#transforms.ToTensor() ]) have_cuda = torch.cuda.is_available() start_epoch = 2 epochs = 3 data_dir = "./places365_standard/train/" train_set = TrainImageFolder(data_dir, original_transform) train_set_size = len(train_set) train_set_classes = train_set.classes train_loader = torch.utils.data.DataLoader(train_set, batch_size=64, shuffle=True, num_workers=8) color_model = torch.nn.DataParallel(ColorNet()) if os.path.exists('./pretrained/colornet_params.pkl'): color_model.load_state_dict(torch.load('./pretrained/colornet_params.pkl')) if have_cuda: color_model.cuda() optimizer = optim.Adadelta(color_model.parameters()) if have_cuda: print("Have cuda") else: print("No cuda") def train(epoch): color_model.train()
# Define transformation original_transform = transforms.Compose([ transforms.Resize(256), # transforms.RandomCrop(224), ]) # Read dataset test_set = TrainImageFolder(data_dir, original_transform) test_loader = torch.utils.data.DataLoader(test_set, batch_size=batch_size, shuffle=False, num_workers=num_workers) # Define model colornet = ColorNet() model = colornet.model model.load_state_dict(torch.load('./revisions/multi_data/colornet_params.pkl')) if cuda: model.cuda() i = 0 with torch.no_grad(): for data, _ in test_loader: if cuda: data = data.cuda() pred = model(data) pred = pred * 128 color_img = torch.cat((data, pred), 1)
transforms.Scale(256), transforms.RandomCrop(224), transforms.RandomHorizontalFlip(), #transforms.ToTensor() ]) # have_cuda = torch.cuda.is_available() epochs = 1 writer = SummaryWriter("MyTest") data_dir = "../images256/" train_set = TrainImageFolder(data_dir, original_transform) train_set_size = len(train_set) train_set_classes = train_set.classes train_loader = torch.utils.data.DataLoader(train_set, batch_size=32, shuffle=True, num_workers=4) color_model = ColorNet() device = torch.device('cuda' if torch.cuda.is_available() else 'cpu') color_model = nn.DataParallel(color_model) color_model.to(device) if os.path.exists('./colornet_params.pkl'): color_model.load_state_dict(torch.load('colornet_params.pkl')) # if have_cuda: # color_model.cuda() optimizer = optim.Adadelta(color_model.parameters()) def train(epoch): color_model.train()
from PIL import Image from torchvision import transforms import numpy as np import torch from skimage.color import lab2rgb, rgb2gray import matplotlib.pyplot as plt from torch.autograd import Variable from colornet import ColorNet # 配置cuda have_cuda = torch.cuda.is_available() color_model = ColorNet() # 网络架构 color_model.load_state_dict(torch.load('colornet_params.pkl')) # 参数路径 if have_cuda: color_model.cuda() color_model.eval() # 处理图像,转成黑白和彩色,供GUI调用 def Picture(name): img_name = name # 输入图片的路径 img = Image.open(img_name) scale_transform = transforms.Compose([ transforms.Resize(256), transforms.RandomCrop(224), # 剪切图片大小为224*224 ]) img1 = scale_transform(img) img_scale = np.asarray(img1) img_original = np.asarray(img)
#transforms.ToTensor() # 将PIL Image或者 ndarray 转换为tensor,并且归一化至[0-1] ]) have_cuda = torch.cuda.is_available() epochs = 10 data_dir = "/input_dir/datasets/Caltech256/256_ObjectCategories" # data_dir = "../images256/" train_set = TrainImageFolder(data_dir, original_transform) # 建训练集 train_set_size = len(train_set) train_set_classes = train_set.classes # classes (list): List of the class names. print('train_set_classes', train_set_classes) train_loader = torch.utils.data.DataLoader(train_set, batch_size=16, shuffle=True, num_workers=4) color_model = ColorNet() if os.path.exists('/output_dir/colornet_paramsCaltech257.pkl'): color_model.load_state_dict( torch.load('/output_dir/colornet_paramsCaltech257.pkl')) if have_cuda: color_model.cuda() optimizer = optim.Adadelta(color_model.parameters()) # 优化方案:Adadelta def train(epoch): color_model.train() try: for batch_idx, (data, classes) in enumerate(train_loader): messagefile = open('/output_dir/message.txt', 'a') original_img = data[0].unsqueeze(1).float() # 在第一维增加一个维度
transforms.CenterCrop(900), #transforms.RandomHorizontalFlip(), #transforms.ToTensor() ]) torch.cuda.empty_cache() data_dir = "images256" have_cuda = torch.cuda.is_available() val_set = ValImageFolder(data_dir, original_transform) val_set_size = len(val_set) val_loader = torch.utils.data.DataLoader(val_set, batch_size=1, shuffle=False, num_workers=0) color_model = ColorNet() color_model.load_state_dict(torch.load('colornet_params.pkl')) if have_cuda: color_model.cuda() def val(): color_model.eval() torch.cuda.empty_cache() i = 0 for data, _ in val_loader: original_img = data[0].unsqueeze(1).float() gray_name = 'gray/' + str(i) + '.jpg' for img in original_img: pic = img.squeeze().numpy() pic = pic.astype(np.float64)
raise Exception("No GPU found, please run without --cuda") torch.manual_seed(opt.seed) if cuda: torch.cuda.manual_seed(opt.seed) print('===> Loading datasets') train_set = get_training_colorset(opt.data_dir, opt.nFrames, opt.upscale_factor, opt.data_augmentation, opt.hr_flist, opt.lr_flist, opt.other_dataset, opt.patch_size, opt.future_frame) training_data_loader = DataLoader(dataset=train_set, num_workers=opt.threads, batch_size=opt.batchSize, shuffle=True) test_set = get_test_colorset(opt.data_dir, opt.nFrames, opt.upscale_factor, opt.test_flist, opt.other_dataset, opt.future_frame) testing_data_loader = DataLoader(dataset=test_set, num_workers=opt.threads, batch_size=opt.testBatchSize, shuffle=False) img_names = [line.rstrip() for line in open(opt.test_flist)] print('===> Building model ', opt.model_type) if opt.model_type == 'ColorNet': model = ColorNet() model = torch.nn.DataParallel(model, device_ids=gpus_list) criterion = nn.L1Loss() print('---------- Networks architecture -------------') print_network(model) print('----------------------------------------------') if opt.pretrained or opt.test_only: model_name = os.path.join(opt.save_folder + opt.pretrained_sr) if os.path.exists(model_name): model.load_state_dict(torch.load(model_name, map_location=lambda storage, loc: storage)) print('Pre-trained SR model is loaded.') if cuda:
from skimage import io from colornet import ColorNet from myimgfolder import ValImageFolder import numpy as np import matplotlib.pyplot as plt from colornet import ColorNet from pt1.dataset import ColorDataset device = torch.device('cuda' if torch.cuda.is_available() else 'gpu') BZ = 1 test_set = ColorDataset('test') test_loader = torch.utils.data.DataLoader(test_set, batch_size=BZ, shuffle=False, num_workers=4) color_model = ColorNet() color_model.load_state_dict(torch.load('/home/wsf/colornet_params.pkl')) color_model.to(device) def test(): color_model.eval() for idx, (imgs, imgs_scale) in enumerate(test_loader): imgs = imgs.to(device) imgs_scale = imgs_scale.to(device) gray_name = test_set.samples[idx].strip().split('/')[-1] for img in imgs: pic = img.cpu().squeeze().numpy() pic = pic.astype(np.float64) plt.imsave('./{}/{}'.format('grayimg', gray_name),