Ejemplo n.º 1
0
def test_check_task_dataset_model_match():
    variants = list(
        gen_variants(dataset=["cora"], model=["gcn", "gat"], seed=[1, 2]))
    variants.append(
        namedtuple("Variant", ["dataset", "model", "seed"])(dataset="cora",
                                                            model="deepwalk",
                                                            seed=1))
    variants = check_task_dataset_model_match("node_classification", variants)

    assert len(variants) == 4
Ejemplo n.º 2
0
def test_gen_variants():
    variants = list(
        gen_variants(dataset=["cora"], model=["gcn", "gat"], seed=[1, 2]))

    assert len(variants) == 4
Ejemplo n.º 3
0
    mp.set_start_method("spawn", force=True)

    parser = options.get_training_parser()
    args, _ = parser.parse_known_args()
    args = options.parse_args_and_arch(parser, args)

    # Make sure datasets are downloaded first
    datasets = args.dataset
    for dataset in datasets:
        args.dataset = dataset
        _ = build_dataset(args)
    args.dataset = datasets

    print(args)
    variants = list(
        gen_variants(dataset=args.dataset, model=args.model, seed=args.seed))

    device_ids = args.device_id
    if args.cpu:
        num_workers = 1
    else:
        num_workers = len(device_ids)
    print("num_workers", num_workers)

    results_dict = defaultdict(list)
    with mp.Pool(processes=num_workers) as pool:
        # Map process to cuda device
        pids = pool.map(getpid, range(num_workers))
        pid_to_cuda = dict(zip(pids, device_ids))

        # yield all variants