Ejemplo n.º 1
0
    def __init__(
        self,
        in_feats: int,
        hidden_size: int,
        out_feats: int,
        pooling_layer: int,
        pooling_rates: List[float],
        n_dropout: float = 0.5,
        adj_dropout: float = 0.3,
        activation: str = "elu",
        improved: bool = False,
        aug_adj: bool = False,
    ):
        super(GraphUnet, self).__init__()
        self.improved = improved
        self.n_dropout = n_dropout
        self.adj_dropout = adj_dropout

        self.act = get_activation(activation)
        assert pooling_layer <= len(pooling_rates)
        pooling_rates = pooling_rates[:pooling_layer]
        pooling_rates = [float(x) for x in pooling_rates]
        self.unet = GraphUnetLayer(hidden_size, pooling_layer, pooling_rates,
                                   activation, n_dropout, aug_adj)

        self.in_gcn = GCNLayer(in_feats, hidden_size)
        self.out_gcn = GCNLayer(hidden_size, out_feats)
Ejemplo n.º 2
0
    def __init__(
        self,
        hidden_size: int,
        pooling_layer: int,
        pooling_rates: List[float],
        activation: str = "elu",
        dropout: float = 0.5,
        aug_adj: bool = False,
    ):
        super(GraphUnetLayer, self).__init__()
        self.dropout = dropout
        self.activation = activation
        self.pooling_layer = pooling_layer
        self.gcn = GCNLayer(hidden_size, hidden_size)
        self.act = get_activation(activation)

        self.down_gnns = nn.ModuleList(
            [GCNLayer(hidden_size, hidden_size) for _ in range(pooling_layer)])
        self.up_gnns = nn.ModuleList(
            [GCNLayer(hidden_size, hidden_size) for _ in range(pooling_layer)])
        self.poolings = nn.ModuleList([
            Pool(hidden_size, pooling_rates[i], aug_adj, dropout)
            for i in range(pooling_layer)
        ])
        self.unpoolings = nn.ModuleList(
            [UnPool() for _ in range(pooling_layer)])
Ejemplo n.º 3
0
    def __init__(self, nfeat, nhid, nclass, dropout, pooling_ratio,
                 pooling_layer_type):
        def __get_layer_from_str__(str):
            if str == "gcnconv":
                return GCNLayer
            return GCNLayer

        super(SAGPoolNetwork, self).__init__()

        self.nfeat = nfeat
        self.nhid = nhid
        self.nclass = nclass
        self.dropout = dropout
        self.pooling_ratio = pooling_ratio

        self.conv_layer_1 = GCNLayer(self.nfeat, self.nhid)
        self.conv_layer_2 = GCNLayer(self.nhid, self.nhid)
        self.conv_layer_3 = GCNLayer(self.nhid, self.nhid)

        self.pool_layer_1 = SAGPoolLayers(
            self.nhid,
            Conv=__get_layer_from_str__(pooling_layer_type),
            ratio=self.pooling_ratio)
        self.pool_layer_2 = SAGPoolLayers(
            self.nhid,
            Conv=__get_layer_from_str__(pooling_layer_type),
            ratio=self.pooling_ratio)
        self.pool_layer_3 = SAGPoolLayers(
            self.nhid,
            Conv=__get_layer_from_str__(pooling_layer_type),
            ratio=self.pooling_ratio)

        self.lin_layer_1 = torch.nn.Linear(self.nhid * 2, self.nhid)
        self.lin_layer_2 = torch.nn.Linear(self.nhid, self.nhid // 2)
        self.lin_layer_3 = torch.nn.Linear(self.nhid // 2, self.nclass)
Ejemplo n.º 4
0
 def __init__(self, num_features, hidden_size):
     super(VGAE, self).__init__()
     self.num_features = num_features
     self.hidden_size = hidden_size
     self.conv1 = GCNLayer(self.num_features, self.hidden_size)
     self.conv2_mean = GCNLayer(self.hidden_size, self.hidden_size)
     self.conv2_var = GCNLayer(self.hidden_size, self.hidden_size)
Ejemplo n.º 5
0
 def __init__(
     self,
     in_feats,
     hidden_size,
     out_feats,
     num_layers,
     dropout,
     activation="relu",
     residual=False,
     norm=None,
 ):
     super(GCN, self).__init__()
     shapes = [in_feats] + [hidden_size] * (num_layers - 1) + [out_feats]
     self.layers = nn.ModuleList(
         [
             GCNLayer(
                 shapes[i],
                 shapes[i + 1],
                 dropout=dropout if i != num_layers - 1 else 0,
                 residual=residual if i != num_layers - 1 else None,
                 norm=norm if i != num_layers - 1 else None,
                 activation=activation if i != num_layers - 1 else None,
             )
             for i in range(num_layers)
         ]
     )
     self.num_layers = num_layers
Ejemplo n.º 6
0
    def __init__(
        self,
        in_feats,
        out_feats,
        hidden_size,
        num_layers,
        dropout=0.5,
        drop_edge_rate=0.1,
        activation="relu",
        norm="batchnorm",
        group=2,
    ):
        super(RevGCN, self).__init__()
        self.dropout = dropout
        self.drop_edge_rate = drop_edge_rate
        self.num_layers = num_layers
        self.layers = nn.ModuleList()
        self.norm = get_norm_layer(norm, hidden_size)
        self.act = get_activation(activation)

        for i in range(num_layers):
            if i == 0:
                self.layers.append(
                    GCNLayer(
                        in_feats,
                        hidden_size,
                        residual=True,
                    )
                )
            elif i == num_layers - 1:
                self.layers.append(GCNLayer(hidden_size, out_feats, residual=True))
            else:
                conv = GCNLayer(
                    hidden_size // group,
                    hidden_size // group,
                )
                res_conv = ResGNNLayer(
                    conv,
                    hidden_size // group,
                    activation=activation,
                    norm=norm,
                    out_norm=norm,
                    out_channels=hidden_size // group,
                )
                self.layers.append(RevGNNLayer(res_conv, group))
Ejemplo n.º 7
0
    def __init__(self, nfeat, nhid, nclass, dropout, alpha, t, k, eps,
                 gdctype):
        super(GDC_GCN, self).__init__()

        # preproc params
        self.alpha = alpha
        self.t = t
        self.k = k
        self.eps = eps
        self.gdc_type = gdctype

        self.data = None

        # GCN init
        self.nfeat = nfeat
        self.gc1 = GCNLayer(nfeat, nhid)
        self.gc2 = GCNLayer(nhid, nclass)
        self.dropout = dropout
Ejemplo n.º 8
0
    def __init__(self, num_features, num_classes, hidden_size, num_layers, dropout, norm=None, activation="relu"):
        super(DrGCN, self).__init__()

        self.num_features = num_features
        self.num_classes = num_classes
        self.hidden_size = hidden_size
        self.num_layers = num_layers
        self.dropout = dropout
        shapes = [num_features] + [hidden_size] * (num_layers - 1) + [num_classes]
        self.convs = nn.ModuleList(
            [
                GCNLayer(shapes[layer], shapes[layer + 1], activation=activation, norm=norm)
                for layer in range(num_layers - 1)
            ]
        )
        self.convs.append(GCNLayer(shapes[-2], shapes[-1]))
        self.ses = nn.ModuleList(
            [SELayer(shapes[layer], se_channels=int(np.sqrt(shapes[layer]))) for layer in range(num_layers)]
        )
Ejemplo n.º 9
0
 def __init__(
     self,
     in_feats: int,
     out_feats: int,
     num_layers: int,
     activation: str = "relu",
 ):
     super(GraceEncoder, self).__init__()
     shapes = [in_feats] + [2 * out_feats] * (num_layers - 1) + [out_feats]
     self.layers = nn.ModuleList(
         [GCNLayer(shapes[i], shapes[i + 1]) for i in range(num_layers)])
     self.activation = get_activation(activation)
Ejemplo n.º 10
0
def gcn_model(in_feats, hidden_size, num_layers, out_feats, dropout, residual,
              norm, activation):
    shapes = [in_feats] + [hidden_size] * (num_layers - 1) + [out_feats]

    return nn.ModuleList([
        GCNLayer(
            shapes[i],
            shapes[i + 1],
            dropout=dropout if i != num_layers - 1 else 0,
            residual=residual if i != num_layers - 1 else None,
            norm=norm if i != num_layers - 1 else None,
            activation=activation if i != num_layers - 1 else None,
        ) for i in range(num_layers)
    ])
Ejemplo n.º 11
0
Archivo: drgcn.py Proyecto: jkx19/cogdl
    def __init__(self, num_features, num_classes, hidden_size, num_layers,
                 dropout):
        super(DrGCN, self).__init__()

        self.num_features = num_features
        self.num_classes = num_classes
        self.hidden_size = hidden_size
        self.num_layers = num_layers
        self.dropout = dropout
        shapes = [num_features
                  ] + [hidden_size] * (num_layers - 1) + [num_classes]
        self.convs = nn.ModuleList([
            GCNLayer(shapes[layer], shapes[layer + 1])
            for layer in range(num_layers)
        ])
        self.ses = nn.ModuleList([
            SELayer(shapes[layer], se_channels=int(np.sqrt(shapes[layer])))
            for layer in range(num_layers)
        ])
Ejemplo n.º 12
0
 def __init__(self, num_edge, num_channels, w_in, w_out, num_class, num_nodes, num_layers):
     super(GTN, self).__init__()
     self.num_edge = num_edge
     self.num_channels = num_channels
     self.num_nodes = num_nodes
     self.w_in = w_in
     self.w_out = w_out
     self.num_class = num_class
     self.num_layers = num_layers
     layers = []
     for i in range(num_layers):
         if i == 0:
             layers.append(GTLayer(num_edge, num_channels, num_nodes, first=True))
         else:
             layers.append(GTLayer(num_edge, num_channels, num_nodes, first=False))
     self.layers = nn.ModuleList(layers)
     self.cross_entropy_loss = nn.CrossEntropyLoss()
     self.gcn = GCNLayer(in_features=self.w_in, out_features=w_out)
     self.linear1 = nn.Linear(self.w_out * self.num_channels, self.w_out)
     self.linear2 = nn.Linear(self.w_out, self.num_class)
Ejemplo n.º 13
0
 def __init__(self, in_feats, hidden_size, out_feats, dropout):
     super(Gnn, self).__init__()
     self.conv1 = GCNLayer(in_feats, hidden_size)
     self.conv2 = GCNLayer(hidden_size, out_feats)
     self.dropout = nn.Dropout(dropout)
Ejemplo n.º 14
0
 def __init__(self, num_features, hidden_size, num_classes, dropout):
     super(M3S, self).__init__()
     self.dropout = dropout
     self.gcn1 = GCNLayer(num_features, hidden_size)
     self.gcn2 = GCNLayer(hidden_size, num_classes)
Ejemplo n.º 15
0
 def __init__(self, in_feats, out_feats, hidden_size, num_layers):
     super(JKNet, self).__init__()
     shapes = [in_feats] + [hidden_size] * num_layers
     self.layers = nn.ModuleList(
         [GCNLayer(shapes[i], shapes[i + 1]) for i in range(num_layers)])
     self.fc = nn.Linear(hidden_size * num_layers, out_feats)