Ejemplo n.º 1
0
 def save_sample(self, fname, name):
     sample = np.atleast_2d(np.loadtxt(fname))
     if not sample.size:
         return None
     collection = SampleCollection(self.model, self.output, name=str(name))
     for row in sample:
         collection.add(
             row[2:2 + self.n_sampled],
             derived=row[2 + self.n_sampled:2 + self.n_sampled + self.n_derived],
             weight=row[0],
             logpriors=row[-(self.n_priors + self.n_likes):-self.n_likes],
             loglikes=row[-self.n_likes:])
     # make sure that the points are written
     collection.out_update()
     return collection
Ejemplo n.º 2
0
class MCMC(CovmatSampler):
    r"""
    Adaptive, speed-hierarchy-aware MCMC sampler (adapted from CosmoMC)
    \cite{Lewis:2002ah,Lewis:2013hha}.
    """
    _at_resume_prefer_new = CovmatSampler._at_resume_prefer_new + [
        "burn_in", "callback_function", "callback_every", "max_tries",
        "output_every", "learn_every", "learn_proposal_Rminus1_max",
        "learn_proposal_Rminus1_max_early", "learn_proposal_Rminus1_min",
        "max_samples", "Rminus1_stop", "Rminus1_cl_stop", "Rminus1_cl_level",
        "covmat", "covmat_params"
    ]
    _at_resume_prefer_old = CovmatSampler._at_resume_prefer_new + [
        "proposal_scale", "blocking"
    ]
    file_base_name = 'mcmc'

    # instance variables from yaml
    burn_in: NumberWithUnits
    learn_every: NumberWithUnits
    output_every: NumberWithUnits
    callback_every: NumberWithUnits
    max_tries: NumberWithUnits
    max_samples: int
    drag: bool
    callback_function: Optional[Callable]
    blocking: Optional[Sequence]
    proposal_scale: float
    learn_proposal: bool
    learn_proposal_Rminus1_max: float
    learn_proposal_Rminus1_max_early: float
    Rminus1_cl_level: float
    Rminus1_stop: float
    Rminus1_cl_stop: float
    Rminus1_single_split: int
    learn_proposal_Rminus1_min: float
    measure_speeds: bool
    oversample_thin: int
    oversample_power: float

    def set_instance_defaults(self):
        super().set_instance_defaults()
        # checkpoint variables
        self.converged = False
        self.mpi_size = None
        self.Rminus1_last = np.inf

    def initialize(self):
        """Initializes the sampler:
        creates the proposal distribution and draws the initial sample."""
        if not self.model.prior.d():
            raise LoggedError(self.log,
                              "No parameters being varied for sampler")
        self.log.debug("Initializing")
        # MARKED FOR DEPRECATION IN v3.0
        if getattr(self, "oversample", None) is not None:
            raise LoggedError(
                self.log, "`oversample` has been deprecated. "
                "Oversampling is now requested by setting "
                "`oversample_power` > 0.")
        # END OF DEPRECATION BLOCK
        # MARKED FOR DEPRECATION IN v3.0
        if getattr(self, "check_every", None) is not None:
            raise LoggedError(
                self.log, "`check_every` has been deprecated. "
                "Please use `learn_every` instead.")
        # END OF DEPRECATION BLOCK
        if self.callback_every is None:
            self.callback_every = self.learn_every
        self._quants_d_units = []
        for q in ["max_tries", "learn_every", "callback_every", "burn_in"]:
            number = NumberWithUnits(getattr(self, q), "d", dtype=int)
            self._quants_d_units.append(number)
            setattr(self, q, number)
        self.output_every = NumberWithUnits(self.output_every, "s", dtype=int)
        if is_main_process():
            if self.output.is_resuming() and (max(self.mpi_size or 0, 1) !=
                                              mpi.size()):
                raise LoggedError(
                    self.log,
                    "Cannot resume a run with a different number of chains: "
                    "was %d and now is %d.", max(self.mpi_size or 0, 1),
                    mpi.size())
        sync_processes()
        # One collection per MPI process: `name` is the MPI rank + 1
        name = str(1 + mpi.rank())
        self.collection = SampleCollection(self.model,
                                           self.output,
                                           name=name,
                                           resuming=self.output.is_resuming())
        self.current_point = OneSamplePoint(self.model)
        # Use standard MH steps by default
        self.get_new_sample = self.get_new_sample_metropolis
        # Prepare callback function
        if self.callback_function:
            self.callback_function_callable = (get_external_function(
                self.callback_function))
        # Useful for getting last points added inside callback function
        self.last_point_callback = 0
        self.i_learn = 1
        # Monitoring/restore progress
        if is_main_process():
            cols = [
                "N", "timestamp", "acceptance_rate", "Rminus1", "Rminus1_cl"
            ]
            self.progress = DataFrame(columns=cols)
            if self.output and not self.output.is_resuming():
                header_fmt = {
                    "N": 6 * " " + "N",
                    "timestamp": 17 * " " + "timestamp"
                }
                with open(self.progress_filename(), "w",
                          encoding="utf-8") as progress_file:
                    progress_file.write("# " + " ".join([
                        header_fmt.get(col, ((7 + 8) - len(col)) * " " + col)
                        for col in self.progress.columns
                    ]) + "\n")
        # Get first point, to be discarded -- not possible to determine its weight
        # Still, we need to compute derived parameters, since, as the proposal "blocked",
        # we may be saving the initial state of some block.
        # NB: if resuming but nothing was written (burn-in not finished): re-start
        if self.output.is_resuming() and len(self.collection):
            last = len(self.collection) - 1
            initial_point = (self.collection[
                self.collection.sampled_params].iloc[last]).to_numpy(
                    dtype=np.float64, copy=True)
            results = LogPosterior(
                logpost=-self.collection[OutPar.minuslogpost].iloc[last],
                logpriors=-(self.collection[
                    self.collection.minuslogprior_names].iloc[last].to_numpy(
                        dtype=np.float64, copy=True)),
                loglikes=-0.5 *
                (self.collection[self.collection.chi2_names].iloc[last].
                 to_numpy(dtype=np.float64, copy=True)),
                derived=(self.collection[
                    self.collection.derived_params].iloc[last].to_numpy(
                        dtype=np.float64, copy=True)))
        else:
            # NB: max_tries adjusted to dim instead of #cycles (blocking not computed yet)
            self.max_tries.set_scale(self.model.prior.d())
            self.log.info(
                "Getting initial point... (this may take a few seconds)")
            initial_point, results = \
                self.model.get_valid_point(max_tries=self.max_tries.value,
                                           random_state=self._rng)
            # If resuming but no existing chain, assume failed run and ignore blocking
            # if speeds measurement requested
            if self.output.is_resuming() and not len(self.collection) \
                    and self.measure_speeds:
                self.blocking = None
            if self.measure_speeds and self.blocking:
                self.mpi_warning(
                    "Parameter blocking manually fixed: speeds will not be measured."
                )
            elif self.measure_speeds:
                n = None if self.measure_speeds is True else int(
                    self.measure_speeds)
                self.model.measure_and_set_speeds(n=n,
                                                  discard=0,
                                                  random_state=self._rng)
        self.set_proposer_blocking()
        self.set_proposer_initial_covmat(load=True)

        self.current_point.add(initial_point, results)
        self.log.info("Initial point: %s", self.current_point)
        # Max #(learn+convergence checks) to wait,
        # in case one process dies/hangs without raising error
        self.been_waiting = 0
        self.max_waiting = max(50, self.max_tries.unit_value)
        # Burning-in countdown -- the +1 accounts for the initial point (always accepted)
        self.burn_in_left = self.burn_in.value * self.current_point.output_thin + 1
        self._msg_ready = ("Ready to check convergence" +
                           (" and learn a new proposal covmat"
                            if self.learn_proposal else ""))

        # Initial dummy checkpoint
        # (needed when 1st "learn point" not reached in prev. run)
        self.write_checkpoint()

    @property
    def i_last_slow_block(self):
        if self.drag:
            return next(i for i, o in enumerate(self.oversampling_factors)
                        if o != 1) - 1
        self.log.warning(
            "`i_last_slow_block` is only well defined when dragging.")
        return 0

    @property
    def slow_blocks(self):
        return self.blocks[:1 + self.i_last_slow_block]

    @property
    def slow_params(self):
        return list(chain(*self.slow_blocks))

    @property
    def n_slow(self):
        return len(self.slow_params)

    @property
    def fast_blocks(self):
        return self.blocks[self.i_last_slow_block + 1:]

    @property
    def fast_params(self):
        return list(chain(*self.fast_blocks))

    @property
    def n_fast(self):
        return len(self.fast_params)

    def get_acceptance_rate(self, first=0, last=None):
        return (((last or self.n()) - (first or 0)) /
                self.collection[OutPar.weight][first:last].sum())

    def set_proposer_blocking(self):
        if self.blocking:
            # Includes the case in which we are resuming
            self.blocks, self.oversampling_factors = \
                self.model.check_blocking(self.blocking)
        else:
            self.blocks, self.oversampling_factors = \
                self.model.get_param_blocking_for_sampler(
                    oversample_power=self.oversample_power, split_fast_slow=self.drag)
        # Turn off dragging if one block, or if speed differences < 2x, or no differences
        if self.drag:
            if len(self.blocks) == 1:
                self.drag = False
                self.log.warning(
                    "Dragging disabled: not possible if there is only one block."
                )
            if max(self.oversampling_factors) / min(
                    self.oversampling_factors) < 2:
                self.drag = False
                self.log.warning("Dragging disabled: speed ratios < 2.")
        if self.drag:
            # The definition of oversample_power=1 as spending the same amount of time in
            # the slow and fast block would suggest a 1/2 factor here, but this additional
            # factor of 2 w.r.t. oversampling should produce an equivalent exploration
            # efficiency.
            self.drag_interp_steps = int(
                np.round(
                    self.oversampling_factors[self.i_last_slow_block + 1] *
                    self.n_fast / self.n_slow))
            if self.drag_interp_steps < 2:
                self.drag = False
                self.log.warning(
                    "Dragging disabled: "
                    "speed ratio and fast-to-slow ratio not large enough.")
        # Define proposer and other blocking-related quantities
        if self.drag:
            # MARKED FOR DEPRECATION IN v3.0
            if getattr(self, "drag_limits", None) is not None:
                raise LoggedError(
                    self.log, "`drag_limits` has been deprecated. "
                    "Use 'oversample_power' to control the amount"
                    " of dragging steps.")
            # END OF DEPRECATION BLOCK
            self.get_new_sample = self.get_new_sample_dragging
            self.mpi_info("Dragging with number of interpolating steps:")
            max_width = len(str(self.drag_interp_steps))
            self.mpi_info("* %" + "%d" % max_width + "d : %r", 1,
                          self.slow_blocks)
            self.mpi_info("* %" + "%d" % max_width + "d : %r",
                          self.drag_interp_steps, self.fast_blocks)
        elif np.any(np.array(self.oversampling_factors) > 1):
            self.mpi_info("Oversampling with factors:")
            max_width = len(str(max(self.oversampling_factors)))
            for f, b in zip(self.oversampling_factors, self.blocks):
                self.mpi_info("* %" + "%d" % max_width + "d : %r", f, b)
            if self.oversample_thin:
                self.current_point.output_thin = int(
                    np.round(
                        sum(
                            len(b) * o for b, o in zip(
                                self.blocks, self.oversampling_factors)) /
                        self.model.prior.d()))

        # Save blocking in updated info, in case we want to resume
        self._updated_info["blocking"] = list(
            zip(self.oversampling_factors, self.blocks))
        sampled_params_list = list(
            self.model.parameterization.sampled_params())
        blocks_indices = [[sampled_params_list.index(p) for p in b]
                          for b in self.blocks]
        self.proposer = BlockedProposer(
            blocks_indices,
            self._rng,
            oversampling_factors=self.oversampling_factors,
            i_last_slow_block=(self.i_last_slow_block if self.drag else None),
            proposal_scale=self.proposal_scale)
        # Cycle length, taking into account oversampling/dragging
        if self.drag:
            self.cycle_length = self.n_slow
        else:
            self.cycle_length = sum(
                len(b) * o
                for b, o in zip(blocks_indices, self.oversampling_factors))
        self.log.debug("Cycle length in steps: %r", self.cycle_length)
        for number in self._quants_d_units:
            number.set_scale(self.cycle_length //
                             self.current_point.output_thin)

    def set_proposer_initial_covmat(self, load=False):
        if load:
            # Build the initial covariance matrix of the proposal, or load from checkpoint
            self._initial_covmat, where_nan = self._load_covmat(
                prefer_load_old=self.output.is_resuming())
            if np.any(where_nan) and self.learn_proposal:
                # We want to start learning the covmat earlier.
                self.mpi_info(
                    "Covariance matrix " +
                    ("not present" if np.all(where_nan) else "not complete") +
                    ". We will start learning the covariance of the proposal "
                    "earlier: R-1 = %g (would be %g if all params loaded).",
                    self.learn_proposal_Rminus1_max_early,
                    self.learn_proposal_Rminus1_max)
                self.learn_proposal_Rminus1_max = self.learn_proposal_Rminus1_max_early
            self.log.debug(
                "Sampling with covmat:\n%s",
                DataFrame(self._initial_covmat,
                          columns=self.model.parameterization.sampled_params(),
                          index=self.model.parameterization.sampled_params()).
                to_string(line_width=line_width))
        self.proposer.set_covariance(self._initial_covmat)

    def _get_last_nondragging_block(self, blocks, speeds):
        # blocks and speeds are already sorted
        log_differences = np.zeros(len(blocks) - 1)
        for i in range(len(blocks) - 1):
            log_differences[i] = (np.log(np.min(speeds[:i + 1])) -
                                  np.log(np.min(speeds[i + 1:])))
        i_max = np.argmin(log_differences)
        return i_max

    def run(self):
        """
        Runs the sampler.
        """
        self.mpi_info("Sampling!" + (
            " (NB: no accepted step will be saved until %d burn-in samples " %
            self.burn_in.value +
            "have been obtained)" if self.burn_in.value else ""))
        self.n_steps_raw = 0
        last_output: float = 0
        last_n = self.n()
        state_check_every = 1
        with mpi.ProcessState(self) as state:
            while last_n < self.max_samples and not self.converged:
                self.get_new_sample()
                self.n_steps_raw += 1
                if self.output_every.unit:
                    # if output_every in sec, print some info
                    # and dump at fixed time intervals
                    now = datetime.datetime.now()
                    now_sec = now.timestamp()
                    if now_sec >= last_output + self.output_every.value:
                        self.do_output(now)
                        last_output = now_sec
                        state.check_error()
                if self.current_point.weight == 1:
                    # have added new point
                    # Callback function
                    n = self.n()
                    if n != last_n:
                        # and actually added
                        last_n = n
                        if (self.callback_function
                                and not (max(n, 1) % self.callback_every.value)
                                and self.current_point.weight == 1):
                            self.callback_function_callable(self)
                            self.last_point_callback = len(self.collection)

                        if more_than_one_process():
                            # Checking convergence and (optionally) learning
                            # the covmat of the proposal
                            if self.check_ready() and state.set(
                                    mpi.State.READY):
                                self.log.info(self._msg_ready +
                                              " (waiting for the rest...)")
                            if state.all_ready():
                                self.mpi_info("All chains are r%s",
                                              self._msg_ready[1:])
                                self.check_convergence_and_learn_proposal()
                                self.i_learn += 1
                        else:
                            if self.check_ready():
                                self.log.debug(self._msg_ready)
                                self.check_convergence_and_learn_proposal()
                                self.i_learn += 1
                elif self.current_point.weight % state_check_every == 0:
                    state.check_error()
                    # more frequent checks near beginning
                    state_check_every = min(10, state_check_every + 1)

            if last_n == self.max_samples:
                self.log.info(
                    "Reached maximum number of accepted steps allowed (%s). "
                    "Stopping.", self.max_samples)

            # Write the last batch of samples ( < output_every (not in sec))
            self.collection.out_update()

        ns = mpi.gather(self.n())
        self.mpi_info("Sampling complete after %d accepted steps.", sum(ns))

    def n(self, burn_in=False):
        """
        Returns the total number of accepted steps taken, including or not burn-in steps
        depending on the value of the `burn_in` keyword.
        """
        return len(self.collection) + (
            0 if not burn_in else self.burn_in.value -
            self.burn_in_left // self.current_point.output_thin + 1)

    def get_new_sample_metropolis(self):
        """
        Draws a new trial point from the proposal pdf and checks whether it is accepted:
        if it is accepted, it saves the old one into the collection and sets the new one
        as the current state; if it is rejected increases the weight of the current state
        by 1.

        Returns:
           ``True`` for an accepted step, ``False`` for a rejected one.
        """
        trial = self.current_point.values.copy()
        self.proposer.get_proposal(trial)
        trial_results = self.model.logposterior(trial)
        accept = self.metropolis_accept(trial_results.logpost,
                                        self.current_point.logpost)
        self.process_accept_or_reject(accept, trial, trial_results)
        return accept

    def get_new_sample_dragging(self):
        """
        Draws a new trial point in the slow subspace, and gets the corresponding trial
        in the fast subspace by "dragging" the fast parameters.
        Finally, checks the acceptance of the total step using the "dragging" pdf:
        if it is accepted, it saves the old one into the collection and sets the new one
        as the current state; if it is rejected increases the weight of the current state
        by 1.

        Returns:
           ``True`` for an accepted step, ``False`` for a rejected one.
        """
        # Prepare starting and ending points *in the SLOW subspace*
        # "start_" and "end_" mean here the extremes in the SLOW subspace
        current_start_point = self.current_point.values
        current_start_logpost = self.current_point.logpost
        current_end_point = current_start_point.copy()
        self.proposer.get_proposal_slow(current_end_point)
        self.log.debug("Proposed slow end-point: %r", current_end_point)
        # Save derived parameters of delta_slow jump, in case I reject all the dragging
        # steps but accept the move in the slow direction only
        current_end = self.model.logposterior(current_end_point)
        if current_end.logpost == -np.inf:
            self.current_point.weight += 1
            return False
        # accumulators for the "dragging" probabilities to be metropolis-tested
        # at the end of the interpolation
        start_drag_logpost_acc = current_start_logpost
        end_drag_logpost_acc = current_end.logpost
        # don't compute derived during drag, unless must be computed anyway
        derived = self.model.requires_derived

        # alloc mem
        delta_fast = np.empty(len(current_start_point))
        # start dragging
        for i_step in range(1, 1 + self.drag_interp_steps):
            self.log.debug("Dragging step: %d", i_step)
            # take a step in the fast direction in both slow extremes
            delta_fast[:] = 0.
            self.proposer.get_proposal_fast(delta_fast)
            self.log.debug("Proposed fast step delta: %r", delta_fast)
            proposal_start_point = current_start_point + delta_fast
            # get the new extremes for the interpolated probability
            # (reject if any of them = -inf; avoid evaluating both if just one fails)
            # Force the computation of the (slow blocks) derived params at the starting
            # point, but discard them, since they contain the starting point's fast ones,
            # not used later -- save the end point's ones.
            proposal_start_logpost = self.model.logposterior(
                proposal_start_point,
                return_derived=bool(derived),
                _no_check=True).logpost

            if proposal_start_logpost != -np.inf:
                proposal_end_point = current_end_point + delta_fast
                proposal_end = self.model.logposterior(
                    proposal_end_point,
                    return_derived=bool(derived),
                    _no_check=True)

                if proposal_end.logpost != -np.inf:
                    # create the interpolated probability and do a Metropolis test

                    frac = i_step / (1 + self.drag_interp_steps)
                    proposal_interp_logpost = (
                        (1 - frac) * proposal_start_logpost +
                        frac * proposal_end.logpost)
                    current_interp_logpost = (
                        (1 - frac) * current_start_logpost +
                        frac * current_end.logpost)
                    accept_drag = self.metropolis_accept(
                        proposal_interp_logpost, current_interp_logpost)
                    if accept_drag:
                        # If the dragging step was accepted, do the drag
                        current_start_point = proposal_start_point
                        current_start_logpost = proposal_start_logpost
                        current_end_point = proposal_end_point
                        current_end = proposal_end
                else:
                    accept_drag = False
            else:
                accept_drag = False
            self.log.debug("Dragging step: %s",
                           ("accepted" if accept_drag else "rejected"))

            # In any case, update the dragging probability for the final metropolis test
            start_drag_logpost_acc += current_start_logpost
            end_drag_logpost_acc += current_end.logpost
        # Test for the TOTAL step
        n_average = 1 + self.drag_interp_steps
        accept = self.metropolis_accept(end_drag_logpost_acc / n_average,
                                        start_drag_logpost_acc / n_average)
        if accept and not derived:
            # recompute with derived parameters (slow parameter ones should be cached)
            current_end = self.model.logposterior(current_end_point)

        self.process_accept_or_reject(accept, current_end_point, current_end)
        self.log.debug("TOTAL step: %s",
                       ("accepted" if accept else "rejected"))
        return accept

    def metropolis_accept(self, logp_trial, logp_current):
        """
        Symmetric-proposal Metropolis-Hastings test.

        Returns:
           ``True`` or ``False``.
        """
        if logp_trial == -np.inf:
            return False
        elif logp_trial > logp_current:
            return True
        else:
            return self._rng.standard_exponential() > (logp_current -
                                                       logp_trial)

    def process_accept_or_reject(self, accept_state, trial, trial_results):
        """Processes the acceptance/rejection of the new point."""
        if accept_state:
            # add the old point to the collection (if not burning or initial point)
            if self.burn_in_left <= 0:
                if self.current_point.add_to_collection(self.collection):
                    self.log.debug("New sample, #%d: \n   %s", self.n(),
                                   self.current_point)
                    # Update chain files, if output_every *not* in sec
                    if not self.output_every.unit:
                        if self.n() % self.output_every.value == 0:
                            self.collection.out_update()
            else:
                self.burn_in_left -= 1
                self.log.debug("Burn-in sample:\n   %s", self.current_point)
                if self.burn_in_left == 0 and self.burn_in:
                    self.log.info(
                        "Finished burn-in phase: discarded %d accepted steps.",
                        self.burn_in.value)
            # set the new point as the current one, with weight one
            self.current_point.add(trial, trial_results)
        else:  # not accepted
            self.current_point.weight += 1
            # Failure criterion: chain stuck! (but be more permissive during burn_in)
            max_tries_now = self.max_tries.value * (
                1 + (10 - 1) * np.sign(self.burn_in_left))
            if self.current_point.weight > max_tries_now:
                self.collection.out_update()
                raise LoggedError(
                    self.log,
                    "The chain has been stuck for %d attempts, stopping sampling. "
                    "Make sure the reference point is semsible and initial covmat."
                    "For parameters not included in an initial covmat, the 'proposal' "
                    "width set for each parameter should be of order of the expected "
                    "conditional posterior width, which may be much smaller than the "
                    "marginalized posterior width - choose a smaller "
                    "rather than larger value if in doubt. You can also decrease the "
                    "'proposal_scale' option for mcmc, though small values will sample "
                    "less efficiently once things converge.\n"
                    "Alternatively (though not advisable) make 'max_tries: np.inf' "
                    "(or 'max_tries: .inf' in yaml).\n"
                    "Current point: %s", max_tries_now, self.current_point)

    # Functions to check convergence and learn the covariance of the proposal distribution

    def check_ready(self):
        """
        Checks if the chain(s) is(/are) ready to check convergence and, if requested,
        learn a new covariance matrix for the proposal distribution.
        """
        n = len(self.collection)
        # If *just* (weight==1) got ready to check+learn
        if not (n % self.learn_every.value) and n > 0:
            self.log.info("Learn + convergence test @ %d samples accepted.", n)
            self.model.dump_timing()
            if more_than_one_process():
                self.been_waiting += 1
                if self.been_waiting > self.max_waiting:
                    raise LoggedError(
                        self.log,
                        "Waiting for too long for all chains to be ready. "
                        "Maybe one of them is stuck or died unexpectedly?")
            return True
        return False

    # noinspection PyUnboundLocalVariable
    @np.errstate(all="ignore")
    def check_convergence_and_learn_proposal(self):
        """
        Checks the convergence of the sampling process, and, if requested,
        learns a new covariance matrix for the proposal distribution from the covariance
        of the last samples.
        """
        # Compute Rminus1 of means
        self.been_waiting = 0
        if more_than_one_process():
            # Compute and gather means and covs
            use_first = int(self.n() / 2)
            mean = self.collection.mean(first=use_first)
            cov = self.collection.cov(first=use_first)
            acceptance_rate = self.get_acceptance_rate(use_first)
            Ns, means, covs, acceptance_rates = mpi.array_gather(
                [self.n(), mean, cov, acceptance_rate])
        else:
            # Compute and gather means, covs and CL intervals of last m-1 chain fractions
            m = 1 + self.Rminus1_single_split
            cut = int(len(self.collection) / m)
            try:
                acceptance_rate = self.get_acceptance_rate(cut)
                Ns = np.ones(m - 1) * cut
                means = np.array([
                    self.collection.mean(first=i * cut, last=(i + 1) * cut - 1)
                    for i in range(1, m)
                ])
                covs = np.array([
                    self.collection.cov(first=i * cut, last=(i + 1) * cut - 1)
                    for i in range(1, m)
                ])
            except always_stop_exceptions:
                raise
            except Exception:
                self.log.info(
                    "Not enough points in chain to check convergence. "
                    "Waiting for next checkpoint.")
                return
            acceptance_rates = None
        if is_main_process():
            self.progress.at[self.i_learn, "N"] = sum(Ns)
            self.progress.at[self.i_learn, "timestamp"] = \
                datetime.datetime.now().isoformat()
            acceptance_rate = (np.average(acceptance_rates, weights=Ns)
                               if acceptance_rates is not None else
                               acceptance_rate)
            self.log.info(
                " - Acceptance rate: %.3f" +
                (" = avg(%r)" % list(acceptance_rates)
                 if acceptance_rates is not None else ""), acceptance_rate)
            self.progress.at[self.i_learn, "acceptance_rate"] = acceptance_rate
            # "Within" or "W" term -- our "units" for assessing convergence
            # and our prospective new covariance matrix
            mean_of_covs = np.average(covs, weights=Ns, axis=0)
            # "Between" or "B" term
            # We don't weight with the number of samples in the chains here:
            # shorter chains will likely be outliers, and we want to notice them
            cov_of_means = np.atleast_2d(np.cov(means.T))  # , fweights=Ns)
            # For numerical stability, we turn mean_of_covs into correlation matrix:
            #   rho = (diag(Sigma))^(-1/2) * Sigma * (diag(Sigma))^(-1/2)
            # and apply the same transformation to the mean of covs (same eigenvals!)
            d = np.sqrt(np.diag(cov_of_means))
            corr_of_means = (cov_of_means / d).T / d
            norm_mean_of_covs = (mean_of_covs / d).T / d
            success_means = False
            converged_means = False
            # Cholesky of (normalized) mean of covs and eigvals of Linv*cov_of_means*L
            try:
                L = np.linalg.cholesky(norm_mean_of_covs)
            except np.linalg.LinAlgError:
                self.log.warning(
                    "Negative covariance eigenvectors. "
                    "This may mean that the covariance of the samples does not "
                    "contain enough information at this point. "
                    "Skipping learning a new covmat for now.")
            else:
                Linv = np.linalg.inv(L)
                try:
                    eigvals = np.linalg.eigvalsh(
                        Linv.dot(corr_of_means).dot(Linv.T))
                    success_means = True
                except np.linalg.LinAlgError:
                    self.log.warning("Could not compute eigenvalues. "
                                     "Skipping learning a new covmat for now.")
                else:
                    Rminus1 = max(np.abs(eigvals))
                    self.progress.at[self.i_learn, "Rminus1"] = Rminus1
                    # For real square matrices, a possible def of the cond number is:
                    condition_number = Rminus1 / min(np.abs(eigvals))
                    self.log.debug(" - Condition number = %g",
                                   condition_number)
                    self.log.debug(" - Eigenvalues = %r", eigvals)
                    self.log.info(
                        " - Convergence of means: R-1 = %f after %d accepted steps"
                        % (Rminus1, sum(Ns)) +
                        (" = sum(%r)" %
                         list(Ns) if more_than_one_process() else ""))
                    # Have we converged in means?
                    # (criterion must be fulfilled twice in a row)
                    converged_means = max(
                        Rminus1, self.Rminus1_last) < self.Rminus1_stop
        else:
            mean_of_covs = None
            success_means = None
            converged_means = False
            Rminus1 = None
        success_means, converged_means = mpi.share(
            (success_means, converged_means))
        # Check the convergence of the bounds of the confidence intervals
        # Same as R-1, but with the rms deviation from the mean bound
        # in units of the mean standard deviation of the chains
        if converged_means:
            if more_than_one_process():
                mcsamples = self.collection.sampled_to_getdist_mcsamples(
                    first=use_first)
                try:
                    bound = np.array([[
                        mcsamples.confidence(i,
                                             limfrac=self.Rminus1_cl_level /
                                             2.,
                                             upper=which)
                        for i in range(self.model.prior.d())
                    ] for which in [False, True]]).T
                    success_bounds = True
                except:
                    bound = None
                    success_bounds = False
                bounds = np.array(mpi.gather(bound))
            else:
                try:
                    mcsamples_list = [
                        self.collection.sampled_to_getdist_mcsamples(
                            first=i * cut, last=(i + 1) * cut - 1)
                        for i in range(1, m)
                    ]
                except always_stop_exceptions:
                    raise
                except:
                    self.log.info(
                        "Not enough points in chain to check c.l. convergence. "
                        "Waiting for next checkpoint.")
                    return
                try:
                    bounds = [
                        np.array([[
                            mcs.confidence(i,
                                           limfrac=self.Rminus1_cl_level / 2.,
                                           upper=which)
                            for i in range(self.model.prior.d())
                        ] for which in [False, True]]).T
                        for mcs in mcsamples_list
                    ]
                    success_bounds = True
                except:
                    bounds = None
                    success_bounds = False
            if is_main_process():
                if success_bounds:
                    Rminus1_cl = (np.std(bounds, axis=0).T /
                                  np.sqrt(np.diag(mean_of_covs)))
                    self.log.debug(" - normalized std's of bounds = %r",
                                   Rminus1_cl)
                    Rminus1_cl = np.max(Rminus1_cl)
                    self.progress.at[self.i_learn, "Rminus1_cl"] = Rminus1_cl
                    self.log.info(
                        " - Convergence of bounds: R-1 = %f after %d " %
                        (Rminus1_cl,
                         (sum(Ns) if more_than_one_process() else self.n())) +
                        "accepted steps" +
                        (" = sum(%r)" %
                         list(Ns) if more_than_one_process() else ""))
                    if Rminus1_cl < self.Rminus1_cl_stop:
                        self.converged = True
                        self.log.info("The run has converged!")
                        self._Ns = Ns
                else:
                    self.log.info(
                        "Computation of the bounds was not possible. "
                        "Waiting until the next converge check.")
        # Broadcast and save the convergence status and the last R-1 of means
        if success_means:
            self.Rminus1_last, self.converged = mpi.share((
                Rminus1, self.converged) if is_main_process() else None)
            # Do we want to learn a better proposal pdf?
            if self.learn_proposal and not self.converged:
                good_Rminus1 = (self.learn_proposal_Rminus1_max >
                                self.Rminus1_last >
                                self.learn_proposal_Rminus1_min)
                if not good_Rminus1:
                    self.mpi_info(
                        "Convergence less than requested for updates: "
                        "waiting until the next convergence check.")
                    return
                mean_of_covs = mpi.share(mean_of_covs)
                try:
                    self.proposer.set_covariance(mean_of_covs)
                    self.mpi_info(
                        " - Updated covariance matrix of proposal pdf.")
                    self.mpi_debug("%r", mean_of_covs)
                except:
                    self.mpi_debug(
                        "Updating covariance matrix failed unexpectedly. "
                        "waiting until next covmat learning attempt.")
        # Save checkpoint info
        self.write_checkpoint()

    def do_output(self, date_time):
        self.collection.out_update()
        msg = "Progress @ %s : " % date_time.strftime("%Y-%m-%d %H:%M:%S")
        msg += "%d steps taken" % self.n_steps_raw
        if self.burn_in_left and self.burn_in:  # NB: burn_in_left = 1 even if no burn_in
            msg += " -- still burning in, %d accepted steps left." % self.burn_in_left
        else:
            msg += ", and %d accepted." % self.n()
        self.log.info(msg)

    def write_checkpoint(self):
        if is_main_process() and self.output:
            checkpoint_filename = self.checkpoint_filename()
            self.dump_covmat(self.proposer.get_covariance())
            checkpoint_info = {
                "sampler": {
                    self.get_name():
                    dict([
                        ("converged", self.converged),
                        ("Rminus1_last", self.Rminus1_last),
                        (
                            "burn_in",
                            (
                                self.burn_in.
                                value  # initial: repeat burn-in if not finished
                                if not self.n() and self.burn_in_left else 0)
                        ),  # to avoid overweighting last point of prev. run
                        ("mpi_size", get_mpi_size())
                    ])
                }
            }
            yaml_dump_file(checkpoint_filename,
                           checkpoint_info,
                           error_if_exists=False)
            if not self.progress.empty:
                with open(self.progress_filename(), "a",
                          encoding="utf-8") as progress_file:
                    fmts = {"N": lambda x: "{:9d}".format(x)}
                    # TODO: next one is ignored when added to the dict
                    #        "acceptance_rate": lambda x: "{:15.8g}".format(x)}
                    progress_file.write(
                        self.progress.tail(1).to_string(
                            header=False, index=False, formatters=fmts) + "\n")
            self.log.debug(
                "Dumped checkpoint and progress info, and current covmat.")

    def converge_info_changed(self, old_info, new_info):
        converge_params = [
            'Rminus1_stop', "Rminus1_cl_stop", "Rminus1_cl_level",
            "max_samples"
        ]
        return any(old_info.get(p) != new_info.get(p) for p in converge_params)

    # Finally: returning the computed products ###########################################

    def products(self):
        """
        Auxiliary function to define what should be returned in a scripted call.

        Returns:
           The sample ``SampleCollection`` containing the accepted steps.
        """
        products = {"sample": self.collection}
        if is_main_process():
            products["progress"] = self.progress
        return products

    # Class methods
    @classmethod
    def output_files_regexps(cls, output, info=None, minimal=False):
        regexps = [output.collection_regexp(name=None)]
        if minimal:
            return [(r, None) for r in regexps]
        regexps += [
            re.compile(output.prefix_regexp_str + re.escape(ext.lstrip(".")) +
                       "$") for ext in
            [Extension.checkpoint, Extension.progress, Extension.covmat]
        ]
        return [(r, None) for r in regexps]

    @classmethod
    def get_version(cls):
        return get_version()

    @classmethod
    def _get_desc(cls, info=None):
        drag_string = r" using the fast-dragging procedure described in \cite{Neal:2005}"
        if info is None:
            # Unknown case (no info passed)
            string = " [(if drag: True)%s]" % drag_string
        else:
            string = drag_string if info.get(
                "drag",
                cls.get_defaults()["drag"]) else ""
        return (
            "Adaptive, speed-hierarchy-aware MCMC sampler (adapted from CosmoMC) "
            r"\cite{Lewis:2002ah,Lewis:2013hha}" + string + ".")
Ejemplo n.º 3
0
class Evaluate(Sampler):
    file_base_name = 'evaluate'

    override: Mapping[str, float]
    N: int

    def initialize(self):
        """
        Creates a 1-point collection to store the point
        at which the posterior is evaluated.
        """
        try:
            self.N = int(self.N)
        except ValueError:
            raise LoggedError(
                self.log,
                "Could not convert the number of samples to an integer: %r", self.N)
        self.one_point = SampleCollection(self.model, self.output, name="1")
        self.log.info("Initialized!")

    def run(self):
        """
        First gets a reference point. If a single reference point is not given,
        the point is sampled from the reference pdf. If that one is not defined either,
        the point is sampled from the prior.

        Then it evaluates the prior and likelihood(s) and stores them in the one-member
        sample collection.
        """
        for i in range(self.N):
            if self.N > 1:
                self.log.info("Evaluating sample #%d ------------------------------",
                              i + 1)
            self.log.info("Looking for a reference point with non-zero prior.")
            reference_values = self.model.prior.reference(random_state=self._rng)
            reference_point = dict(
                zip(self.model.parameterization.sampled_params(), reference_values))
            for p, v in (self.override or {}).items():
                if p not in reference_point:
                    raise LoggedError(
                        self.log, "Parameter '%s' used in override not known. "
                                  "Known parameters names are %r.",
                        p, self.model.parameterization.sampled_params())
                reference_point[p] = v
            self.log.info("Reference point:\n   " + "\n   ".join(
                ["%s = %g" % pv for pv in reference_point.items()]))
            self.log.info("Evaluating prior and likelihoods...")
            self.logposterior = self.model.logposterior(reference_point)
            self.one_point.add(
                list(reference_point.values()), derived=self.logposterior.derived,
                logpost=self.logposterior.logpost, logpriors=self.logposterior.logpriors,
                loglikes=self.logposterior.loglikes)
            self.log.info("log-posterior  = %g", self.logposterior.logpost)
            self.log.info("log-prior      = %g", self.logposterior.logprior)
            for j, name in enumerate(self.model.prior):
                self.log.info(
                    "   logprior_" + name + " = %g", self.logposterior.logpriors[j])
            if self.logposterior.logprior > -np.inf:
                self.log.info("log-likelihood = %g", self.logposterior.loglike)
                for j, name in enumerate(self.model.likelihood):
                    self.log.info(
                        "   chi2_" + name + " = %g", (-2 * self.logposterior.loglikes[j]))
                self.log.info("Derived params:")
                for name, value in zip(self.model.parameterization.derived_params(),
                                       self.logposterior.derived):
                    self.log.info("   " + name + " = %g", value)
            else:
                self.log.info("Likelihoods and derived parameters not computed, "
                              "since the prior is null.")
        # Write the output: the point and its prior, posterior and likelihood.
        self.one_point.out_update()

    def products(self):
        """
        Auxiliary function to define what should be returned in a scripted call.

        Returns:
           The sample ``SampleCollection`` containing the
           sequentially discarded live points.
        """
        return {"sample": self.one_point}