Ejemplo n.º 1
0
    def initialPeak(self, tod, x, y):

        rms = Filtering.calcRMS(tod)
        r = np.sqrt((x)**2 + (y)**2)
        close = (r < 10)
        tod -= Filtering.estimateBackground(tod, rms, close)

        dx, dy = 1. / 60., 1. / 60.
        Dx, Dy = 1., 1.
        npix = int(Dx / dx)
        xpix, ypix = np.arange(npix + 1), np.arange(npix + 1)
        xpix = xpix * dx - Dx / 2.
        ypix = ypix * dy - Dy / 2.
        m = np.histogram2d(x, y, xpix, weights=tod)[0] / np.histogram2d(
            x, y, xpix)[0]
        m = median_filter(m, 3)
        xmax, ymax = np.unravel_index(np.nanargmax(m), m.shape)
        return xpix[xmax], ypix[ymax]
Ejemplo n.º 2
0
    def MakeMap(self, tod, ra, dec, mjd, el):
        #takes a 1D tod array and makes a simple map

        #produce arrays for mapping
        npix = self.naxis[0] * self.naxis[1]

        pixbins = np.arange(0, npix + 1).astype(int)

        nHorns, nSBs, nChans, nSamples = tod.shape
        rms = Filtering.calcRMS(tod)

        maps = np.zeros((nHorns, nSBs, nChans, self.naxis[0], self.naxis[1]))
        for i in range(nHorns):

            good = (np.isnan(ra[i, :]) == False) & (np.isnan(tod[i, 0, 0])
                                                    == False)
            pa = Coordinates.pa(ra[i, good], dec[i, good], mjd[good], self.lon,
                                self.lat)
            x, y = Coordinates.Rotate(ra[i, good], dec[i, good], self.x0,
                                      self.y0, -pa)

            nbins = 10
            xbins = np.linspace(np.min(x), np.max(x), nbins + 1)
            xmids = (xbins[1:] + xbins[:-1]) / 2.
            xbw, _ = np.histogram(x, xbins)
            ybw, _ = np.histogram(y, xbins)

            todAvg = np.nanmean(np.nanmean(tod[i, ...], axis=0), axis=0)
            fitx0, fity0 = self.initialPeak(todAvg[good], x, y)
            r = np.sqrt((x - fitx0)**2 + (y - fity0)**2)
            close = (r < 6. / 60.)

            pix = ang2pixWCS(self.wcs, x, y).astype('int')
            mask = np.where((pix != -1))[0]

            h, b = np.histogram(pix,
                                pixbins,
                                weights=(pix != -1).astype(float))
            self.hits = np.reshape(h, (self.naxis[0], self.naxis[1]))

            for j in range(nSBs):
                for k in range(1):  #nChans):
                    todmap = tod[i, j, k, good]

                    if self.filtertod:
                        txbw, _ = np.histogram(x, xbins, weights=todmap)
                        tybw, _ = np.histogram(y, xbins, weights=todmap)
                        fb = txbw / xbw
                        gd = np.isfinite(fb)
                        pmdl = np.poly1d(np.polyfit(xmids[gd], fb[gd], 1))
                        todmap -= pmdl(x)
                        fb = tybw / ybw
                        gd = np.isfinite(fb)
                        pmdl = np.poly1d(np.polyfit(xmids[gd], fb[gd], 1))
                        todmap -= pmdl(y)

                    w, b = np.histogram(pix[mask],
                                        pixbins,
                                        weights=todmap[mask])
                    #                    w, b = np.histogram(pix[:], pixbins, weights=tod[i,j,k,:])
                    m = np.reshape(w, (self.naxis[0], self.naxis[1]))
                    maps[i, j, k, ...] = m / self.hits

        return maps