def test_part_c(): data = np.loadtxt('data/data.asc').T.reshape(1, 24, -1) cnn = cnn_solution.CNN_C() weights = np.load('weights/mlp_weights_part_c.npy') cnn.init_weights(weights) expected_result = np.load('autograde/res_c.npy') result = cnn(data) try: assert(type(result)==type(expected_result)) assert(result.shape==expected_result.shape) assert(np.allclose(result,expected_result)) return True except Exception as e: traceback.print_exc() return False
def test_part_c(): data = np.loadtxt('data/data.asc').T.reshape(1, 24, -1) cnn = cnn_solution.CNN_C() weights = np.load('weights/mlp_weights_part_c.npy', allow_pickle=True) cnn.init_weights(weights) expected_result = np.load('autograde/res_c.npy') result = cnn(data) try: assert (type(result) == type(expected_result)) assert ( result.shape == expected_result.shape ), "result: {}, expected: {} \n*********expected_Result************\n{}".format( result.shape, expected_result.shape, expected_result) assert ( np.allclose(result, expected_result) ), "\n***********result*************\n{}, \n*********expected_Result************\n{}".format( result, expected_result) return True except Exception as e: traceback.print_exc() return False