Ejemplo n.º 1
0
def _extract_summary_from_model_scores(report, extracted):
    n = ('data', 'calibration', 'model_scores', 'model_selections')
    if not dsp_utl.are_in_nested_dicts(report, *n):
        return False

    sel = dsp_utl.get_nested_dicts(report, *n)
    for k, v in dsp_utl.stack_nested_keys(extracted, depth=3):
        n = k[1::-1]
        if k[-1] == 'output' and dsp_utl.are_in_nested_dicts(sel, *n):
            gen = dsp_utl.get_nested_dicts(sel, *n)
            gen = ((d['model_id'], d['status']) for d in gen if 'status' in d)
            o = _format_dict(gen, 'status %s')
            v.update(o)

    return True
Ejemplo n.º 2
0
def _scores2df(data):
    n = ('data', 'calibration', 'model_scores')
    if not dsp_utl.are_in_nested_dicts(data, *n):
        return {}

    scores = dsp_utl.get_nested_dicts(data, *n)

    it = (('model_selections', ['model_id'], 2, ('stage', 'cycle'),
           ()), ('score_by_model', ['model_id'], 1, ('cycle', ), ()),
          ('scores', ['model_id', 'param_id'], 2, ('cycle', 'cycle'),
           ()), ('param_selections', ['param_id'], 2, ('stage', 'cycle'),
                 ()), ('models_uuid', ['cycle'], 0, (), ('cycle', )))
    dfs = []
    for k, idx, depth, col_keys, row_keys in it:
        if k not in scores:
            continue
        df = _dd2df(scores[k],
                    idx,
                    depth=depth,
                    col_key=functools.partial(_sort_key, p_keys=col_keys),
                    row_key=functools.partial(_sort_key, p_keys=row_keys))
        setattr(df, 'name', k)
        dfs.append(df)
    if dfs:
        return {'.'.join(n): dfs}
    else:
        return {}
Ejemplo n.º 3
0
def _process_folder_files(*args, result_listener=None, **kwargs):
    """
    Process all xls-files in a folder with CO2MPAS-model.

    :param list input_files:
        A list of input xl-files.

    :param output_folder:
        Output folder.
    :type output_folder: str

    :param plot_workflow:
        If to show the CO2MPAS model workflow.
    :type plot_workflow: bool, optional

    :param output_template:
        The xlsx-file to use as template and import existing sheets from.

        - If file already exists, a clone gets updated with new sheets.
        - If it is None, it copies and uses the input-file as template.
        - if it is `False`, it does not use any template and a fresh output
          xlsx-file is created.
    :type output_folder: None,False,str

    """
    start_time = datetime.datetime.today()

    summary, n = {}, ('solution', 'summary')
    for res in _yield_folder_files_results(start_time, *args, **kwargs):
        if dsp_utl.are_in_nested_dicts(res, *n):
            _add2summary(summary, dsp_utl.get_nested_dicts(res, *n))
            notify_result_listener(result_listener, res)

    return summary, start_time
Ejemplo n.º 4
0
def compare_outputs_vs_targets(data):
    """
    Compares model outputs vs targets.

    :param data:
        Model data.
    :type data: dict

    :return:
        Comparison results.
    :rtype: dict
    """

    res = {}
    metrics = _get_metrics()

    for k, t in dsp_utl.stack_nested_keys(data.get('target', {}), depth=3):
        if not dsp_utl.are_in_nested_dicts(data, 'output', *k):
            continue

        o = dsp_utl.get_nested_dicts(data, 'output', *k)
        v = _compare(t, o, metrics=metrics)
        if v:
            dsp_utl.get_nested_dicts(res, *k, default=co2_utl.ret_v(v))

    return res
Ejemplo n.º 5
0
def _add_times_base(data, scope='base', usage='input', **match):
    if scope != 'base':
        return
    sh_type = _get_sheet_type(scope=scope, usage=usage, **match)
    n = (scope, 'target')
    if sh_type == 'ts' and dsp_utl.are_in_nested_dicts(data, *n):
        t = dsp_utl.get_nested_dicts(data, *n)
        for k, v in dsp_utl.stack_nested_keys(t, key=n, depth=2):
            if 'times' not in v:
                n = list(k + ('times', ))
                n[1] = usage
                if dsp_utl.are_in_nested_dicts(data, *n):
                    v['times'] = dsp_utl.get_nested_dicts(data, *n)
                else:
                    for i, j in dsp_utl.stack_nested_keys(data, depth=4):
                        if 'times' in j:
                            v['times'] = j['times']
                            break
Ejemplo n.º 6
0
def _add_special_data2report(data, report, to_keys, *from_keys):
    if from_keys[-1] != 'times' and \
            dsp_utl.are_in_nested_dicts(data, *from_keys):
        v = dsp_utl.get_nested_dicts(data, *from_keys)
        n = to_keys + ('{}.{}'.format(from_keys[0], from_keys[-1]),)
        dsp_utl.get_nested_dicts(report, *n[:-1],
                                 default=collections.OrderedDict)[n[-1]] = v
        return True, v
    return False, None
Ejemplo n.º 7
0
def _extract_summary_from_summary(report, extracted):
    n = ('summary', 'results')
    if dsp_utl.are_in_nested_dicts(report, *n):
        for j, w in dsp_utl.get_nested_dicts(report, *n).items():
            if j in ('declared_co2_emission', 'co2_emission',
                     'fuel_consumption'):
                for k, v in dsp_utl.stack_nested_keys(w, depth=3):
                    if v:
                        dsp_utl.get_nested_dicts(extracted, *k).update(v)
Ejemplo n.º 8
0
def format_report_scores(data):
    res = {}
    scores = 'data', 'calibration', 'model_scores'
    if dsp_utl.are_in_nested_dicts(data, *scores):
        n = scores + ('param_selections',)
        v = _format_selection(dsp_utl.get_nested_dicts(data, *n), 2, 'param_id')
        if v:
            dsp_utl.get_nested_dicts(res, *n, default=co2_utl.ret_v(v))

        n = scores + ('model_selections',)
        v = _format_selection(dsp_utl.get_nested_dicts(data, *n), 3)
        if v:
            dsp_utl.get_nested_dicts(res, *n, default=co2_utl.ret_v(v))

        n = scores + ('score_by_model',)
        v = _format_selection(dsp_utl.get_nested_dicts(data, *n), 2)
        if v:
            dsp_utl.get_nested_dicts(res, *n, default=co2_utl.ret_v(v))

        n = scores + ('scores',)
        v = _format_scores(dsp_utl.get_nested_dicts(data, *n))
        if v:
            dsp_utl.get_nested_dicts(res, *n, default=co2_utl.ret_v(v))

        v = []
        for k in ('nedc_h', 'nedc_l', 'wltp_h', 'wltp_l'):
            n = 'data', 'prediction', 'models_%s' % k
            if dsp_utl.are_in_nested_dicts(data, *n):
                v.append({
                    'cycle': k,
                    'uuid': base64.encodebytes(
                        dill.dumps(dsp_utl.get_nested_dicts(data, *n))
                    )
                })

        if v:
            n = scores + ('models_uuid',)
            dsp_utl.get_nested_dicts(res, *n, default=co2_utl.ret_v(v))

    return res
Ejemplo n.º 9
0
def select_declaration_data(data, diff=None):
    res = {}
    for k, v in dsp_utl.stack_nested_keys(constants.con_vals.DECLARATION_DATA):
        if v and dsp_utl.are_in_nested_dicts(data, *k):
            v = dsp_utl.get_nested_dicts(data, *k)
            dsp_utl.get_nested_dicts(res, *k, default=co2_utl.ret_v(v))

    if diff is not None:
        diff.clear()
        diff.update(v[0] for v in dsp_utl.stack_nested_keys(data, depth=4))
        it = (v[0] for v in dsp_utl.stack_nested_keys(res, depth=4))
        diff.difference_update(it)
    return res
Ejemplo n.º 10
0
def re_sample_targets(data):
    res = {}
    for k, v in dsp_utl.stack_nested_keys(data.get('target', {}), depth=2):
        if dsp_utl.are_in_nested_dicts(data, 'output', *k):
            o = dsp_utl.get_nested_dicts(data, 'output', *k)
            o = _split_by_data_format(o)
            t = dsp_utl.selector(o, _split_by_data_format(v), allow_miss=True)

            if 'times' not in t.get('ts', {}) or 'times' not in o['ts']:
                t.pop('ts', None)
            else:
                time_series = t['ts']
                x, xp = o['ts']['times'], time_series.pop('times')
                if not _is_equal(x, xp):
                    for i, fp in time_series.items():
                        time_series[i] = np.interp(x, xp, fp)
            v = dsp_utl.combine_dicts(*t.values())
            dsp_utl.get_nested_dicts(res, *k, default=co2_utl.ret_v(v))

    return res
Ejemplo n.º 11
0
def get_selection(data):
    n = ('data', 'calibration', 'model_scores', 'model_selections')
    if dsp_utl.are_in_nested_dicts(data, *n):
        return _format_selection(dsp_utl.get_nested_dicts(data, *n), 3)
    return {}