snap.data['B1']
    ospin0 = snap.data['ospin0']
    ospin1 = snap.data['ospin1']
    SN0 = snap.data['formation0']
    SN1 = snap.data['formation1']
    Rpc = snap.data['r'] * l_conv

    for xx in range(len(binflag)):
        if binflag[xx] == 1:
            if 10 <= k0[xx] <= 12 and lowlim <= k1[xx] <= highlim:
                ID0ms = id0[xx]
                ID1ms = id1[xx]
                tcflag = 4
                tctime = -100
                for ii in range(len(ID0)):
                    if (ID0ms == ID0[ii]
                            and ID1ms == ID1[ii]) or (ID1ms == ID0[ii]
                                                      and ID0ms == ID1[ii]):
                        if Types[ii] == 'SS_COLL_Giant':
                            tcflag = 81
                            tctime = T[ii] * t_conv
                            break
                        if Types[ii] == 'SS_COLL_TC_P':
                            tcflag = 91
                            tctime = T[ii] * t_conv
                            break
                    elif ID0ms == ID0[ii] or ID0ms == ID1[ii]:
                        if Types[ii] == 'SS_COLL_Giant':
                            tcflag = 82
                            tctime = T[ii] * t_conv
                            break
                        if Types[ii] == 'SS_COLL_TC_P':
                            tcflag = 92
                            tctime = T[ii] * t_conv
                            break

                fmsb.write(
                    '%d %d %f %f %d %d %f %f %f %f %e %f %d %d %f %f\n' %
                    (id0[xx], id1[xx], m0[xx], m1[xx], k0[xx], k1[xx], sma[xx],
                     ecc[xx], rad0[xx], rad1[xx], B0[xx], twopi * yearsc /
                     ospin0[xx], tcflag, SN0[xx], tctime, Rpc[xx]))

            if lowlim <= k0[xx] <= highlim and 10 <= k1[xx] <= 12:
                ID0ms = id1[xx]
                ID1ms = id0[xx]
                tcflag = 4
                tctime = -100
                for ii in range(len(ID0)):
                    if (ID0ms == ID0[ii]
                            and ID1ms == ID1[ii]) or (ID1ms == ID0[ii]
                                                      and ID0ms == ID1[ii]):
                        if Types[ii] == 'SS_COLL_Giant':
                            tcflag = 81
                            tctime = T[ii] * t_conv
                            break
                        if Types[ii] == 'SS_COLL_TC_P':
                            tcflag = 91
                            tctime = T[ii] * t_conv
                            break
                    elif ID0ms == ID0[ii] or ID0ms == ID1[ii]:
                        if Types[ii] == 'SS_COLL_Giant':
                            tcflag = 82
                            tctime = T[ii] * t_conv
                            break
                        if Types[ii] == 'SS_COLL_TC_P':
                            tcflag = 92
                            tctime = T[ii] * t_conv
                            break

                fmsb.write(
                    '%d %d %f %f %d %d %f %f %f %f %e %f %d %d %f %f\n' %
                    (id1[xx], id0[xx], m1[xx], m0[xx], k1[xx], k0[xx], sma[xx],
                     ecc[xx], rad1[xx], rad0[xx], B1[xx], twopi * yearsc /
                     ospin1[xx], tcflag, SN1[xx], tctime, Rpc[xx]))
    fmsb.close()