Ejemplo n.º 1
0
    if not os.path.exists(training_options['model_path']):
        os.mkdir(training_options['model_path'])
    # 定义神经网络
    net, train = model.build_network(training_options=training_options, image=image,
                                     drop_rate=training_options['drop_rate'], labels=labels)
    # 获得saver对象,可以保存model以及读取model
    saver = tf.train.Saver()
    saver.restore(sess, training_options['model_path'] + training_options['model_name'])
    # 初始化 imageUtils类,获得所有训练,测试数据

    imageUtils = ImageUtils()
    test_data = imageUtils.test_data
    test_label = imageUtils.test_label
    total_result = np.zeros((200, 2))
    for i in range(200):
        result = sess.run([net['digit1'], net['digit2'], net['digit3'], net['digit4']],
                          feed_dict={image: imageUtils.trainstion_data(test_data, start=i * 1000,end=i * 1000 + 1000)})
        result = code_utils.batch_out_transition(result)
        predicted = [result[0][index] + result[1][index] + result[2][index] + result[3][index]
                     for index in range(len(result[0]))]
        label = code_utils.batch_out_transition(test_label[i * 1000:i * 1000 + 1000])
        four_right_count = np.count_nonzero([predicted[index] == label[index] for index in range(len(predicted))])
        one_right_count = np.count_nonzero(
            [predicted[index][s_index] == label[index][s_index] for index in range(len(predicted)) for s_index in
             range(len(predicted[index]))])
        total_result[i, 0] = four_right_count / 1000 * 100
        total_result[i, 1] = one_right_count / 4000 * 100
        print('一千个测试数据: 四个字符同时正确率: {0:.2f}%\t\t单个字符正确率: {1:.2f}%'.format(total_result[i, 0],
                                                              total_result[i, 1]))
    print('总结果: 四个字符同时正确率: {0:.2f}%\t\t单个字符正确率: {1:.2f}%'.format(np.mean(total_result[:, 0]),
                                                                              np.mean(total_result[:, 1])))
Ejemplo n.º 2
0
                           labels['digit3']: sample_labels[:, 2],
                           labels['digit4']: sample_labels[:, 3]
                       })
     writer.add_summary(result, global_step)
 if episode != 0 and episode % training_options['save_step'] == 0:
     saver.save(
         sess, training_options['model_path'] +
         training_options['model_name'])
 # 指定回合数时 打印预测值、真实值、正确率
 if episode % training_options['show_test'] == 0:
     t_sample_datas, t_sample_labels = imageUtils.sample(
         len(test_data), 10, test_data, test_label)
     result = sess.run(
         [net['digit1'], net['digit2'], net['digit3'], net['digit4']],
         feed_dict={image: t_sample_datas})
     result = code_utils.batch_out_transition(result)
     predicted = [
         result[0][index] + result[1][index] + result[2][index] +
         result[3][index] for index in range(len(result[0]))
     ]
     label = code_utils.batch_out_transition(t_sample_labels)
     four_right_count = np.count_nonzero([
         predicted[index] == label[index]
         for index in range(len(predicted))
     ])
     one_right_count = np.count_nonzero([
         predicted[index][s_index] == label[index][s_index]
         for index in range(len(predicted))
         for s_index in range(len(predicted[index]))
     ])
     print('predicted:\t{} \nlabel:\t\t{}'.format(predicted, label))