Ejemplo n.º 1
0
class CocoDataset(CustomDataset):

    CLASSES = ('person', 'bicycle', 'car', 'motorcycle', 'airplane', 'bus',
               'train', 'truck', 'boat', 'traffic_light', 'fire_hydrant',
               'stop_sign', 'parking_meter', 'bench', 'bird', 'cat', 'dog',
               'horse', 'sheep', 'cow', 'elephant', 'bear', 'zebra', 'giraffe',
               'backpack', 'umbrella', 'handbag', 'tie', 'suitcase', 'frisbee',
               'skis', 'snowboard', 'sports_ball', 'kite', 'baseball_bat',
               'baseball_glove', 'skateboard', 'surfboard', 'tennis_racket',
               'bottle', 'wine_glass', 'cup', 'fork', 'knife', 'spoon', 'bowl',
               'banana', 'apple', 'sandwich', 'orange', 'broccoli', 'carrot',
               'hot_dog', 'pizza', 'donut', 'cake', 'chair', 'couch',
               'potted_plant', 'bed', 'dining_table', 'toilet', 'tv', 'laptop',
               'mouse', 'remote', 'keyboard', 'cell_phone', 'microwave',
               'oven', 'toaster', 'sink', 'refrigerator', 'book', 'clock',
               'vase', 'scissors', 'teddy_bear', 'hair_drier', 'toothbrush')

    def load_annotations(self, ann_file):
        self.coco = COCO(ann_file)
        self.cat_ids = self.coco.getCatIds()
        self.cat2label = {
            cat_id: i + 1
            for i, cat_id in enumerate(self.cat_ids)
        }
        self.img_ids = self.coco.getImgIds()
        img_infos = []
        for i in self.img_ids:
            info = self.coco.loadImgs([i])[0]
            info['filename'] = info['file_name']
            img_infos.append(info)
        return img_infos

    def get_ann_info(self, idx):
        img_id = self.img_infos[idx]['id']
        ann_ids = self.coco.getAnnIds(imgIds=[img_id])
        ann_info = self.coco.loadAnns(ann_ids)
        return self._parse_ann_info(ann_info, self.with_mask)

    def _filter_imgs(self, min_size=32):
        """Filter images too small or without ground truths."""
        valid_inds = []
        ids_with_ann = set(_['image_id'] for _ in self.coco.anns.values())
        for i, img_info in enumerate(self.img_infos):
            if self.img_ids[i] not in ids_with_ann:
                continue
            if min(img_info['width'], img_info['height']) >= min_size:
                valid_inds.append(i)
        return valid_inds

    def _parse_ann_info(self, ann_info, with_mask=True):
        """Parse bbox and mask annotation.

        Args:
            ann_info (list[dict]): Annotation info of an image.
            with_mask (bool): Whether to parse mask annotations.

        Returns:
            dict: A dict containing the following keys: bboxes, bboxes_ignore,
                labels, masks, mask_polys, poly_lens.
        """
        gt_bboxes = []
        gt_labels = []
        gt_bboxes_ignore = []
        # Two formats are provided.
        # 1. mask: a binary map of the same size of the image.
        # 2. polys: each mask consists of one or several polys, each poly is a
        # list of float.
        if with_mask:
            gt_masks = []
            gt_mask_polys = []
            gt_poly_lens = []
        for i, ann in enumerate(ann_info):
            if ann.get('ignore', False):
                continue
            x1, y1, w, h = ann['bbox']
            if ann['area'] <= 0 or w < 1 or h < 1:
                continue
            bbox = [x1, y1, x1 + w - 1, y1 + h - 1]
            if ann['iscrowd']:
                gt_bboxes_ignore.append(bbox)
            else:
                gt_bboxes.append(bbox)
                gt_labels.append(self.cat2label[ann['category_id']])
            if with_mask:
                gt_masks.append(self.coco.annToMask(ann))
                mask_polys = [
                    p for p in ann['segmentation'] if len(p) >= 6
                ]  # valid polygons have >= 3 points (6 coordinates)
                poly_lens = [len(p) for p in mask_polys]
                gt_mask_polys.append(mask_polys)
                gt_poly_lens.extend(poly_lens)
        if gt_bboxes:
            gt_bboxes = np.array(gt_bboxes, dtype=np.float32)
            gt_labels = np.array(gt_labels, dtype=np.int64)
        else:
            gt_bboxes = np.zeros((0, 4), dtype=np.float32)
            gt_labels = np.array([], dtype=np.int64)

        if gt_bboxes_ignore:
            gt_bboxes_ignore = np.array(gt_bboxes_ignore, dtype=np.float32)
        else:
            gt_bboxes_ignore = np.zeros((0, 4), dtype=np.float32)

        ann = dict(
            bboxes=gt_bboxes, labels=gt_labels, bboxes_ignore=gt_bboxes_ignore)

        if with_mask:
            ann['masks'] = gt_masks
            # poly format is not used in the current implementation
            ann['mask_polys'] = gt_mask_polys
            ann['poly_lens'] = gt_poly_lens
        return ann
Ejemplo n.º 2
0
Created on Sat Feb 22 16:58:58 2020
@author: zhangyiqian
"""
from cocoapi.PythonAPI.pycocotools.coco import COCO
import numpy as np
from skimage.io import imread, imshow, imsave
import matplotlib.pyplot as plt
from skimage import draw
import random
import cv2 as cv
import time

annFile = '/home/yiqian/Documents/dataset/COCO/annotations_valstuff/stuff_val2017.json'
coco = COCO(annFile)
imgIds = coco.getImgIds()
img = coco.loadImgs(imgIds[0])[0]
I = imread(img['coco_url'])
plt.figure()
imshow(I)
# catIds = coco.getCatIds(catNms=['person']);
annIds = coco.getAnnIds(imgIds=img['id'],
                        catIds=coco.getCatIds(),
                        iscrowd=False)
# annIds = coco.getAnnIds(imgIds=img['id'], catIds=catIds, iscrowd=False)
anns = coco.loadAnns(annIds)

coco.showAnns(anns)

# sample scribble areas based on uniform distribution
# sample_area_num = np.random.randint(1, len(anns)+1)
sample_area_num = 10