Ejemplo n.º 1
0
def load_scf_coefficients(coeff_files, cov_files, nmax, lmax, mmax, min_sample,
                          max_sample, pmass, sn):
    """
    Load coefficients.
    TODO : REMOVE THIS FUNCTION WHEN SCRIPT IS FULLY WORKING 
    """

    ncoeff_sample = max_sample - min_sample
    print(pmass)
    S, T = coefficients_smoothing.read_coeff_matrix(coeff_files,
                                                    ncoeff_sample,
                                                    nmax,
                                                    lmax,
                                                    mmax,
                                                    min_sample,
                                                    max_sample,
                                                    snaps=90)

    SS, TT, ST = coefficients_smoothing.read_cov_elements(cov_files,
                                                          ncoeff_sample,
                                                          nmax,
                                                          lmax,
                                                          mmax,
                                                          min_sample,
                                                          max_sample,
                                                          snaps=90)

    S_smooth, T_smooth, N_smooth = coefficients_smoothing.smooth_coeff_matrix(
        S, T, SS, TT, ST, pmass, nmax, lmax, mmax, sn, sn_out=0)

    return S_smooth, T_smooth
Ejemplo n.º 2
0
def smooth_coeff(coeff_path, cov_path, ni, nf, nmax, lmax, mmax, sn, pmass, snap, sn_out=0):
    nfiles = nf-ni
    S, T = coefficients_smoothing.read_coeff_matrix(coeff_path,  nfiles, nmax, \
                                                   lmax, mmax, n_min=ni,\
                                                   n_max=nf, snaps=snap)
    SS, TT, ST = coefficients_smoothing.read_cov_elements(cov_path,  nfiles, nmax,\
                                                         lmax, mmax, n_min=ni,\
                                                         n_max=nf, snaps=snap)
    if sn_out==0:
        S_smooth, T_smooth, N_smooth = coefficients_smoothing.smooth_coeff_matrix(S, T, SS, TT, ST, pmass, nmax, lmax, mmax, sn, sn_out)
        return S_smooth, T_smooth, N_smooth

    elif sn_out==1:
        S_smooth, T_smooth, N_smooth, SN_coeff = coefficients_smoothing.smooth_coeff_matrix(S, T, SS, TT, ST, pmass, nmax, lmax, mmax, sn, sn_out)
        return S_smooth, T_smooth, N_smooth, SN_coeff
Ejemplo n.º 3
0
def rho_square(i, sn):
    """
    
    Computes the `True' density square as defined 
    in equation 5 of the companion doc.
    
    It use the coefficients computed with the particle distribution 
    in each particle batch i. 

    """

    path = '/home/u9/jngaravitoc/codes/Kullback-Leibler/data/'

    t1 = time_now()
    S, T = coefficients_smoothing.read_coeff_matrix(
        path + 'mwlmc_hal_sn_test_coeff_sample_',
        1,
        nmax,
        lmax,
        lmax,
        i,
        i + 1,
        snaps=1)

    SS, TT, ST = coefficients_smoothing.read_cov_elements(
        path + 'mwlmc_hal_sn_test_covmat_sample_',
        1,
        nmax,
        lmax,
        lmax,
        i,
        i + 1,
        snaps=1)

    S_smooth, T_smooth, N_coeff = coefficients_smoothing.smooth_coeff_matrix(
        S, T, SS, TT, ST, mass, nmax, lmax, lmax, sn_range[sn])

    rho2 = coefficients_sum_fast(S_smooth, T_smooth, rs)
    t2 = time_now()
    time_diff(t1, t2)
    return rho2
Ejemplo n.º 4
0
def kpq_sn_estimator(i):
    pos = np.loadtxt('./MW_100M_b1_dm_part_1e6_300.txt')

    N_particles = len(pos)
    n_batches = 100
    particles_in_batch = int(N_particles / n_batches)

    sn_range = np.arange(0, 11, 0.2)
    Hp = np.zeros(len(sn_range))
    Kpq = np.zeros(len(sn_range))
    Kpq_rho = np.zeros(len(sn_range))
    N_part = 990000  # len(pos_grid)
    m_p = 1 / N_part
    rho_factor = 1e4 / N_part
    m_p_sim = 1E-4
    N_coeff = np.zeros(len(sn_range))

    path = '/home/xzk/work/github/MW-LMC-SCF/code/data_KL_SN/'
    S, T = coefficients_smoothing.read_coeff_matrix(
        path + 'mwlmc_hal_sn_test_coeff_sample_',
        i + 1,
        20,
        20,
        20,
        0,
        i + 1,
        snaps=1)
    SS, TT, ST = coefficients_smoothing.read_cov_elements(
        path + 'mwlmc_hal_sn_test_covmat_sample_',
        i + 1,
        20,
        20,
        20,
        0,
        i + 1,
        snaps=1)
    S_0, T_0, N_smooth_0 = coefficients_smoothing.smooth_coeff_matrix(
        S, T, SS, TT, ST, m_p_sim, 20, 20, 20, 0)  # sn
    xyz1 = np.array([
        pos[:i * (particles_in_batch), 0], pos[:i * (particles_in_batch), 1],
        pos[:i * (particles_in_batch), 2]
    ]).T

    xyz2 = np.array([
        pos[(i + 1) * (particles_in_batch):,
            0], pos[(i + 1) * (particles_in_batch):, 1],
        pos[(i + 1) * (particles_in_batch):, 2]
    ]).T

    xyz = np.concatenate((xyz1, xyz2))
    assert (len(xyz == 990000))
    rho_reference = biff.density(np.ascontiguousarray(xyz.astype(float)),
                                 S_0,
                                 T_0,
                                 M=1,
                                 r_s=40.85)
    print('Here')
    """
    for sn in range(len(sn_range)):

        S_smooth, T_smooth, N_coeff[sn] = coefficients_smoothing.smooth_coeff_matrix(S, T, SS, TT, ST, m_p_sim, 20, 20, 20, sn_range[sn])


        rho_estimate = biff.density(np.ascontiguousarray(xyz.astype(float)), S_smooth, T_smooth, M=1, r_s=40.85) 
        Hp[sn] = np.sum(m_p*np.log(rho_factor*np.abs(rho_estimate))) 
        Kpq[sn] = np.sum(m_p*np.log(rho_factor*np.abs(rho_reference))) - Hp[sn]
        Kpq_rho[sn] = np.sum(rho_factor*rho_reference*np.log(np.abs(rho_reference/rho_estimate))) 

    """
    return Hp, Kpq, Kpq_rho, N_coeff
Ejemplo n.º 5
0
    cbar = colorbar(im, cax=cb_ax)
    fig.suptitle(
        'Relative density of MW + LMC unbound particles {}'.format(title_name),
        y=0.93)
    cbar.set_label(r'$\Delta \rho$')
    savefig(figname + '.pdf', bbox_inches='tight')
    savefig(figname + '.png', bbox_inches='tight')


if __name__ == "__main__":

    S_2T_V, T_2T_V = coefficients_smoothing.read_coeff_matrix(
        '../data/MW/MW_lmc_unbound/mwlmc_unbound_BFE_2T_V_1e6_300_coeff_sample_0',
        40, 20, 20, 20, 0, 40)
    SS_2T_V, TT_2T_V, ST_2T_V = coefficients_smoothing.read_cov_elements(
        '../data/MW/MW_lmc_unbound/mwlmc_unbound_BFE_2T_V_1e6_300_covmat_sample_0',
        40, 20, 20, 20, 0, 40)

    S_T_V, T_T_V = coefficients_smoothing.read_coeff_matrix(
        '../data/MW/MW_lmc_unbound/mwlmc_unbound_BFE_T_V_1e6_300_coeff_sample_0',
        40, 20, 20, 20, 0, 40)
    SS_T_V, TT_T_V, ST_T_V = coefficients_smoothing.read_cov_elements(
        '../data/MW/MW_lmc_unbound/mwlmc_unbound_BFE_T_V_1e6_300_covmat_sample_0',
        40, 20, 20, 20, 0, 40)

    S_T_2V, T_T_2V = coefficients_smoothing.read_coeff_matrix(
        '../data/MW/MW_lmc_unbound/mwlmc_unbound_BFE_T_2V_1e6_300_coeff_sample_0',
        40, 20, 20, 20, 0, 40)
    SS_T_2V, TT_T_2V, ST_T_2V = coefficients_smoothing.read_cov_elements(
        '../data/MW/MW_lmc_unbound/mwlmc_unbound_BFE_T_2V_1e6_300_covmat_sample_0',
        40, 20, 20, 20, 0, 40)