from colabcode import ColabCode ColabCode(port=10000)
except: address = 'Không thể nhận biết' try: timestamp = ' '.join(dict_cls[2]) except: timestamp = 'Không thể nhận biết' try: totalcost = totalcost[-1] except: totalcost = 'Không thể nhận biết' # Trả về kết quả ra json dict_out = { "seller": seller, "address": address, "timestamp": timestamp, "totalcost": totalcost, } return dict_out # run server server = ColabCode( port=10001, code=False, authtoken='1tZN1OIxC54y7we1FQlNRXusGcS_4vwyHgHDwhUi9vTKsmRKc') server.run_app(app=app)
Position_Names_Vec = np.load('/content/drive/MyDrive/Colab Notebooks/Job Analysis/Position_Names_Vec.npy', allow_pickle=True) @app.get('/') def index(): return {'message': 'This is the homepage of the API '} @app.post('/predict') def predict_job(data: Text): word_seq, word_index =preprocessData([data.text], tokenizer) pred=model.predict(word_seq) output = [] max=0.0 for i in range(Position_Names_Vec.shape[0]): cos= cosine_similarity([pred[0],Position_Names_Vec[i]])[0][1] output.append(cos) if cos > max: max = cos print(max) dictionary = pd.DataFrame(Position_Names, columns=['Position']) dictionary['Cosine'] = output dictionary=dictionary.sort_values(by=['Cosine'], ascending=False) return {'Position': dictionary.head(10)['Position'].tolist(), 'Cosine': dictionary.head(10)['Cosine'].tolist()} from colabcode import ColabCode server = ColabCode(port=10000, code=False) server.run_app(app=app)
from colabcode import ColabCode ColabCode()