Ejemplo n.º 1
0
def plot_chgload_dt(data,
                    time_scale=1.,
                    loadv_scale=1.,
                    chgv_scale=1.,
                    alpha=0.8,
                    colors=cs.clist(),
                    center=False,
                    figsize=(5, 4)):
    #  """ Returns a lineplot figure of osrs in the order of the dataset provided.
    #  requres time/chgv/loadv dataset. Note time does not currently work but
    #  time scale can be used to adjust the time bins"""
    fig, ax1 = plt.subplots(figsize=figsize)
    time = data['time'] * time_scale
    maxt = max(time)
    chgv = data['chgv'] * chgv_scale
    loadv = data['loadv'] * loadv_scale
    #time = np.linspace(0,maxt,len(time),endpoint=True)
    if center:
        time = time - np.median(time)
    ax1.plot(time, loadv, color=colors[0], label='Load', alpha=alpha)
    ax2 = ax1.twinx()
    ax2.plot(time, chgv, color=colors[1], label='Charge', alpha=alpha)
    ax1.set_title('Charge/Load Pulses')
    fig.tight_layout()
    return fig
Ejemplo n.º 2
0
def plot_mTrace(dataset,
                time_scale=1.,
                channel='loadv',
                channel_scale=1.,
                alpha=0.8,
                colors=cs.clist(),
                labels=None,
                center=False):
    """ Returns a figure, axes, and lines for a single channel from a dataset of multiple traces """
    fig, ax = plt.subplots(sharex=True)
    mykeys = sorted(dataset.keys())
    lines = []
    for i, data in enumerate(mykeys):
        time = dataset[data]['time'] * time_scale
        maxt = max(time)
        chanv = dataset[data][channel] * channel_scale
        if center:
            time = time - np.median(time)
        if labels is None:
            lbl = None
        else:
            lbl = labels[i]
        #print len(time), len(chanv)
        line, = ax.plot(time, chanv, color=colors[i], label=lbl, alpha=alpha)
        lines.append(line)
    ax.set_title('Channel Voltage')
    fig.tight_layout()
    return fig, ax, lines
Ejemplo n.º 3
0
def plot_mCH_dt(dataset,
                time_scale=1.,
                channel='loadv',
                channel_scale=1.,
                alpha=0.8,
                colors=cs.clist(),
                labels=None,
                center=False):
    #  """ Returns a lineplot figure of osrs in the order of the dataset provided.
    #  requres time/chgv/loadv dataset. Note time does not currently work but
    #  time scale can be used to adjust the time bins"""
    fig = plt.figure(figsize=(5, 4))
    Plot = fig.add_subplot(111)
    mykeys = sorted(dataset.keys())
    for i, data in enumerate(mykeys):
        time = dataset[data]['time'] * time_scale
        maxt = max(time)
        chanv = dataset[data][channel] * channel_scale
        #time = np.linspace(0,maxt,len(time),endpoint=True)
        if center:
            time = time - np.median(time)
        if labels is None:
            lbl = data
        else:
            lbl = labels[i]
        Plot.plot(time, chanv, color=colors[i], label=lbl, alpha=alpha)
    Plot.set_title('Channel Voltage')
    fig.tight_layout()
    return fig
Ejemplo n.º 4
0
def plot_osrs_scatter(dataset,
                      loadR=3.9,
                      time_scale=1.,
                      alt_x=None,
                      chgv_scale=1.,
                      loadv_scale=.1,
                      color=cs.clist()[0]):
    """ Returns a scatterplot figure of osrs in the order of the dataset provided.
  requres time/chgv/loadv dataset """
    fig = plt.figure(figsize=(5, 4))
    Plot = fig.add_subplot(111)
    mykeys = sorted(dataset.keys())
    for i, data in enumerate(mykeys):
        minosr = []
        chgv = dataset[data]['chgv'] * chgv_scale
        loadv = dataset[data]['loadv'] * loadv_scale
        minosr = (max(chgv) / 2 - max(loadv)) * loadR / max(loadv)
        if alt_x is None:
            Plot.scatter(i, minosrs[i], color=color)
        else:
            Plot.scatter(alt_x[i], minosr, color=color)
        del chgv, loadv
    Plot.set_title('On-state Resistance')
    fig.tight_layout()
    return fig
Ejemplo n.º 5
0
def plot_osrs_dt(dataset,
                 time_scale=1.,
                 chgv_scale=1.,
                 loadv_scale=.1,
                 alpha=0.8,
                 colors=cs.clist(),
                 loadR=3.9,
                 labels=None,
                 center=False):
    """ Returns a lineplot figure of osrs in the order of the dataset provided.
  requres time/chgv/loadv dataset. Note time does not currently work but 
  time scale can be used to adjust the time bins"""
    fig = plt.figure(figsize=(5, 4))
    Plot = fig.add_subplot(111)
    mykeys = sorted(dataset.keys())
    for i, data in enumerate(mykeys):
        osr = []
        time = dataset[data]['time'] * time_scale
        maxt = max(time)
        chgv = dataset[data]['chgv'] * chgv_scale
        loadv = dataset[data]['loadv'] * loadv_scale
        #osr = (max(chgv)/2-max(loadv))*loadR/loadv
        osr = (max(chgv) / 2 - (loadv)) * loadR / loadv
        #time = np.linspace(0,maxt,len(time))
        time = time - np.mean(time)
        print len(osr), len(time)
        time = time[[osr > 0] and [osr < 50]]
        osr = osr[[osr > 0] and [osr < 50]]
        #time = time - np.median(time)
        if labels is None:
            lbl = data
        else:
            lbl = labels[i]
        Plot.plot(time, osr, color=colors[i], label=lbl, alpha=alpha)
    Plot.set_title('On-state Resistance')
    fig.tight_layout()
    return fig
Ejemplo n.º 6
0
import numpy as np
import matplotlib.pyplot as plt
import colors as cs
import pandas as pd

colors = cs.clist()


def del_nonfloat(filename, delim=',', header=None):
    """ reads file and removes all lines after header which do not contain
  float-like strings then overwrites the file after adding the header back in"""
    filein = open(filename, 'r')
    lines = ''
    deleted = 0
    if header is None:
        rlines = filein.readlines()
    else:
        rlines = filein.readlines()[header:]
    filein.close()
    for l in rlines:
        words = l.rstrip('/n').split(delim)
        try:
            [float(w) for w in words]
            lines += l
        except:
            deleted += 1
    fileout = open(filename, 'w')
    fileout.write(lines)
    fileout.close()
    return deleted
Ejemplo n.º 7
0
        Min = np.min(dataset[key][channel])
        Max = np.max(dataset[key][channel])
        Avg = np.average(dataset[key][channel])
        print '%s\t%.2e\t%.2e\t%.2e' % (Name, Min, Max, Avg)
    sys.stdout.close()
    os.system('unix2dos %s' % (folder + calc_filename))
    sys.stdout = temp

# Plot the data
fig, ax, lines = scplt.plot_mTrace(dataset,
                                   channel='chgv',
                                   time_scale=t_scale,
                                   channel_scale=chgv_scale,
                                   labels=labels,
                                   center=False,
                                   colors=cs.clist(len(dataset) / ch_skip))

#   LEGEND PARAMS
if legends:
    legend = ax.legend(fontsize=11, bbox_to_anchor=(1, 1), ncol=2)
    legend.get_frame().set_alpha(.5)

#   PLOT LAYOUT
for line in lines:
    line.set_linewidth(0.8)
    line.set_alpha(.6)
for line in lines[-4:]:
    line.set_linewidth(2)
    line.set_alpha(0.8)
ax.set_title('EHT RCC Hipot Test')
ax.set_xlabel('Time (ns)')
Ejemplo n.º 8
0
#sys.exit()
Plaser = Plaser * E_laser / NRJ  #normalize laser power function for energy per pulse
#check1_Elaser=np.max(integ.cumtrapz(t,Plaser)) # check elaser is correct
#print check1_Elaser

t_recomb_logarray = np.linspace(
    -4, -7, 10)  # array of 10^-4 to 10^-7 recombination times, arraysize=10
fig, ax1 = plt.subplots()
for i, logt_recomb in enumerate(
        t_recomb_logarray):  #loop through recombination times in seconds
    t_recomb = 10**logt_recomb  #calculate carrier concnetration as a function of time based on Nunally (eq8)
    K = (1 - R) / (w * l * d) / (h * c / lmbda) * (
        1 - np.exp(-Abs * d)
    )  #constant factor to include switch volume and light efficiency
    n = n0 + K * np.exp(-t / t_recomb) * integ.cumtrapz(
        np.exp(t / t_recomb) * Plaser, x=t,
        initial=0)  #carrier concetration in m^-3
    lab = '%.2f-us' % (t_recomb * 1e6)
    logt = np.log10(t)
    ax1.plot(logt, n, label=lab, color=cs.clist()[i])
    #ax2 = ax1.twinx()
    #ax2.plot(t, Plaser, linestyle='--')
plt.xlabel('Log10(Time) (s)')
ax1.set_ylabel('Carrier Density (#/cm3)')
#ax2.set_ylabel('Laser Intensity')
legend = ax1.legend()
#legend.get_frame().set_facecolor('none')
legend.get_frame().set_alpha(0.6)
[i.set_lw(2.) for i in legend.get_lines()]
plt.show()
Ejemplo n.º 9
0
rf = recovery_factor

cols = [(1, 0, 0), (0, 1, 0), (0, 0, 1)]
lines = ['--', '-', ':']

#plot heat
plt.figure(figsize=(5, 4))
plt.subplots_adjust(right=.6)
heat_v = []
for i, s in enumerate([5, 34]):
    sarea = 2.
    rf = s
    print s
    for j, x in enumerate([.5, 1, 1.5, 3, 5]):
        freq = x * 1e5
        heat_V = (Vlt / 2 / (osr + Z))**2 * osr * pulsewidth * freq
        heat_I = (Cur)**2 * osr * pulsewidth * freq
        trans_coef_ratio = np.log10((heat_V / heat_I) / dT / sarea * rf)
        plt.plot(Vlt, trans_coef_ratio, label='%.0f-kHz' % (freq/1e3), \
             color=colors.clist()[j], linestyle=lines[i+1], linewidth=2)
plt.xlabel('Charge Voltage/Current $(V)$', fontsize=12)
plt.ylabel('log(H) (W/cm$^2$K)', fontsize=12)
plt.xticks(fontsize=10)
plt.yticks(fontsize=10)
plt.ylim((-4, 3))
legend = plt.legend(loc='best', fontsize=10, ncol=2)
legend.get_frame().set_alpha(0.6)
plt.tight_layout()
plt.savefig('Heat_Flux_V_%s.png' % time.time(), transparent=True)
plt.close()
Ejemplo n.º 10
0
intensity = [1]
for i, k in enumerate(z):
    intensity.append(intensity[-1] * np.exp(-Abs * d))
    #constant factor to include switch volume and light efficiency
    K = (1 - R) / (w * l * d) / (h * c / lmbda) * (intensity[-1])
    R = 0
    #carrier concetration in m^-3
    n = n0 + K * np.exp(-t / t_recomb) * integ.cumtrapz(
        np.exp(t / t_recomb) * Plaser, x=t, initial=0)
    lab = '%.2f-us' % (t_recomb * 1e6)
    logt = np.log10(t)
    carrier_peak.append(np.max(n))
    if i % (len(z) / 10) == 0:
        print 'Intensity(x=%.2fmm) =\t%.2e' % (k * 1e3, intensity[-1])
fig, ax1 = plt.subplots()
ax1.plot(z * 1e3, carrier_peak, c=cs.clist()[1], lw=2)
ax2 = ax1.twinx()
ax2.plot(z * 1e3, intensity[:-1], c=cs.clist()[2], lw=2)
ax1.set_xlabel('Depth (mm)')
ax1.set_ylabel('Carrier Density (#/cm3)')
ax2.set_ylabel('Relative Intensity (AU)')
ax1.set_title('Peak Carrier Density Profile')
ax1col = cs.clist()[1]
ax2col = cs.clist()[2]
ax1.yaxis.label.set_color(ax1col)
ax1.spines['left'].set_color(ax1col)
ax2.spines['left'].set_color(ax1col)
ax1.tick_params(axis='y', colors=ax1col)
ax2.yaxis.label.set_color(ax2col)
ax1.spines['right'].set_color(ax2col)
ax2.spines['right'].set_color(ax2col)