def main(argv=None):
    parser = argparse.ArgumentParser(description='Submit PySpark Job')
    parser.add_argument('--region',
                        type=str,
                        help='The region where the cluster launches.')
    parser.add_argument('--jobflow_id',
                        type=str,
                        help='The name of the cluster to run job.')
    parser.add_argument('--job_name', type=str, help='The name of spark job.')
    parser.add_argument('--py_file',
                        type=str,
                        help='A path to a pyspark file run during the step')
    parser.add_argument('--input', type=str, help='File path of the dataset.')
    parser.add_argument('--output',
                        type=str,
                        help='Output path of the result files.')
    parser.add_argument('--output_file',
                        type=str,
                        help='S3 URI of the training job results.')

    args = parser.parse_args()

    logging.getLogger().setLevel(logging.INFO)
    client = _utils.get_client(args.region)
    logging.info('Submitting job to %s...', args.jobflow_id)
    spark_args = [args.input, args.output]
    step_id = _utils.submit_pyspark_job(client, args.jobflow_id, args.job_name,
                                        args.py_file, spark_args)
    logging.info('Job request submitted. Waiting for completion...')
    _utils.wait_for_job(client, args.jobflow_id, step_id)

    Path('/output.txt').write_text(unicode(step_id))
    Path(args.output_file).parent.mkdir(parents=True, exist_ok=True)
    Path(args.output_file).write_text(unicode(args.output))
    logging.info('Job completed.')
Ejemplo n.º 2
0
def main(argv=None):
  parser = argparse.ArgumentParser(description='ML Analyzer')
  parser.add_argument('--project', type=str, help='Google Cloud project ID to use.')
  parser.add_argument('--region', type=str, help='Which zone to run the analyzer.')
  parser.add_argument('--cluster', type=str, help='The name of the cluster to run job.')
  parser.add_argument('--output', type=str, help='GCS path to use for output.')
  parser.add_argument('--train', type=str, help='GCS path of the training csv file.')
  parser.add_argument('--schema', type=str, help='GCS path of the json schema file.')
  parser.add_argument('--output-dir-uri-output-path',
                      type=str,
                      default='/output.txt',
                      help='Local output path for the file containing the output dir URI.')
  args = parser.parse_args()

  code_path = os.path.dirname(os.path.realpath(__file__))
  runfile_source = os.path.join(code_path, 'analyze_run.py')
  dest_files = _utils.copy_resources_to_gcs([runfile_source], args.output)
  try:
    api = _utils.get_client()
    print('Submitting job...')
    spark_args = ['--output', args.output, '--train', args.train, '--schema', args.schema]
    job_id = _utils.submit_pyspark_job(
        api, args.project, args.region, args.cluster, dest_files[0], spark_args)
    print('Job request submitted. Waiting for completion...')
    _utils.wait_for_job(api, args.project, args.region, job_id)
    Path(args.output_dir_uri_output_path).parent.mkdir(parents=True, exist_ok=True)
    Path(args.output_dir_uri_output_path).write_text(args.output)

    print('Job completed.')
  finally:
    _utils.remove_resources_from_gcs(dest_files)
Ejemplo n.º 3
0
def main(argv=None):
    parser = argparse.ArgumentParser(description='ML Analyzer')
    parser.add_argument('--project',
                        type=str,
                        help='Google Cloud project ID to use.')
    parser.add_argument('--region',
                        type=str,
                        help='Which zone to run the analyzer.')
    parser.add_argument('--cluster',
                        type=str,
                        help='The name of the cluster to run job.')
    parser.add_argument('--output',
                        type=str,
                        help='GCS path to use for output.')
    parser.add_argument('--train',
                        type=str,
                        help='GCS path of the training csv file.')
    parser.add_argument('--schema',
                        type=str,
                        help='GCS path of the json schema file.')
    args = parser.parse_args()

    code_path = os.path.dirname(os.path.realpath(__file__))
    dirname = os.path.basename(__file__).split('.')[0]
    runfile_source = os.path.join(code_path, dirname, 'run.py')
    dest_files = _utils.copy_resources_to_gcs([runfile_source], args.output)
    try:
        api = _utils.get_client()
        print('Submitting job...')
        spark_args = [
            '--output', args.output, '--train', args.train, '--schema',
            args.schema
        ]
        job_id = _utils.submit_pyspark_job(api, args.project, args.region,
                                           args.cluster, dest_files[0],
                                           spark_args)
        print('Job request submitted. Waiting for completion...')
        _utils.wait_for_job(api, args.project, args.region, job_id)
        with open('/output.txt', 'w') as f:
            f.write(args.output)

        print('Job completed.')
    finally:
        _utils.remove_resources_from_gcs(dest_files)
Ejemplo n.º 4
0
def main(argv=None):
    parser = argparse.ArgumentParser(description='ML Transfomer')
    parser.add_argument('--project',
                        type=str,
                        help='Google Cloud project ID to use.')
    parser.add_argument('--region',
                        type=str,
                        help='Which zone to run the analyzer.')
    parser.add_argument('--cluster',
                        type=str,
                        help='The name of the cluster to run job.')
    parser.add_argument('--output',
                        type=str,
                        help='GCS path to use for output.')
    parser.add_argument('--train',
                        type=str,
                        help='GCS path of the training csv file.')
    parser.add_argument('--eval',
                        type=str,
                        help='GCS path of the eval csv file.')
    parser.add_argument('--analysis',
                        type=str,
                        help='GCS path of the analysis results.')
    parser.add_argument('--target', type=str, help='Target column name.')
    args = parser.parse_args()

    # Remove existing [output]/train and [output]/eval if they exist.
    # It should not be done in the run time code because run time code should be portable
    # to on-prem while we need gsutil here.
    _utils.delete_directory_from_gcs(os.path.join(args.output, 'train'))
    _utils.delete_directory_from_gcs(os.path.join(args.output, 'eval'))

    code_path = os.path.dirname(os.path.realpath(__file__))
    dirname = os.path.basename(__file__).split('.')[0]
    runfile_source = os.path.join(code_path, dirname, 'run.py')
    dest_files = _utils.copy_resources_to_gcs([runfile_source], args.output)
    try:
        api = _utils.get_client()
        print('Submitting job...')
        spark_args = [
            '--output', args.output, '--analysis', args.analysis, '--target',
            args.target
        ]
        if args.train:
            spark_args.extend(['--train', args.train])
        if args.eval:
            spark_args.extend(['--eval', args.eval])

        job_id = _utils.submit_pyspark_job(api, args.project, args.region,
                                           args.cluster, dest_files[0],
                                           spark_args)
        print('Job request submitted. Waiting for completion...')
        _utils.wait_for_job(api, args.project, args.region, job_id)

        with open('/output_train.txt', 'w') as f:
            f.write(os.path.join(args.output, 'train', 'part-*'))
        with open('/output_eval.txt', 'w') as f:
            f.write(os.path.join(args.output, 'eval', 'part-*'))

        print('Job completed.')
    finally:
        _utils.remove_resources_from_gcs(dest_files)