Ejemplo n.º 1
0
 def create_pyop2_node(typ, exp1, exp2):
     """Create an expr node starting from two FFC symbols."""
     if typ == 2:
         return pyop2.Prod(exp1, exp2)
     if typ == 3:
         return pyop2.Sum(exp1, exp2)
     if typ == 4:
         return pyop2.Div(exp1, exp2)
Ejemplo n.º 2
0
def auxiliary_information(builder):
    """This function generates any auxiliary information regarding special handling of
    expressions that do not have any integral forms or subkernels associated with it.

    :arg builder: a :class:`SlateKernelBuilder` object that contains all the necessary
                  temporary and expression information.

    Returns: a mapping of the form ``{aux_node: aux_temp}``, where `aux_node` is an
             already assembled data-object provided as a `ufl.Coefficient` and `aux_temp`
             is the corresponding temporary.

             a list of auxiliary statements are returned that contain temporary declarations
             and any code-blocks needed to evaluate the expression.
    """
    aux_temps = {}
    aux_statements = []
    for i, exp in enumerate(builder.aux_exprs):
        if isinstance(exp, Action):
            acting_coefficient = exp._acting_coefficient
            assert isinstance(acting_coefficient, Coefficient)

            temp = ast.Symbol("C%d" % i)
            V = acting_coefficient.function_space()
            node_extent = V.fiat_element.space_dimension()
            dof_extent = np.prod(V.ufl_element().value_shape())
            aux_statements.append(
                ast.Decl(
                    eigen_matrixbase_type(shape=(dof_extent * node_extent, )),
                    temp))
            aux_statements.append(ast.FlatBlock("%s.setZero();\n" % temp))

            # Now we unpack the coefficient and insert its entries into a 1D vector temporary
            isym = ast.Symbol("i1")
            jsym = ast.Symbol("j1")
            tensor_index = ast.Sum(ast.Prod(dof_extent, isym), jsym)
            # Inner-loop running over dof_extent
            inner_loop = ast.For(
                ast.Decl("unsigned int", jsym, init=0),
                ast.Less(jsym, dof_extent), ast.Incr(jsym, 1),
                ast.Assign(
                    ast.Symbol(temp, rank=(tensor_index, )),
                    ast.Symbol(builder.coefficient_map[acting_coefficient],
                               rank=(isym, jsym))))
            # Outer-loop running over node_extent
            loop = ast.For(ast.Decl("unsigned int", isym, init=0),
                           ast.Less(isym, node_extent), ast.Incr(isym, 1),
                           inner_loop)

            aux_statements.append(loop)
            aux_temps[acting_coefficient] = temp
        else:
            raise NotImplementedError(
                "Auxiliary expression type %s not currently implemented." %
                type(exp))

    return aux_temps, aux_statements
Ejemplo n.º 3
0
def get_restriction_kernel(fiat_element, unique_indices, dim=1, no_weights=False):
    weights = restriction_weights(fiat_element)[unique_indices].T
    ncdof = weights.shape[0]
    nfdof = weights.shape[1]
    arglist = [ast.Decl("double", ast.Symbol("coarse", (ncdof*dim, ))),
               ast.Decl("double *restrict *restrict ", ast.Symbol("fine", ()),
                        qualifiers=["const"])]
    if not no_weights:
        arglist.append(ast.Decl("double *restrict *restrict", ast.Symbol("count_weights", ()),
                                qualifiers=["const"]))

    all_ones = np.allclose(weights, 1.0)

    if all_ones:
        w = []
    else:
        w_sym = ast.Symbol("weights", (ncdof, nfdof))
        init = ast.ArrayInit(format_array_literal(weights))
        w = [ast.Decl("double", w_sym, init,
                      qualifiers=["const"])]

    i = ast.Symbol("i", ())
    j = ast.Symbol("j", ())
    k = ast.Symbol("k", ())
    fine = ast.Symbol("fine", (j, k))
    if no_weights:
        if all_ones:
            assign = fine
        else:
            assign = ast.Prod(fine, ast.Symbol("weights", (i, j)))
    else:
        if all_ones:
            assign = ast.Prod(fine, ast.Symbol("count_weights", (j, 0)))
        else:
            assign = ast.Prod(fine,
                              ast.Prod(ast.Symbol("weights", (i, j)),
                                       ast.Symbol("count_weights", (j, 0))))
    assignment = ast.Incr(ast.Symbol("coarse", (ast.Sum(k, ast.Prod(i, ast.c_sym(dim))),)),
                          assign)
    k_loop = ast.For(ast.Decl("int", k, ast.c_sym(0)),
                     ast.Less(k, ast.c_sym(dim)),
                     ast.Incr(k, ast.c_sym(1)),
                     ast.Block([assignment], open_scope=True))
    j_loop = ast.For(ast.Decl("int", j, ast.c_sym(0)),
                     ast.Less(j, ast.c_sym(nfdof)),
                     ast.Incr(j, ast.c_sym(1)),
                     ast.Block([k_loop], open_scope=True))
    i_loop = ast.For(ast.Decl("int", i, ast.c_sym(0)),
                     ast.Less(i, ast.c_sym(ncdof)),
                     ast.Incr(i, ast.c_sym(1)),
                     ast.Block([j_loop], open_scope=True))
    k = ast.FunDecl("void", "restriction", arglist, ast.Block(w + [i_loop]),
                    pred=["static", "inline"])

    return op2.Kernel(k, "restriction", opts=parameters["coffee"])
Ejemplo n.º 4
0
def get_injection_kernel(fiat_element, unique_indices, dim=1):
    weights = injection_weights(fiat_element)[unique_indices].T
    ncdof = weights.shape[0]
    nfdof = weights.shape[1]
    # What if we have multiple nodes in same location (DG)?  Divide by
    # rowsum.
    weights = weights / np.sum(weights, axis=1).reshape(-1, 1)

    all_same = np.allclose(weights, weights[0, 0])

    arglist = [
        ast.Decl("double", ast.Symbol("coarse", (ncdof * dim, ))),
        ast.Decl("double *restrict *restrict ",
                 ast.Symbol("fine", ()),
                 qualifiers=["const"])
    ]
    if all_same:
        w_sym = ast.Symbol("weights", ())
        w = [ast.Decl("double", w_sym, weights[0, 0], qualifiers=["const"])]
    else:
        init = ast.ArrayInit(format_array_literal(weights))
        w_sym = ast.Symbol("weights", (ncdof, nfdof))
        w = [ast.Decl("double", w_sym, init, qualifiers=["const"])]

    i = ast.Symbol("i", ())
    j = ast.Symbol("j", ())
    k = ast.Symbol("k", ())
    if all_same:
        assign = ast.Prod(ast.Symbol("fine", (j, k)), w_sym)
    else:
        assign = ast.Prod(ast.Symbol("fine", (j, k)),
                          ast.Symbol("weights", (i, j)))
    assignment = ast.Incr(
        ast.Symbol("coarse", (ast.Sum(k, ast.Prod(i, ast.c_sym(dim))), )),
        assign)
    k_loop = ast.For(ast.Decl("int", k, ast.c_sym(0)),
                     ast.Less(k, ast.c_sym(dim)), ast.Incr(k, ast.c_sym(1)),
                     ast.Block([assignment], open_scope=True))
    j_loop = ast.For(ast.Decl("int", j, ast.c_sym(0)),
                     ast.Less(j, ast.c_sym(nfdof)), ast.Incr(j, ast.c_sym(1)),
                     ast.Block([k_loop], open_scope=True))
    i_loop = ast.For(ast.Decl("int", i, ast.c_sym(0)),
                     ast.Less(i, ast.c_sym(ncdof)), ast.Incr(i, ast.c_sym(1)),
                     ast.Block([j_loop], open_scope=True))
    k = ast.FunDecl("void",
                    "injection",
                    arglist,
                    ast.Block(w + [i_loop]),
                    pred=["static", "inline"])

    return op2.Kernel(k, "injection", opts=parameters["coffee"])
Ejemplo n.º 5
0
def get_prolongation_kernel(fiat_element, unique_indices, dim=1):
    weights = get_restriction_weights(fiat_element)[unique_indices]
    nfdof = weights.shape[0]
    ncdof = weights.shape[1]
    arglist = [
        ast.Decl("double", ast.Symbol("fine", (nfdof * dim, ))),
        ast.Decl("double",
                 ast.Symbol("*restrict *restrict coarse", ()),
                 qualifiers=["const"])
    ]
    all_same = np.allclose(weights, weights[0, 0])

    if all_same:
        w_sym = ast.Symbol("weights", ())
        w = [ast.Decl("double", w_sym, weights[0, 0], qualifiers=["const"])]
    else:
        w_sym = ast.Symbol("weights", (nfdof, ncdof))
        init = ast.ArrayInit(format_array_literal(weights))
        w = [ast.Decl("double", w_sym, init, qualifiers=["const"])]
    i = ast.Symbol("i", ())
    j = ast.Symbol("j", ())
    k = ast.Symbol("k", ())
    if all_same:
        assign = ast.Prod(ast.Symbol("coarse", (j, k)), w_sym)
    else:
        assign = ast.Prod(ast.Symbol("coarse", (j, k)),
                          ast.Symbol("weights", (i, j)))

    assignment = ast.Incr(
        ast.Symbol("fine", (ast.Sum(k, ast.Prod(i, ast.c_sym(dim))), )),
        assign)
    k_loop = ast.For(ast.Decl("int", k, ast.c_sym(0)),
                     ast.Less(k, ast.c_sym(dim)), ast.Incr(k, ast.c_sym(1)),
                     ast.Block([assignment], open_scope=True))
    j_loop = ast.For(ast.Decl("int", j, ast.c_sym(0)),
                     ast.Less(j, ast.c_sym(ncdof)), ast.Incr(j, ast.c_sym(1)),
                     ast.Block([k_loop], open_scope=True))
    i_loop = ast.For(ast.Decl("int", i, ast.c_sym(0)),
                     ast.Less(i, ast.c_sym(nfdof)), ast.Incr(i, ast.c_sym(1)),
                     ast.Block([j_loop], open_scope=True))
    k = ast.FunDecl("void",
                    "prolongation",
                    arglist,
                    ast.Block(w + [i_loop]),
                    pred=["static", "inline"])

    return op2.Kernel(k, "prolongation", opts=parameters["coffee"])
Ejemplo n.º 6
0
def coefficient_temporaries(builder, declared_temps):
    """Generates coefficient temporary statements for assigning
    coefficients to vector temporaries.

    :arg builder: The :class:`LocalKernelBuilder` containing
        all relevant expression information.
    :arg declared_temps: A `dict` keeping track of all declared
        temporaries. This dictionary is updated as coefficients
        are assigned temporaries.

    'AssembledVector's require creating coefficient temporaries to
    store data. The temporaries are created by inspecting the function
    space of the coefficient to compute node and dof extents. The
    coefficient is then assigned values by looping over both the node
    extent and dof extent (double FOR-loop). A double FOR-loop is needed
    for each function space (if the function space is mixed, then a loop
    will be constructed for each component space). The general structure
    of each coefficient loop will be:

         FOR (i1=0; i1<node_extent; i1++):
             FOR (j1=0; j1<dof_extent; j1++):
                 VT0[offset + (dof_extent * i1) + j1] = w_0_0[i1][j1]
                 VT1[offset + (dof_extent * i1) + j1] = w_1_0[i1][j1]
                 .
                 .
                 .

    where wT0, wT1, ... are temporaries for coefficients sharing the
    same node and dof extents. The offset is computed based on whether
    the function space is mixed. The offset is always 0 for non-mixed
    coefficients. If the coefficient is mixed, then the offset is
    incremented by the total number of nodal unknowns associated with
    the component spaces of the mixed space.
    """
    statements = [ast.FlatBlock("/* Coefficient temporaries */\n")]
    j = ast.Symbol("j1")
    loops = [ast.FlatBlock("/* Loops for coefficient temps */\n")]
    for dofs, cinfo_list in builder.coefficient_vecs.items():
        # Collect all coefficients which share the same node/dof extent
        assignments = []
        for cinfo in cinfo_list:
            fs_i = cinfo.space_index
            offset = cinfo.offset_index
            c_shape = cinfo.shape
            vector = cinfo.vector
            function = vector._function
            t = cinfo.local_temp

            if vector not in declared_temps:
                # Declare and initialize coefficient temporary
                c_type = eigen_matrixbase_type(shape=c_shape)
                statements.append(ast.Decl(c_type, t))
                declared_temps[vector] = t

            # Assigning coefficient values into temporary
            coeff_sym = ast.Symbol(builder.coefficient(function)[fs_i],
                                   rank=(j, ))
            index = ast.Sum(offset, j)
            coeff_temp = ast.Symbol(t, rank=(index, ))
            assignments.append(ast.Assign(coeff_temp, coeff_sym))

        # loop over dofs
        loop = ast.For(ast.Decl("unsigned int", j, init=0), ast.Less(j, dofs),
                       ast.Incr(j, 1), assignments)

        loops.append(loop)

    statements.extend(loops)

    return statements
Ejemplo n.º 7
0
            a.function = weakref.proxy(a.function)
        vals.append((k, args))
    if result._expression_cache is not None:
        result._expression_cache[key] = vals


def assemble_expression(expr, subset=None):
    """Evaluates UFL expressions on :class:`.Function`\s pointwise and assigns
    into a new :class:`.Function`."""

    result = function.Function(ExpressionWalker().walk(expr)[2])
    evaluate_expression(Assign(result, expr), subset)
    return result


_to_sum = lambda o: ast.Sum(_ast(o[0]), _to_sum(o[1:])) if len(
    o) > 1 else _ast(o[0])
_to_prod = lambda o: ast.Prod(_ast(o[0]), _to_sum(o[1:])) if len(
    o) > 1 else _ast(o[0])
_to_aug_assign = lambda op, o: op(_ast(o[0]), _ast(o[1]))

_ast_map = {
    MathFunction:
    (lambda e: ast.FunCall(e._name, *[_ast(o) for o in e.ufl_operands])),
    ufl.algebra.Sum: (lambda e: ast.Par(_to_sum(e.ufl_operands))),
    ufl.algebra.Product: (lambda e: ast.Par(_to_prod(e.ufl_operands))),
    ufl.algebra.Division:
    (lambda e: ast.Par(ast.Div(*[_ast(o) for o in e.ufl_operands]))),
    ufl.algebra.Abs: (lambda e: ast.FunCall("abs", _ast(e.ufl_operands[0]))),
    Assign: (lambda e: _to_aug_assign(e._ast, e.ufl_operands)),
    AugmentedAssignment: (lambda e: _to_aug_assign(e._ast, e.ufl_operands)),
Ejemplo n.º 8
0
def auxiliary_temporaries(builder, declared_temps):
    """This function generates auxiliary information regarding special
    handling of expressions that require creating additional temporaries.

    :arg builder: a :class:`KernelBuilder` object that contains all the
                  necessary temporary and expression information.
    :arg declared_temps: a `dict` of temporaries that have already been
                         declared and assigned values. This will be
                         updated in this method and referenced later
                         in the compiler.
    Returns: a list of auxiliary statements are returned that contain temporary
             declarations and any code-blocks needed to evaluate the
             expression.
    """
    aux_statements = []
    for exp in builder.aux_exprs:
        if isinstance(exp, Inverse):
            if builder._ref_counts[exp] > 1:
                # Get the temporary for the particular expression
                result = metaphrase_slate_to_cpp(exp, declared_temps)

                # Now we use the generated result and assign the value to the
                # corresponding temporary.
                temp = ast.Symbol("auxT%d" % len(declared_temps))
                shape = exp.shape
                aux_statements.append(
                    ast.Decl(eigen_matrixbase_type(shape), temp))
                aux_statements.append(ast.FlatBlock("%s.setZero();\n" % temp))
                aux_statements.append(ast.Assign(temp, result))

                # Update declared temps
                declared_temps[exp] = temp

        elif isinstance(exp, Action):
            # Action computations are relatively inexpensive, so
            # we don't waste memory space on creating temps for
            # these expressions. However, we must create a temporary
            # for the actee coefficient (if we haven't already).
            actee, = exp.actee
            if actee not in declared_temps:
                # Declare a temporary for the coefficient
                V = actee.function_space()
                shape_array = [(Vi.finat_element.space_dimension(),
                                np.prod(Vi.shape)) for Vi in V.split()]
                ctemp = ast.Symbol("auxT%d" % len(declared_temps))
                shape = sum(n * d for (n, d) in shape_array)
                typ = eigen_matrixbase_type(shape=(shape, ))
                aux_statements.append(ast.Decl(typ, ctemp))
                aux_statements.append(ast.FlatBlock("%s.setZero();\n" % ctemp))

                # Now we populate the temporary with the coefficient
                # information and insert in the right place.
                offset = 0
                for i, shp in enumerate(shape_array):
                    node_extent, dof_extent = shp
                    # Now we unpack the function and insert its entries into a
                    # 1D vector temporary
                    isym = ast.Symbol("i1")
                    jsym = ast.Symbol("j1")
                    tensor_index = ast.Sum(
                        offset, ast.Sum(ast.Prod(dof_extent, isym), jsym))

                    # Inner-loop running over dof_extent
                    coeff_sym = ast.Symbol(builder.coefficient(actee)[i],
                                           rank=(isym, jsym))
                    coeff_temp = ast.Symbol(ctemp, rank=(tensor_index, ))
                    inner_loop = ast.For(
                        ast.Decl("unsigned int", jsym, init=0),
                        ast.Less(jsym, dof_extent), ast.Incr(jsym, 1),
                        ast.Assign(coeff_temp, coeff_sym))
                    # Outer-loop running over node_extent
                    loop = ast.For(ast.Decl("unsigned int", isym, init=0),
                                   ast.Less(isym, node_extent),
                                   ast.Incr(isym, 1), inner_loop)

                    aux_statements.append(loop)
                    offset += node_extent * dof_extent

                # Update declared temporaries with the coefficient
                declared_temps[actee] = ctemp
        else:
            raise NotImplementedError(
                "Auxiliary expr type %s not currently implemented." %
                type(exp))

    return aux_statements
Ejemplo n.º 9
0
def _expression_sum(expr, parameters):
    return coffee.Sum(*[expression(c, parameters)
                        for c in expr.children])
Ejemplo n.º 10
0
def compile_c_kernel(expression, to_pts, to_element, fs, coords):
    """Produce a :class:`PyOP2.Kernel` from the c expression provided."""

    coords_space = coords.function_space()
    coords_element = create_element(coords_space.ufl_element(),
                                    vector_is_mixed=False)

    names = {v[0] for v in expression._user_args}

    X = list(coords_element.tabulate(0, to_pts).values())[0]

    # Produce C array notation of X.
    X_str = "{{" + "},\n{".join([",".join(map(str, x)) for x in X.T]) + "}}"

    A = utils.unique_name("A", names)
    X = utils.unique_name("X", names)
    x_ = utils.unique_name("x_", names)
    k = utils.unique_name("k", names)
    d = utils.unique_name("d", names)
    i_ = utils.unique_name("i", names)
    # x is a reserved name.
    x = "x"
    if "x" in names:
        raise ValueError(
            "cannot use 'x' as a user-defined Expression variable")
    ass_exp = [
        ast.Assign(ast.Symbol(A, (k, ), ((len(expression.code), i), )),
                   ast.FlatBlock("%s" % code))
        for i, code in enumerate(expression.code)
    ]

    dim = coords_space.value_size
    ndof = to_element.space_dimension()
    xndof = coords_element.space_dimension()
    nfdof = to_element.space_dimension() * numpy.prod(fs.value_size, dtype=int)

    init_X = ast.Decl(typ="double",
                      sym=ast.Symbol(X, rank=(ndof, xndof)),
                      qualifiers=["const"],
                      init=X_str)
    init_x = ast.Decl(typ="double",
                      sym=ast.Symbol(x, rank=(coords_space.value_size, )))
    init_pi = ast.Decl(typ="double",
                       sym="pi",
                       qualifiers=["const"],
                       init="3.141592653589793")
    init = ast.Block([init_X, init_x, init_pi])
    incr_x = ast.Incr(
        ast.Symbol(x, rank=(d, )),
        ast.Prod(ast.Symbol(X, rank=(k, i_)),
                 ast.Symbol(x_, rank=(ast.Sum(ast.Prod(i_, dim), d), ))))
    assign_x = ast.Assign(ast.Symbol(x, rank=(d, )), 0)
    loop_x = ast.For(init=ast.Decl("unsigned int", i_, 0),
                     cond=ast.Less(i_, xndof),
                     incr=ast.Incr(i_, 1),
                     body=[incr_x])

    block = ast.For(init=ast.Decl("unsigned int", d, 0),
                    cond=ast.Less(d, dim),
                    incr=ast.Incr(d, 1),
                    body=[assign_x, loop_x])
    loop = ast.c_for(k, ndof, ast.Block([block] + ass_exp, open_scope=True))
    user_args = []
    user_init = []
    for _, arg in expression._user_args:
        if arg.shape == (1, ):
            user_args.append(ast.Decl("double *", "%s_" % arg.name))
            user_init.append(
                ast.FlatBlock("const double %s = *%s_;" %
                              (arg.name, arg.name)))
        else:
            user_args.append(ast.Decl("double *", arg.name))
    kernel_code = ast.FunDecl(
        "void", "expression_kernel", [
            ast.Decl("double", ast.Symbol(A, (nfdof, ))),
            ast.Decl("double*", x_)
        ] + user_args, ast.Block(user_init + [init, loop], open_scope=False))
    coefficients = [coords]
    for _, arg in expression._user_args:
        coefficients.append(GlobalWrapper(arg))
    return op2.Kernel(kernel_code,
                      kernel_code.name), False, tuple(coefficients)
Ejemplo n.º 11
0
def coefficient_temporaries(builder, declared_temps):
    """Generates coefficient temporary statements for assigning
    coefficients to vector temporaries.

    :arg builder: The :class:`LocalKernelBuilder` containing
                  all relevant expression information.
    :arg declared_temps: A `dict` keeping track of all declared
                         temporaries. This dictionary is updated
                         as coefficients are assigned temporaries.

    Action computations require creating coefficient temporaries to
    compute the matrix-vector product. The temporaries are created by
    inspecting the function space of the coefficient to compute node
    and dof extents. The coefficient is then assigned values by looping
    over both the node extent and dof extent (double FOR-loop). A double
    FOR-loop is needed for each function space (if the function space is
    mixed, then a loop will be constructed for each component space).
    The general structure of each coefficient loop will be:

         FOR (i1=0; i1<node_extent; i1++):
             FOR (j1=0; j1<dof_extent; j1++):
                 wT0[offset + (dof_extent * i1) + j1] = w_0_0[i1][j1]
                 wT1[offset + (dof_extent * i1) + j1] = w_1_0[i1][j1]
                 .
                 .
                 .

    where wT0, wT1, ... are temporaries for coefficients sharing the
    same node and dof extents. The offset is computed based on whether
    the function space is mixed. The offset is always 0 for non-mixed
    coefficients. If the coefficient is mixed, then the offset is
    incremented by the total number of nodal unknowns associated with
    the component spaces of the mixed space.
    """
    statements = [ast.FlatBlock("/* Coefficient temporaries */\n")]
    i_sym = ast.Symbol("i1")
    j_sym = ast.Symbol("j1")
    loops = [ast.FlatBlock("/* Loops for coefficient temps */\n")]
    for (nodes, dofs), cinfo_list in builder.action_coefficients.items():
        # Collect all coefficients which share the same node/dof extent
        assignments = []
        for cinfo in cinfo_list:
            fs_i = cinfo.space_index
            offset = cinfo.offset_index
            c_shape = cinfo.shape
            actee = cinfo.coefficient

            if actee not in declared_temps:
                # Declare and initialize coefficient temporary
                c_type = eigen_matrixbase_type(shape=c_shape)
                t = ast.Symbol("wT%d" % len(declared_temps))
                statements.append(ast.Decl(c_type, t))
                statements.append(ast.FlatBlock("%s.setZero();\n" % t))
                declared_temps[actee] = t

            # Assigning coefficient values into temporary
            coeff_sym = ast.Symbol(builder.coefficient(actee)[fs_i],
                                   rank=(i_sym, j_sym))
            index = ast.Sum(offset, ast.Sum(ast.Prod(dofs, i_sym), j_sym))
            coeff_temp = ast.Symbol(t, rank=(index, ))
            assignments.append(ast.Assign(coeff_temp, coeff_sym))

        # Inner-loop running over dof extent
        inner_loop = ast.For(ast.Decl("unsigned int", j_sym, init=0),
                             ast.Less(j_sym, dofs), ast.Incr(j_sym, 1),
                             assignments)

        # Outer-loop running over node extent
        loop = ast.For(ast.Decl("unsigned int", i_sym, init=0),
                       ast.Less(i_sym, nodes), ast.Incr(i_sym, 1), inner_loop)

        loops.append(loop)

    statements.extend(loops)

    return statements