Ejemplo n.º 1
0
    def simulate_loops_sbml(self,ijo1366_sbml,data_fva):
        '''Simulate FVA after closing exchange reactions and setting ATPM to 0
        reactions with flux will be involved in loops'''

        # Read in the sbml file and define the model conditions
        cobra_model = create_cobra_model_from_sbml_file(ijo1366_sbml, print_time=True)
        # Change all uptake reactions to 0
        for rxn in cobra_model.reactions:
            if 'EX_' in rxn.id and '_LPAREN_e_RPAREN_' in rxn.id:
                rxn.lower_bound = 0.0;
        # Set ATPM to 0
        cobra_model.reactions.get_by_id('ATPM').lower_bound = 0.0

        # calculate the reaction bounds using FVA
        reaction_bounds = flux_variability_analysis(cobra_model, fraction_of_optimum=0.9,
                                          objective_sense='maximize', the_reactions=None,
                                          allow_loops=True, solver='gurobi',
                                          the_problem='return', tolerance_optimality=1e-6,
                                          tolerance_feasibility=1e-6, tolerance_barrier=1e-8,
                                          lp_method=1, lp_parallel=0, new_objective=None,
                                          relax_b=None, error_reporting=None,
                                          number_of_processes=1, copy_model=False);

        # Update the data file
        with open(data_fva, 'wb') as outfile:
            json.dump(reaction_bounds, outfile, indent=4);
Ejemplo n.º 2
0
def categorize_reactions(model, db, category):
    fva_result_dict = {}
    # Wide range of ATP Synthase flux values can be positive or negative
    category_1_dict = {}
    # ATP Synthase flux can only be negative
    category_2_dict = {}
    # ATP Synthase flux can only be positive
    category_3_dict = {}
    model = create_cobra_model_from_sbml_file(model)
    rxn_list = pickle.load(open(db, 'rb'))
    for run in rxn_list.keys():
        model_test = model.copy()
        fva_list = [model_test.reactions.ATPS]
        for rxn in rxn_list[run]:
            addID = re.search('(rxn\d{5}_reverse)|(rxn\d{5})', rxn).group(0)
            formula = re.search('(cpd\d{5}.*$)|(\d+.\d+\scpd\d{5}.*$)', rxn).group(0)
            rxn = Reaction(addID)
            model_test.add_reaction(rxn)
            rxn.reaction = formula
            fva_list.append(rxn)
        fva_result = flux_analysis.flux_variability_analysis(model_test, fva_list)
        fva_result_dict[run] = fva_result
    for run in fva_result_dict:
        if fva_result_dict[run]['ATPS']['maximum'] > 0 and fva_result_dict[run]['ATPS']['minimum'] < 0:
            category_1_dict[run] = fva_result_dict[run]
        elif fva_result_dict[run]['ATPS']['maximum'] > 0:
            category_2_dict[run] = fva_result_dict[run]
        else:
            category_3_dict[run] = fva_result_dict[run]
    if category == 1:
        return category_1_dict.keys()
    elif category == 2:
        return category_2_dict.keys()
    else:
        return category_3_dict.keys()
Ejemplo n.º 3
0
def _gapsplit(model, depth, cpus):
    fva = flux_variability_analysis(model, model.reactions, fraction_of_optimum=0.001, processes=cpus)

    # only split reactions with feasible range >= min_range
    idxs = (fva.maximum - fva.minimum >= 1e-5).to_numpy().nonzero()[0]
    weights = (1.0 / (fva.maximum - fva.minimum) ** 2).to_numpy()
    samples = numpy.zeros((depth, len(model.reactions)))
    k = 0
    for try_ in range(1000):
        relative, target, width = _maxgap(samples[0:k,idxs], fva.iloc[idxs,:])
        primary_var = numpy.argmax(relative)
        primary_target = target[primary_var]
        primary_lb = primary_target - 0.001*width[primary_var]
        primary_ub = primary_target + 0.001*width[primary_var]

        new_sample = _generate_sample(model, idxs[primary_var], primary_lb, primary_ub)
        if new_sample is not None:
            new_sample[new_sample > fva.maximum] = fva.maximum[new_sample > fva.maximum]
            new_sample[new_sample < fva.minimum] = fva.minimum[new_sample < fva.minimum]
            samples[k,:] = new_sample
            k += 1
        if k >= depth: break

    if k < depth:
        # max_tries reached; return fewer samples
        samples = samples[:k,:]

    return pandas.DataFrame(data=samples, columns=fva.maximum.index)
Ejemplo n.º 4
0
def cobra_fva(pk, model_sbml, reaction_list, loopless, fraction_of_optimum,
              pfba_factor, deleted_genes):
    cobra_model = load_sbml(model_sbml)
    if len(deleted_genes) > 0:
        cobra.manipulation.delete_model_genes(cobra_model,
                                              deleted_genes,
                                              cumulative_deletions=True)
    try:
        result_frame = json.loads(
            flux_variability_analysis(cobra_model, reaction_list, loopless,
                                      fraction_of_optimum,
                                      pfba_factor).to_json())
        result = {
            'components': [{
                'name': name,
                'minimum': result_frame['minimum'][name],
                'maximum': result_frame['maximum'][name],
            } for name in result_frame['minimum'].keys()],
        }
    except Exception as error:
        error_result = report_cobra_computation_error(error)
        app.send_task(
            **get_result_kwargs('fba', pk, error_result, is_error=True))
        return
    app.send_task(**get_result_kwargs('fva', pk, result))
Ejemplo n.º 5
0
def limiting_reactions(cobra_model, reactions=None):
    """
    Determine limiting reactions
    """

    if reactions == None:
        reactions = cobra_model.reactions

    sol = cobra_model.optimize()

    fva_rxns = []

    for rxn in reactions:
        limited_below = isclose(sol.fluxes[rxn.id],
                                rxn.lower_bound,
                                rel_tol=1e-2)
        limited_above = isclose(sol.fluxes[rxn.id],
                                rxn.upper_bound,
                                rel_tol=1e-2)
        if limited_below or limited_above:
            if rxn.lower_bound < rxn.upper_bound and not isclose(
                    rxn.lower_bound, rxn.upper_bound, rel_tol=1e-2):
                fva_rxns.append(rxn)

    fva = flux_variability_analysis(cobra_model, reaction_list=fva_rxns)

    for rxn, fmin, fmax in zip(fva.index, fva['minimum'].values,
                               fva['maximum'].values):
        if fmin < sol.fluxes[rxn] and not isclose(
                sol.fluxes[rxn], fmin, rel_tol=1e-2):
            yield rxn
        elif fmax > sol.fluxes[rxn] and not isclose(
                sol.fluxes[rxn], fmax, rel_tol=1e-2):
            yield rxn
Ejemplo n.º 6
0
    def simulate_loops(self,cobra_model_I=None,data_fva='loops_fva.json'):
        '''Simulate FVA after closing exchange reactions and setting ATPM to 0
        reactions with flux will be involved in loops'''
        
        if cobra_model_I: cobra_model = cobra_model_I.copy();
        else: cobra_model = self.model.copy();
        # Change all uptake reactions to 0
        system_boundaries = [x.id for x in cobra_model.reactions if x.boundary == 'system_boundary'];
        for rxn in cobra_model.reactions:
            if rxn.id in system_boundaries:
                cobra_model.reactions.get_by_id(rxn.id).lower_bound = 0.0;
                cobra_model.reactions.get_by_id(rxn.id).upper_bound = 0.0;
        # Set ATPM to 0
        cobra_model.reactions.get_by_id('ATPM').lower_bound = 0.0;
        # set the objective function to a default value
        cobra_model.change_objective('Ec_biomass_iJO1366_WT_53p95M')
        cobra_model.reactions.get_by_id('Ec_biomass_iJO1366_WT_53p95M').lower_bound=0.0
        cobra_model.reactions.get_by_id('Ec_biomass_iJO1366_WT_53p95M').upper_bound=1e6

        # calculate the reaction bounds using FVA
        reaction_bounds = flux_variability_analysis(cobra_model, fraction_of_optimum=1.0,
                                          the_reactions=None, solver='gurobi');

        # Update the data file
        with open(data_fva, 'wb') as outfile:
            json.dump(reaction_bounds, outfile, indent=4);
Ejemplo n.º 7
0
    def simulate_loops(self, cobra_model_I=None, data_fva='loops_fva.json'):
        '''Simulate FVA after closing exchange reactions and setting ATPM to 0
        reactions with flux will be involved in loops'''

        if cobra_model_I: cobra_model = cobra_model_I.copy()
        else: cobra_model = self.model.copy()
        # Change all uptake reactions to 0
        system_boundaries = [
            x.id for x in cobra_model.reactions
            if x.boundary == 'system_boundary'
        ]
        for rxn in cobra_model.reactions:
            if rxn.id in system_boundaries:
                cobra_model.reactions.get_by_id(rxn.id).lower_bound = 0.0
                cobra_model.reactions.get_by_id(rxn.id).upper_bound = 0.0
        # Set ATPM to 0
        cobra_model.reactions.get_by_id('ATPM').lower_bound = 0.0
        # set the objective function to a default value
        cobra_model.change_objective('Ec_biomass_iJO1366_WT_53p95M')
        cobra_model.reactions.get_by_id(
            'Ec_biomass_iJO1366_WT_53p95M').lower_bound = 0.0
        cobra_model.reactions.get_by_id(
            'Ec_biomass_iJO1366_WT_53p95M').upper_bound = 1e6

        # calculate the reaction bounds using FVA
        reaction_bounds = flux_variability_analysis(cobra_model,
                                                    fraction_of_optimum=1.0,
                                                    the_reactions=None,
                                                    solver='gurobi')

        # Update the data file
        with open(data_fva, 'wb') as outfile:
            json.dump(reaction_bounds, outfile, indent=4)
Ejemplo n.º 8
0
def _create_visualisation(model_filename, svg_filename, output_filename, analysis_type='FBA',
                          analysis_results=None, intermediate_filename=None):
    # Check arguments
    supported_analysis_types = {"FBA", "FVA"}
    if analysis_type not in supported_analysis_types:
        message = "Analysis type is wrong. It has to be one of the values: {}"
        raise ValueError(message.format(supported_analysis_types))
    try:
        model = cio.load_json_model(model_filename)
    except Exception as exc:
        raise CobraModelFileError("Failed to load model from given JSON : {}".format(exc.args))
    # Set default arguments if none provided
    if analysis_results is None:
        fba_results = model.optimize()
        if analysis_type == 'FBA':
            fba_results.fluxes = fba_results.fluxes.round(5)
            analysis_results = fba_results
        elif analysis_type == 'FVA':
            fva_results = flux_variability_analysis(model, fraction_of_optimum=0.5)
            fva_results = fva_results.round(3)
            analysis_results = fva_results
    vizan_kwargs = {
        'model': model,
        'file_source_path': svg_filename,
        'analysis_results': analysis_results,
        'analysis_type': analysis_type,
        'output_filename': output_filename,
    }
    if intermediate_filename is None:
        with NamedTemporaryFile(mode="w") as intermediate_file:
            vizan_kwargs['intermediate_filename'] = intermediate_file.name
            produce_output_file(**vizan_kwargs)
    else:
        vizan_kwargs['intermediate_filename'] = intermediate_filename
        produce_output_file(**vizan_kwargs)
Ejemplo n.º 9
0
def test_metabolite_summary_interface(model, opt_solver):
    """Test that a summary can be created successfully."""
    model.solver = opt_solver
    metabolite = model.metabolites.get_by_id("q8_c")
    MetaboliteSummary(
        metabolite=metabolite,
        model=model,
    )
    MetaboliteSummary(
        metabolite=metabolite,
        model=model,
        solution=pfba(model),
    )
    MetaboliteSummary(
        metabolite=metabolite,
        model=model,
        fva=0.95,
    )
    MetaboliteSummary(
        metabolite=metabolite,
        model=model,
        fva=flux_variability_analysis(
            model, reaction_list=["CYTBD", "NADH16", "SUCDi"]
        ),
    )
Ejemplo n.º 10
0
def simulate_loops(ijo1366_sbml,data_fva):
    '''Simulate FVA after closing exchange reactions and setting ATPM to 0
    reactions with flux will be involved in loops'''

    # Read in the sbml file and define the model conditions
    cobra_model = create_cobra_model_from_sbml_file(ijo1366_sbml, print_time=True)
    # Change all uptake reactions to 0
    for rxn in cobra_model.reactions:
        if 'EX_' in rxn.id and '_LPAREN_e_RPAREN_' in rxn.id:
            rxn.lower_bound = 0.0;
    # Set ATPM to 0
    cobra_model.reactions.get_by_id('ATPM').lower_bound = 0.0

    # calculate the reaction bounds using FVA
    reaction_bounds = flux_variability_analysis(cobra_model, fraction_of_optimum=0.9,
                                      objective_sense='maximize', the_reactions=None,
                                      allow_loops=True, solver='gurobi',
                                      the_problem='return', tolerance_optimality=1e-6,
                                      tolerance_feasibility=1e-6, tolerance_barrier=1e-8,
                                      lp_method=1, lp_parallel=0, new_objective=None,
                                      relax_b=None, error_reporting=None,
                                      number_of_processes=1, copy_model=False);

    # Update the data file
    with open(data_fva, 'wb') as outfile:
        json.dump(reaction_bounds, outfile, indent=4);
Ejemplo n.º 11
0
    def fva(self) -> pd.DataFrame:
        """Create DataFrame file with minimum and maximum value of FVA.

        Runs flux variability analysis.
        see https://cobrapy.readthedocs.io/en/latest/simulating.html#Running-FVA
        """
        model = self.read_model()
        solution = model.optimize()
        fluxes = solution.fluxes
        try:
            df = flux_variability_analysis(model,
                                           model.reactions,
                                           fraction_of_optimum=1.0)
            df_out = pd.DataFrame({
                "model": self.model_path.name,
                "objective": self.objective_id,
                "reaction": df.index,
                "flux": fluxes,
                "status": CuratorConstants.STATUS_OPTIMAL,
                "minimum": df.minimum,
                "maximum": df.maximum,
            })
        except OptimizationError as e:
            logger.error(f"{e}")
            df_out = pd.DataFrame({
                "model": self.model_path.name,
                "objective": self.objective_id,
                "reaction": [r.id for r in model.reactions],
                "flux": fluxes,
                "status": CuratorConstants.STATUS_INFEASIBLE,
                "minimum": CuratorConstants.VALUE_INFEASIBLE,
                "maximum": CuratorConstants.VALUE_INFEASIBLE,
            })

        return df_out
Ejemplo n.º 12
0
def find_stoichiometrically_balanced_cycles(model):
    u"""
    Find metabolic reactions in stoichiometrically balanced cycles (SBCs).

    Identify forward and reverse cycles by closing all exchanges and using FVA.

    Parameters
    ----------
    model : cobra.Model
        The metabolic model under investigation.

    Notes
    -----
    "SBCs are artifacts of metabolic reconstructions due to insufficient
    constraints (e.g., thermodynamic constraints and regulatory
    constraints) [1]_." They are defined by internal reactions that carry
    flux in spite of closed exchange reactions.

    References
    ----------
    .. [1] Thiele, I., & Palsson, B. Ø. (2010, January). A protocol for
           generating a high-quality genome-scale metabolic reconstruction.
           Nature protocols. Nature Publishing Group.
           http://doi.org/10.1038/nprot.2009.203

    """
    helpers.close_boundaries_sensibly(model)
    fva_result = flux_variability_analysis(model, loopless=False)
    return fva_result.index[(fva_result["minimum"] == -1) |
                            (fva_result["maximum"] == 1)].tolist()
Ejemplo n.º 13
0
def calculate_common_substrate_flux(model):
    boundary_reactions = model.exchanges
    # generate model exchange reactions

    fva_results = flux_variability_analysis(
        model, reaction_list=boundary_reactions,
        fraction_of_optimum=1)
    # Generate FVA results

    fva_results = fva_results.sort_values(by='minimum', ascending=True)

    # sort FVA results ascending order

    substrates = fva_results['minimum'] < 0
    fva_results_substrates = fva_results[substrates].sort_values(by='minimum', ascending=True)

    # Generate dataframe where only consuming reactions are taken into account

    reaction_consist_carbon = []
    for reaction in fva_results_substrates.index:
        reaction_cobrapy = model.reactions.get_by_id(reaction)
        for metabolite in reaction_cobrapy.reactants:
            if 'C' in metabolite.elements.keys():
                reaction_consist_carbon.append(str(reaction))

    # Filter from FVA substrate list reactions which HAVE NOT included

    flux_sum = 0
    for reaction in reaction_consist_carbon:
        flux_sum = flux_sum + fva_results.loc[reaction, 'minimum']
    return flux_sum
Ejemplo n.º 14
0
def get_r_id2fva_bounds(model, threshold=None, rs=None):
    r_id2min_max = flux_variability_analysis(model, reaction_list=rs)
    r_id2bounds = {}
    for r_id, values in r_id2min_max.items():
        min_v, max_v = round_value(values['minimum']), round_value(values['maximum'])
        if threshold is None or abs(min_v) > threshold or abs(max_v) > threshold:
            r_id2bounds[r_id] = min_v, max_v
    return r_id2bounds
Ejemplo n.º 15
0
def find_reactions_with_unbounded_flux_default_condition(model):
    """
    Return list of reactions whose flux is unbounded in the default condition.

    Parameters
    ----------
    model : cobra.Model
        The metabolic model under investigation.

    Returns
    -------
    tuple
        list
            A list of reactions that in default modeling conditions are able to
            carry flux as high/low as the systems maximal and minimal bounds.
        float
            The fraction of the amount of unbounded reactions to the amount of
            non-blocked reactions.
        list
            A list of reactions that in default modeling conditions are not able
            to carry flux at all.

    """
    try:
        fva_result = flux_variability_analysis(model, fraction_of_optimum=1.0)
    except Infeasible as err:
        LOGGER.error("Failed to find reactions with unbounded flux "
                     "because '{}'. This may be a bug.".format(err))
        raise Infeasible("It was not possible to run flux variability "
                         "analysis on the model. Make sure that the model "
                         "can be solved! Check if the constraints are not "
                         "too strict.")
    # Per reaction (row) the flux is below threshold (close to zero).
    conditionally_blocked = fva_result.loc[fva_result.abs().max(
        axis=1) < TOLERANCE_THRESHOLD].index.tolist()
    small, large = helpers.find_bounds(model)
    # Find those reactions whose flux is close to or outside of the median
    # upper or lower bound, i.e., appears unconstrained.
    unlimited_flux = fva_result.loc[
        np.isclose(fva_result["maximum"], large, atol=TOLERANCE_THRESHOLD) |
        (fva_result["maximum"] > large)
        | np.isclose(fva_result["minimum"], small, atol=TOLERANCE_THRESHOLD) |
        (fva_result["minimum"] < small)].index.tolist()
    try:
        fraction = len(unlimited_flux) / \
            (len(model.reactions) - len(conditionally_blocked))
    except ZeroDivisionError:
        LOGGER.error("Division by Zero! Failed to calculate the "
                     "fraction of unbounded reactions. Does this model "
                     "have any reactions at all?")
        raise ZeroDivisionError("It was not possible to calculate the "
                                "fraction of unbounded reactions to "
                                "un-blocked reactions. This may be because"
                                "the model doesn't have any reactions at "
                                "all or that none of the reactions can "
                                "carry a flux larger than zero!")

    return unlimited_flux, fraction, conditionally_blocked
Ejemplo n.º 16
0
def simulate(model, biomass_reaction, method, objective_id,
             objective_direction):
    if method not in METHODS:
        raise ValueError(f"Unsupported simulation method '{method}'")

    if objective_id:
        model.objective = model.reactions.get_by_id(objective_id)
    if objective_direction:
        model.objective_direction = objective_direction

    try:
        logger.info(f"Simulating model {model.id} with {method}")
        if method == "fba":
            solution = model.optimize(raise_error=True)
        elif method == "pfba":
            solution = pfba(model)
        elif method == "fva":
            # FIXME: accept list of relevant fva reactions to calculate
            solution = flux_variability_analysis(model)
        elif method == "pfba-fva":
            # FIXME: accept list of relevant fva reactions to calculate
            solution = flux_variability_analysis(model,
                                                 fraction_of_optimum=1,
                                                 pfba_factor=1.05)
    except OptimizationError as error:
        logger.info(f"Optimization Error: {error}")
        raise
    else:
        if method in ("fba", "pfba"):
            flux_distribution = solution.fluxes.to_dict()
            growth_rate = flux_distribution[biomass_reaction]
        elif method in ("fva", "pfba-fva"):
            df = solution.rename(index=str,
                                 columns={
                                     "maximum": "upper_bound",
                                     "minimum": "lower_bound"
                                 })
            for key in ["lower_bound", "upper_bound"]:
                df[key] = df[key].astype("float")
            flux_distribution = df.T.to_dict()
            growth_rate = flux_distribution[biomass_reaction]["upper_bound"]
        logger.info(
            f"Simulation was successful with growth rate {growth_rate}")
        return flux_distribution, growth_rate
Ejemplo n.º 17
0
def test_fastcc_against_fva_nonblocked_rxns(model: Model,
                                            all_solvers: List[str]) -> None:
    """Test non-blocked reactions obtained by FASTCC against FVA."""
    model.solver = all_solvers
    fastcc_consistent_model = fastcc(model)
    fva = flux_variability_analysis(model, fraction_of_optimum=0.0)
    nonblocked_rxns_fva = fva.index[(fva.minimum.abs() > model.tolerance) |
                                    (fva.maximum.abs() > model.tolerance)]
    assert all(fastcc_consistent_model.reactions) == all(
        nonblocked_rxns_fva.tolist())
Ejemplo n.º 18
0
def _perform_fva(model):
    '''Perform FVA.'''
    flux_var = flux_variability_analysis(model, model.reactions)
    blocked = flux_var.loc[(abs(flux_var['minimum']) < 1e-6) &
                           (abs(flux_var['maximum']) < 1e-6)]

    print 'Blocked: %d/%d\n' % (len(blocked), len(flux_var))

    flux_var.to_csv('flux_var.csv')
    blocked.to_csv('blocked.csv')
Ejemplo n.º 19
0
def find_stoichiometrically_balanced_cycles(model):
    u"""
    Find metabolic rxns in stoichiometrically balanced cycles (SBCs).

    The flux distribution of nominal FVA is compared with loopless FVA
    (loopless=True) to determine reactions that participate in loops, as
    participation in loops would increase the flux through a given reactions
    to the maximal bounds. This function then returns reactions where the
    flux differs between the two FVA calculations.

    Parameters
    ----------
    model : cobra.Model
        The metabolic model under investigation.

    Notes
    -----
    "SBCs are artifacts of metabolic reconstructions due to insufficient
    constraints (e.g., thermodynamic constraints and regulatory
    constraints) [1]_." They are defined by internal reactions that carry
    flux in spite of closed exchange reactions.

    References
    ----------
    .. [1] Thiele, I., & Palsson, B. Ø. (2010, January). A protocol for
           generating a high-quality genome-scale metabolic reconstruction.
           Nature protocols. Nature Publishing Group.
           http://doi.org/10.1038/nprot.2009.203

    """
    try:
        fva_result = flux_variability_analysis(model, loopless=False)
        fva_result_loopless = flux_variability_analysis(model, loopless=True)
    except Infeasible as err:
        LOGGER.error("Failed to find stoichiometrically balanced cycles "
                     "because '{}'. This may be a bug.".format(err))
        return []
    row_ids_max = fva_result[
        fva_result.maximum != fva_result_loopless.maximum].index
    row_ids_min = fva_result[
        fva_result.minimum != fva_result_loopless.minimum].index
    differential_fluxes = set(row_ids_min).union(set(row_ids_max))
    return [model.reactions.get_by_id(id) for id in differential_fluxes]
Ejemplo n.º 20
0
def perform_analysis(model, analysis_type):
    fba_results = model.optimize()
    if analysis_type == 'FBA':
        fba_results.fluxes = fba_results.fluxes.round(5)
        analysis_results = fba_results
    elif analysis_type == 'FVA':
        fva_results = flux_variability_analysis(model, fraction_of_optimum=0.5)
        fva_results = fva_results.round(3)
        analysis_results = fva_results
    return model, analysis_results
Ejemplo n.º 21
0
    def variability_analysis(self, measured_metabolites):
        if type(self.drug) == list:
            self.combined_drug_knockout()
        elif self.drug != '':
            self.drug_knock_out()
        elif self.target != '':
            self.model.genes.get_by_id(self.target).knock_out()

        self.set_objective(measured_metabolites)
        return flux_variability_analysis(self.model)
Ejemplo n.º 22
0
def _constrain_and_analyze_model(model, coefficient_dict, fraction, sampling_depth, objective, tasks, minimum_threshold, cpus):
    
    constrained_model = copy.deepcopy(model)

    # Set previous objective as a constraint, allow deviation
    if objective == True:
        prev_obj_val = constrained_model.slim_optimize()
        prev_obj_constraint = constrained_model.problem.Constraint(constrained_model.objective.expression, lb=prev_obj_val*fraction, ub=prev_obj_val)
        constrained_model.add_cons_vars([prev_obj_constraint])
        constrained_model.solver.update()

    # Apply weigths to new expression
    pfba_expr = symengine.RealDouble(0)
    for rxn in constrained_model.reactions:
        try:
            pfba_expr += coefficient_dict[rxn.id] * rxn.forward_variable
            pfba_expr += coefficient_dict[rxn.id] * rxn.reverse_variable
        except KeyError:
            continue

    if sampling_depth == 0:
        # Include metabolic task constraints
        if len(tasks) >= 1:
            constrained_model = _integrate_tasks(constrained_model, tasks)

        # Determine reactions that do not carry any flux in highly constrained solution space
        constrained_model.objective = constrained_model.problem.Objective(pfba_expr, direction='min', sloppy=True)
        constrained_model.solver.update()
        solution = constrained_model.optimize()
        inactive_rxns = set([rxn.id for rxn in constrained_model.reactions if abs(solution.fluxes[rxn.id]) <= minimum_threshold])
            
        return inactive_rxns
        
    else:
        # Explore solution space of constrained model with flux sampling, allow deviation
        constrained_model.objective = constrained_model.problem.Objective(pfba_expr, direction='max', sloppy=True)
        constrained_model.solver.update()
        flux_sum_obj_val = constrained_model.slim_optimize()
        flux_sum_constraint = constrained_model.problem.Constraint(pfba_expr, lb=flux_sum_obj_val*fraction, ub=flux_sum_obj_val)
        constrained_model.add_cons_vars([flux_sum_constraint])
        constrained_model.solver.update()
            
        # Analyze flux ranges and calculate concordance
        if sampling_depth != 1:
            warnings.filterwarnings('ignore') # Handle possible infeasible warnings
            flux_samples = _gapsplit(constrained_model, depth=sampling_depth, cpus=cpus)
            warnings.filterwarnings('default')
            concordance = _calc_concordance(flux_samples, coefficient_dict)
        else:
            flux_samples = 'Not performed'
            concordance = 'Not performed'
            
        fva = flux_variability_analysis(constrained_model, fraction_of_optimum=fraction, processes=cpus)

        return flux_samples, fva, concordance
Ejemplo n.º 23
0
def set_fva_bounds(cobra_model):
    """
    Sets reaction bounds using FVA.
    """

    fva = flux_variability_analysis(cobra_model, fraction_of_optimum=0)

    for rxn in cobra_model.reactions:
        assert rxn.lower_bound <= rxn.upper_bound
        rxn.lower_bound = fva['minimum'][rxn.id]
        rxn.upper_bound = max(fva['maximum'][rxn.id], fva['minimum'][rxn.id])
Ejemplo n.º 24
0
    def generate_fva_data(self, cobra_model, fraction_of_optimum=0.9,
                                      objective_sense='maximize', reaction_list=None,
                                      allow_loops=True, solver='glpk'):

        print('FVA...')
        #add in loop law constrain
        if not allow_loops: cobra_model=construct_loopless_model(cobra_model);
        # calculate the reaction bounds using FVA
        self.fva_data = flux_variability_analysis(cobra_model, fraction_of_optimum=0.9,
                                      objective_sense='maximize', solver=solver,
                                      reaction_list=reaction_list,
                                      );
Ejemplo n.º 25
0
    def variability_analysis(self, measured_metabolites):
        if type(self.drug) == list:
            self.combined_drug_knockout()
        elif self.drug != '':
            self.drug_knock_out()
        elif self.target != '':
            self.model.genes.get_by_id(self.target).knock_out()


        # TODO This is the point where I will add reactions most likely
        # print(measured_metabolites)
        self.set_objective(measured_metabolites)
        return flux_variability_analysis(self.model)
Ejemplo n.º 26
0
def results_genes_flux(model, rxn_name, flux_gene_off_on):
    '''
        results_genes_flux utility:

            essential genes of model outputted nicely AND flux through the reactions being changed outputted

        Input: 

            (1) model: model structure
            (2) rxn_name: string reaction name in list e.g. ['rxn00123','rxn00456',....]
            (3) flux_gene_off_on is list containing two binary values to turn off the reaction functionalities either
                [1,0] [0,0] or [0,1] first element is flux second is gene deletions is on

        Output:

            essential genes in pandas data arrary
    '''
    #two models taken from the original
    try:
        if flux_gene_off_on[0] == 0:
            del_results = []
            print('no gene del results returned')
        else:
            #Essential Genes Before - Biomass Results Before - Gene Knockouts
            print('Single Gene Deletion of Model Entered')
            model_genes = copy.deepcopy(model)
            del_results = single_gene_deletion(model_genes)
        if flux_gene_off_on[1] == 0:
            fluxes = []
            print('No fluxes returned')
        else:
            model_flux = copy.deepcopy(model)
            #flux through reaction
            fluxes = []
            loop_reactions = []
            print('Rxn flux loop entered')

            for i in range(0, len(rxn_name)):
                loop_reactions.append(
                    model_flux.reactions.get_by_id(rxn_name[i]))
                if i % 10 == 0:
                    print('Flux reaction number', i)
            fluxes = (flux_variability_analysis(model_flux,
                                                reaction_list=loop_reactions,
                                                loopless=True)
                      )  #range of fluxes through the reaction
    except:
        print('You must enter a cobra model structure')
        raise

    return [del_results, fluxes]
    def generate_fva_data(self, cobra_model, fraction_of_optimum=0.9,
            objective_sense='maximize', reaction_list=None,
            allow_loops=True, solver='glpk', verbose_I=True):

        if verbose_I:
            print('FVA...')
        #add in loop law constrain
        if not allow_loops: cobra_model=construct_loopless_model(cobra_model)
        # calculate the reaction bounds using FVA
        cobra_model.solver = solver
        fva_data = flux_variability_analysis(cobra_model, fraction_of_optimum=0.9,
                                      objective_sense='maximize',
                                      reaction_list=reaction_list,
                                      )        
        self.fva_data = dict(zip(list(fva_data.index),fva_data.to_dict('records')))
Ejemplo n.º 28
0
def test_model_summary_interface(model, opt_solver):
    """Test that a summary can be created successfully."""
    model.solver = opt_solver
    ModelSummary(model=model, )
    ModelSummary(
        model=model,
        solution=pfba(model),
    )
    ModelSummary(
        model=model,
        fva=0.95,
    )
    ModelSummary(
        model=model,
        fva=flux_variability_analysis(
            model, reaction_list=["CYTBD", "NADH16", "SUCDi"]),
    )
Ejemplo n.º 29
0
    def _generate(
        self,
        model: "Model",
        solution: Optional["Solution"],
        fva: Optional[Union[float, pd.DataFrame]],
    ) -> None:
        """
        Prepare the data for the summary instance.

        Parameters
        ----------
        model : cobra.Model
            The metabolic model for which to generate a metabolite summary.
        solution : cobra.Solution, optional
            A previous model solution to use for generating the summary. If
            ``None``, the summary method will generate a parsimonious flux
            distribution.
        fva : pandas.DataFrame or float, optional
            Whether or not to include flux variability analysis in the output.
            If given, `fva` should either be a previous FVA solution matching the
            model or a float between 0 and 1 representing the fraction of the
            optimum objective to be searched.

        """
        super()._generate(model=model, solution=solution, fva=fva)

        if solution is None:
            logger.info("Generating new parsimonious flux distribution.")
            solution = pfba(model)

        if isinstance(fva, float):
            logger.info("Performing flux variability analysis.")
            fva = flux_variability_analysis(
                model,
                reaction_list=[self._reaction],
                fraction_of_optimum=fva,
            )

        # Create the basic flux table.
        self._flux = pd.DataFrame(
            data={"flux": [solution[self._reaction.id]]},
            index=[self._reaction.id],
        )
        if fva is not None:
            self._flux = self._flux.join(fva)
Ejemplo n.º 30
0
    def fva(self,
            reaction_list=None,
            loopless=False,
            fraction_of_optimum=1.0,
            pfba_factor=None,
            processes=None):

        try:
            return flux_variability_analysis(model=self.model,
                                             reaction_list=reaction_list,
                                             loopless=loopless,
                                             fraction_of_optimum=fraction_of_optimum,
                                             pfba_factor=pfba_factor,
                                             processes=processes)

        except Infeasible:

            return DataFrame()
Ejemplo n.º 31
0
def simulatingFVA(model):
    # FBA will not give always give unique solution, because multiple flux
    # states can achieve the same optimum. FVA (or flux variability analysis)
    # finds the ranges of each metabolic flux at the optimum.

    from cobra.flux_analysis import flux_variability_analysis
    print(flux_variability_analysis(model, model.reactions[:10]))
    # Setting parameter fraction_of_optimium=0.90 would give the flux ranges for reactions at 90% optimality.
    print(
        cobra.flux_analysis.flux_variability_analysis(model,
                                                      model.reactions[:10],
                                                      fraction_of_optimum=0.9,
                                                      loopless=True))

    model.optimize()
    model.summary(
        fva=0.95
    )  # Flux variability analysis can also be embedded in calls to summary methods.
    model.metabolites.pyr_c.summary(fva=0.95)
def main():
    print('================ SUBTASK 1: Building the Model ================')
    model = build_model()
    print("Reactions")
    print("---------")
    for x in model.reactions:
        print(f"{x.id}:{x.reaction}")

    print("")
    print("Metabolites")
    print("-----------")
    for x in model.metabolites:
        print(x.id)

    print(
        '\n================ SUBTASK 2: Computing the maximum flow through the growth reaction ================\n'
    )
    solution = model.optimize()
    print(model.summary())

    print('\n================ SUBTASK 3: FVA ================\n')
    fva = flux_variability_analysis(model)
    print(fva)

    print(
        '\n================ SUBTASK 4: Find essential reactions ================\n'
    )
    #Knock out each reaction. If the objective value is 0, the reaction is essential.
    for reaction in model.reactions:
        with model as model:
            reaction.knock_out()
            model.optimize()
            if round(model.objective.value, 6) == 0:
                print(
                    f"{reaction.id} blocked, new growth rate {round(model.objective.value,6)} -------> ESSENTIAL"
                )
            else:
                print(
                    f"{reaction.id} blocked, new growth rate {round(model.objective.value,6)}"
                )
Ejemplo n.º 33
0
def find_universally_blocked_reactions(model):
    """
    Find metabolic reactions that are blocked.

    Parameters
    ----------
    model : cobra.Model
        The metabolic model under investigation.

    Notes
    -----
    Blocked reactions are those reactions that when optimized for cannot carry
    any flux while all exchanges are open.

    """
    with model:
        helpers.open_boundaries(model)
        fva_result = flux_variability_analysis(model)

    blocked = fva_result.loc[(fva_result["maximum"] == 0.0)
                             & (fva_result["minimum"] == 0.0)]
    return [model.reactions.get_by_id(name) for name in blocked.index]
Ejemplo n.º 34
0
def test_reaction_summary_interface(model, opt_solver):
    """Test that a summary can be created successfully."""
    model.solver = opt_solver
    reaction = model.reactions.get_by_id("FUM")
    ReactionSummary(
        reaction=reaction,
        model=model,
    )
    ReactionSummary(
        reaction=reaction,
        model=model,
        solution=pfba(model),
    )
    ReactionSummary(
        reaction=reaction,
        model=model,
        fva=0.95,
    )
    ReactionSummary(
        reaction=reaction,
        model=model,
        fva=flux_variability_analysis(model, reaction_list=["FUM"]),
    )
Ejemplo n.º 35
0
fva_result_dict = {}
atps_dict = {}

for run in rxn_list.keys():
    model_test = model.copy()
    rxns_added = []
    fva_list = [model_test.reactions.ATPS, model_test.reactions.Eha_FSLASH_Ehb]
    for rxn in rxn_list[run]:
        addID = re.search('(rxn\d{5}_reverse)|(rxn\d{5})', rxn).group(0)
        formula = re.search('(cpd\d{5}.*$)|(\d+.\d+\scpd\d{5}.*$)', rxn).group(0)
        rxn = Reaction(addID)
        model_test.add_reaction(rxn)
        rxn.reaction = formula
        fva_list.append(rxn)
        rxns_added.append(rxn)
    fva_result = flux_analysis.flux_variability_analysis(model_test, fva_list)
    fva_result_dict[run] = fva_result, rxns_added
    rxns_added = []

for run in fva_result_dict.keys():
    if fva_result_dict[run][0]['ATPS']['minimum'] > 0 and fva_result_dict[run][0]['ATPS']['maximum'] == 1000 \
        and fva_result_dict[run][0]['Eha_FSLASH_Ehb']['maximum'] < 0:
        atps_dict[run] = fva_result_dict[run]

for run in atps_dict.keys():
    print run
    model_testing = model.copy()
    for i in range(len(atps_dict[run][1])):
        model_testing.add_reaction(atps_dict[run][1][i])
        print atps_dict[run][1][i].build_reaction_string(True)
        print atps_dict[run][1][i].reaction