Ejemplo n.º 1
0
    def __init__(self, vocab_size=10000, wordvec_size=100, hidden_size=100):
        V, D, H = vocab_size, wordvec_size, hidden_size
        rn = np.random.randn

        # 重みの初期化
        embed_W = (rn(V, D) / 100).astype('f')
        lstm_Wx = (rn(D, 4 * H) / np.sqrt(D)).astype('f')
        lstm_Wh = (rn(H, 4 * H) / np.sqrt(H)).astype('f')
        lstm_b = np.zeros(4 * H).astype('f')
        affine_W = (rn(H, V) / np.sqrt(H)).astype('f')
        affine_b = np.zeros(V).astype('f')

        # レイヤの生成
        self.layers = [
            TimeEmbedding(embed_W),
            TimeLSTM(lstm_Wx, lstm_Wh, lstm_b, stateful=True),
            TimeAffine(affine_W, affine_b)
        ]
        self.loss_layer = TimeSoftmaxWithLoss()
        self.lstm_layer = self.layers[1]

        # すべての重みと勾配をリストにまとめる
        self.params, self.grads = [], []
        for layer in self.layers:
            self.params += layer.params
            self.grads += layer.grads
Ejemplo n.º 2
0
def normalize(x):
    if x.ndim == 2:
        s = np.sqrt((x * x).sum(axis=1))
        x /= s.reshape((s.shape[0], 1))
    elif x.ndim == 1:
        s = np.sqrt((x * x).sum())
        x /= s
    return x
Ejemplo n.º 3
0
def cos_similarity(x, y, eps=1e-8):
    '''コサイン類似度の算出

    :param x: ベクトル
    :param y: ベクトル
    :param eps: ”0割り”防止のための微小値
    :return:
    '''
    nx = x / (np.sqrt(np.sum(x**2)) + eps)
    ny = y / (np.sqrt(np.sum(y**2)) + eps)
    return np.dot(nx, ny)
Ejemplo n.º 4
0
    def __init__(self, vocab_size, wordvec_size, hidden_size):
        V, D, H = vocab_size, wordvec_size, hidden_size
        rn = np.random.randn

        embed_W = (rn(V, D) / 100).astype('f')
        lstm_Wx = (rn(D, 4 * H) / np.sqrt(D)).astype('f')
        lstm_Wh = (rn(H, 4 * H) / np.sqrt(H)).astype('f')
        lstm_b = np.zeros(4 * H).astype('f')

        self.embed = TimeEmbedding(embed_W)
        self.lstm = TimeLSTM(lstm_Wx, lstm_Wh, lstm_b, stateful=False)

        self.params = self.embed.params + self.lstm.params
        self.grads = self.embed.grads + self.lstm.grads
        self.hs = None
Ejemplo n.º 5
0
    def __init__(self, vocab_size, wordvec_size, hidden_size):
        V, D, H = vocab_size, wordvec_size, hidden_size
        rn = np.random.randn

        embed_W = (rn(V, D) / 100).astype('f')
        lstm_Wx = (rn(D, 4 * H) / np.sqrt(D)).astype('f')
        lstm_Wh = (rn(H, 4 * H) / np.sqrt(H)).astype('f')
        lstm_b = np.zeros(4 * H).astype('f')
        affine_W = (rn(H, V) / np.sqrt(H)).astype('f')
        affine_b = np.zeros(V).astype('f')

        self.embed = TimeEmbedding(embed_W)
        self.lstm = TimeLSTM(lstm_Wx, lstm_Wh, lstm_b, stateful=True)
        self.affine = TimeAffine(affine_W, affine_b)

        self.params, self.grads = [], []
        for layer in (self.embed, self.lstm, self.affine):
            self.params += layer.params
            self.grads += layer.grads
Ejemplo n.º 6
0
def clip_grads(grads, max_norm):
    total_norm = 0
    for grad in grads:
        total_norm += np.sum(grad**2)
    total_norm = np.sqrt(total_norm)

    rate = max_norm / (total_norm + 1e-6)
    if rate < 1:
        for grad in grads:
            grad *= rate
Ejemplo n.º 7
0
    def update(self, params, grads):
        if self.m is None:
            self.m, self.v = [], []
            for param in params:
                self.m.append(np.zeros_like(param))
                self.v.append(np.zeros_like(param))

        self.iter += 1

        for i in range(len(params)):
            self.m[i] = self.beta1 * self.m[i] + (1 - self.beta1) * grads[i]
            self.v[i] = self.beta2 * self.v[i] + (1 - self.beta2) * (grads[i]**
                                                                     2)

            m_i_hat = self.m[i] / (1 - self.beta1**self.iter)
            v_i_hat = self.v[i] / (1 - self.beta2**self.iter)

            params[i] -= self.lr * m_i_hat / (np.sqrt(v_i_hat) + 1e-8)