def main():
    # step 1: load the data, transform as needed
    train, test = get_data()

    # Need to scale! don't leave as 0..255
    # Y is a N x 1 matrix with values 1..10 (MATLAB indexes by 1)
    # So flatten it and make it 0..9
    # Also need indicator matrix for cost calculation
    Xtrain = rearrange(train['X'])
    Ytrain = train['y'].flatten() - 1
    del train
    Xtrain, Ytrain = shuffle(Xtrain, Ytrain)
    Ytrain_ind = y2indicator(Ytrain)

    Xtest  = rearrange(test['X'])
    Ytest  = test['y'].flatten() - 1
    del test
    Ytest_ind  = y2indicator(Ytest)


    max_iter = 8
    print_period = 10

    lr = np.float32(0.00001)
    reg = np.float32(0.01)
    mu = np.float32(0.99)

    N = Xtrain.shape[0]
    batch_sz = 500
    n_batches = N // batch_sz

    M = 500
    K = 10
    poolsz = (2, 2)

    # after conv will be of dimension 32 - 5 + 1 = 28
    # after downsample 28 / 2 = 14
    W1_shape = (20, 3, 5, 5) # (num_feature_maps, num_color_channels, filter_width, filter_height)
    W1_init = init_filter(W1_shape, poolsz)
    b1_init = np.zeros(W1_shape[0], dtype=np.float32) # one bias per output feature map

    # after conv will be of dimension 14 - 5 + 1 = 10
    # after downsample 10 / 2 = 5
    W2_shape = (50, 20, 5, 5) # (num_feature_maps, old_num_feature_maps, filter_width, filter_height)
    W2_init = init_filter(W2_shape, poolsz)
    b2_init = np.zeros(W2_shape[0], dtype=np.float32)

    # vanilla ANN weights
    W3_init = np.random.randn(W2_shape[0]*5*5, M) / np.sqrt(W2_shape[0]*5*5 + M)
    b3_init = np.zeros(M, dtype=np.float32)
    W4_init = np.random.randn(M, K) / np.sqrt(M + K)
    b4_init = np.zeros(K, dtype=np.float32)


    # step 2: define theano variables and expressions
    X = T.tensor4('X', dtype='float32')
    Y = T.matrix('T')
    W1 = theano.shared(W1_init, 'W1')
    b1 = theano.shared(b1_init, 'b1')
    W2 = theano.shared(W2_init, 'W2')
    b2 = theano.shared(b2_init, 'b2')
    W3 = theano.shared(W3_init.astype(np.float32), 'W3')
    b3 = theano.shared(b3_init, 'b3')
    W4 = theano.shared(W4_init.astype(np.float32), 'W4')
    b4 = theano.shared(b4_init, 'b4')

    # momentum changes
    dW1 = theano.shared(np.zeros(W1_init.shape, dtype=np.float32), 'dW1')
    db1 = theano.shared(np.zeros(b1_init.shape, dtype=np.float32), 'db1')
    dW2 = theano.shared(np.zeros(W2_init.shape, dtype=np.float32), 'dW2')
    db2 = theano.shared(np.zeros(b2_init.shape, dtype=np.float32), 'db2')
    dW3 = theano.shared(np.zeros(W3_init.shape, dtype=np.float32), 'dW3')
    db3 = theano.shared(np.zeros(b3_init.shape, dtype=np.float32), 'db3')
    dW4 = theano.shared(np.zeros(W4_init.shape, dtype=np.float32), 'dW4')
    db4 = theano.shared(np.zeros(b4_init.shape, dtype=np.float32), 'db4')

    # forward pass
    Z1 = convpool(X, W1, b1)
    Z2 = convpool(Z1, W2, b2)
    Z3 = relu(Z2.flatten(ndim=2).dot(W3) + b3)
    pY = T.nnet.softmax( Z3.dot(W4) + b4)

    # define the cost function and prediction
    params = (W1, b1, W2, b2, W3, b3, W4, b4)
    reg_cost = reg*np.sum((param*param).sum() for param in params)
    cost = -(Y * T.log(pY)).sum() + reg_cost
    prediction = T.argmax(pY, axis=1)

    # step 3: training expressions and functions
    update_W1 = W1 + mu*dW1 - lr*T.grad(cost, W1)
    update_b1 = b1 + mu*db1 - lr*T.grad(cost, b1)
    update_W2 = W2 + mu*dW2 - lr*T.grad(cost, W2)
    update_b2 = b2 + mu*db2 - lr*T.grad(cost, b2)
    update_W3 = W3 + mu*dW3 - lr*T.grad(cost, W3)
    update_b3 = b3 + mu*db3 - lr*T.grad(cost, b3)
    update_W4 = W4 + mu*dW4 - lr*T.grad(cost, W4)
    update_b4 = b4 + mu*db4 - lr*T.grad(cost, b4)

    # update weight changes
    update_dW1 = mu*dW1 - lr*T.grad(cost, W1)
    update_db1 = mu*db1 - lr*T.grad(cost, b1)
    update_dW2 = mu*dW2 - lr*T.grad(cost, W2)
    update_db2 = mu*db2 - lr*T.grad(cost, b2)
    update_dW3 = mu*dW3 - lr*T.grad(cost, W3)
    update_db3 = mu*db3 - lr*T.grad(cost, b3)
    update_dW4 = mu*dW4 - lr*T.grad(cost, W4)
    update_db4 = mu*db4 - lr*T.grad(cost, b4)

    train = theano.function(
        inputs=[X, Y],
        updates=[
            (W1, update_W1),
            (b1, update_b1),
            (W2, update_W2),
            (b2, update_b2),
            (W3, update_W3),
            (b3, update_b3),
            (W4, update_W4),
            (b4, update_b4),
            (dW1, update_dW1),
            (db1, update_db1),
            (dW2, update_dW2),
            (db2, update_db2),
            (dW3, update_dW3),
            (db3, update_db3),
            (dW4, update_dW4),
            (db4, update_db4),
        ],
    )

    # create another function for this because we want it over the whole dataset
    get_prediction = theano.function(
        inputs=[X, Y],
        outputs=[cost, prediction],
    )

    t0 = datetime.now()
    LL = []
    for i in range(max_iter):
        for j in range(n_batches):
            Xbatch = Xtrain[j*batch_sz:(j*batch_sz + batch_sz),]
            Ybatch = Ytrain_ind[j*batch_sz:(j*batch_sz + batch_sz),]

            train(Xbatch, Ybatch)
            if j % print_period == 0:
                cost_val, prediction_val = get_prediction(Xtest, Ytest_ind)
                err = error_rate(prediction_val, Ytest)
                print("Cost / err at iteration i=%d, j=%d: %.3f / %.3f" % (i, j, cost_val, err))
                LL.append(cost_val)
    print("Elapsed time:", (datetime.now() - t0))
    plt.plot(LL)
    plt.show()

    # visualize W1 (20, 3, 5, 5)
    W1_val = W1.get_value()
    grid = np.zeros((8*5, 8*5))
    m = 0
    n = 0
    for i in range(20):
        for j in range(3):
            filt = W1_val[i,j]
            grid[m*5:(m+1)*5,n*5:(n+1)*5] = filt
            m += 1
            if m >= 8:
                m = 0
                n += 1
    plt.imshow(grid, cmap='gray')
    plt.title("W1")
    plt.show()

    # visualize W2 (50, 20, 5, 5)
    W2_val = W2.get_value()
    grid = np.zeros((32*5, 32*5))
    m = 0
    n = 0
    for i in range(50):
        for j in range(20):
            filt = W2_val[i,j]
            grid[m*5:(m+1)*5,n*5:(n+1)*5] = filt
            m += 1
            if m >= 32:
                m = 0
                n += 1
    plt.imshow(grid, cmap='gray')
    plt.title("W2")
    plt.show()
Ejemplo n.º 2
0
def main():
    # step 1: load the data, transform as needed
    train, test = get_data()

    # Need to scale! don't leave as 0..255
    # Y is a N x 1 matrix with values 1..10 (MATLAB indexes by 1)
    # So flatten it and make it 0..9
    # Also need indicator matrix for cost calculation
    Xtrain = rearrange(train['X'])
    Ytrain = train['y'].flatten() - 1
    del train
    Xtrain, Ytrain = shuffle(Xtrain, Ytrain)
    Ytrain_ind = y2indicator(Ytrain)

    Xtest = rearrange(test['X'])
    Ytest = test['y'].flatten() - 1
    del test
    Ytest_ind = y2indicator(Ytest)

    max_iter = 8
    print_period = 10

    lr = np.float32(0.00001)
    reg = np.float32(0.01)
    mu = np.float32(0.99)

    N = Xtrain.shape[0]
    batch_sz = 500
    n_batches = N // batch_sz

    M = 500
    K = 10
    poolsz = (2, 2)

    # after conv will be of dimension 32 - 5 + 1 = 28
    # after downsample 28 / 2 = 14
    W1_shape = (
        20, 3, 5, 5
    )  # (num_feature_maps, num_color_channels, filter_width, filter_height)
    W1_init = init_filter(W1_shape, poolsz)
    b1_init = np.zeros(W1_shape[0],
                       dtype=np.float32)  # one bias per output feature map

    # after conv will be of dimension 14 - 5 + 1 = 10
    # after downsample 10 / 2 = 5
    W2_shape = (
        50, 20, 5, 5
    )  # (num_feature_maps, old_num_feature_maps, filter_width, filter_height)
    W2_init = init_filter(W2_shape, poolsz)
    b2_init = np.zeros(W2_shape[0], dtype=np.float32)

    # vanilla ANN weights
    W3_init = np.random.randn(W2_shape[0] * 5 * 5,
                              M) / np.sqrt(W2_shape[0] * 5 * 5 + M)
    b3_init = np.zeros(M, dtype=np.float32)
    W4_init = np.random.randn(M, K) / np.sqrt(M + K)
    b4_init = np.zeros(K, dtype=np.float32)

    # step 2: define theano variables and expressions
    X = T.tensor4('X', dtype='float32')
    Y = T.matrix('T')
    W1 = theano.shared(W1_init, 'W1')
    b1 = theano.shared(b1_init, 'b1')
    W2 = theano.shared(W2_init, 'W2')
    b2 = theano.shared(b2_init, 'b2')
    W3 = theano.shared(W3_init.astype(np.float32), 'W3')
    b3 = theano.shared(b3_init, 'b3')
    W4 = theano.shared(W4_init.astype(np.float32), 'W4')
    b4 = theano.shared(b4_init, 'b4')

    # momentum changes
    dW1 = theano.shared(np.zeros(W1_init.shape, dtype=np.float32), 'dW1')
    db1 = theano.shared(np.zeros(b1_init.shape, dtype=np.float32), 'db1')
    dW2 = theano.shared(np.zeros(W2_init.shape, dtype=np.float32), 'dW2')
    db2 = theano.shared(np.zeros(b2_init.shape, dtype=np.float32), 'db2')
    dW3 = theano.shared(np.zeros(W3_init.shape, dtype=np.float32), 'dW3')
    db3 = theano.shared(np.zeros(b3_init.shape, dtype=np.float32), 'db3')
    dW4 = theano.shared(np.zeros(W4_init.shape, dtype=np.float32), 'dW4')
    db4 = theano.shared(np.zeros(b4_init.shape, dtype=np.float32), 'db4')

    # forward pass
    Z1 = convpool(X, W1, b1)
    Z2 = convpool(Z1, W2, b2)
    Z3 = relu(Z2.flatten(ndim=2).dot(W3) + b3)
    pY = T.nnet.softmax(Z3.dot(W4) + b4)

    # define the cost function and prediction
    params = (W1, b1, W2, b2, W3, b3, W4, b4)
    reg_cost = reg * sum((param * param).sum() for param in params)
    cost = -(Y * T.log(pY)).sum() + reg_cost
    prediction = T.argmax(pY, axis=1)

    # step 3: training expressions and functions
    update_W1 = W1 + mu * dW1 - lr * T.grad(cost, W1)
    update_b1 = b1 + mu * db1 - lr * T.grad(cost, b1)
    update_W2 = W2 + mu * dW2 - lr * T.grad(cost, W2)
    update_b2 = b2 + mu * db2 - lr * T.grad(cost, b2)
    update_W3 = W3 + mu * dW3 - lr * T.grad(cost, W3)
    update_b3 = b3 + mu * db3 - lr * T.grad(cost, b3)
    update_W4 = W4 + mu * dW4 - lr * T.grad(cost, W4)
    update_b4 = b4 + mu * db4 - lr * T.grad(cost, b4)

    # update weight changes
    update_dW1 = mu * dW1 - lr * T.grad(cost, W1)
    update_db1 = mu * db1 - lr * T.grad(cost, b1)
    update_dW2 = mu * dW2 - lr * T.grad(cost, W2)
    update_db2 = mu * db2 - lr * T.grad(cost, b2)
    update_dW3 = mu * dW3 - lr * T.grad(cost, W3)
    update_db3 = mu * db3 - lr * T.grad(cost, b3)
    update_dW4 = mu * dW4 - lr * T.grad(cost, W4)
    update_db4 = mu * db4 - lr * T.grad(cost, b4)

    train = theano.function(
        inputs=[X, Y],
        updates=[
            (W1, update_W1),
            (b1, update_b1),
            (W2, update_W2),
            (b2, update_b2),
            (W3, update_W3),
            (b3, update_b3),
            (W4, update_W4),
            (b4, update_b4),
            (dW1, update_dW1),
            (db1, update_db1),
            (dW2, update_dW2),
            (db2, update_db2),
            (dW3, update_dW3),
            (db3, update_db3),
            (dW4, update_dW4),
            (db4, update_db4),
        ],
    )

    # create another function for this because we want it over the whole dataset
    get_prediction = theano.function(
        inputs=[X, Y],
        outputs=[cost, prediction],
    )

    t0 = datetime.now()
    LL = []
    for i in range(max_iter):
        for j in range(n_batches):
            Xbatch = Xtrain[j * batch_sz:(j * batch_sz + batch_sz), ]
            Ybatch = Ytrain_ind[j * batch_sz:(j * batch_sz + batch_sz), ]

            train(Xbatch, Ybatch)
            if j % print_period == 0:
                cost_val, prediction_val = get_prediction(Xtest, Ytest_ind)
                err = error_rate(prediction_val, Ytest)
                print("Cost / err at iteration i=%d, j=%d: %.3f / %.3f" %
                      (i, j, cost_val, err))
                LL.append(cost_val)
    print("Elapsed time:", (datetime.now() - t0))
    plt.plot(LL)
    plt.show()

    # visualize W1 (20, 3, 5, 5)
    W1_val = W1.get_value()
    grid = np.zeros((8 * 5, 8 * 5))
    m = 0
    n = 0
    for i in range(20):
        for j in range(3):
            filt = W1_val[i, j]
            grid[m * 5:(m + 1) * 5, n * 5:(n + 1) * 5] = filt
            m += 1
            if m >= 8:
                m = 0
                n += 1
    plt.imshow(grid, cmap='gray')
    plt.title("W1")
    plt.show()

    # visualize W2 (50, 20, 5, 5)
    W2_val = W2.get_value()
    grid = np.zeros((32 * 5, 32 * 5))
    m = 0
    n = 0
    for i in range(50):
        for j in range(20):
            filt = W2_val[i, j]
            grid[m * 5:(m + 1) * 5, n * 5:(n + 1) * 5] = filt
            m += 1
            if m >= 32:
                m = 0
                n += 1
    plt.imshow(grid, cmap='gray')
    plt.title("W2")
    plt.show()