Ejemplo n.º 1
0
def status_update(n, current_time, label):
    '''
    This function regularly updates the UI with the
    program configuration.

    INPUTS:
    n
    current_time  : Current time in seconds on the video
    label         : Label that will be applied to all frames
                    between frame_start and frame_end

    OUTPUTS:
    Current Configuration File
    '''
    config_file = JSONPropertiesFile(CONFIG_FILE_LOC, default_properties)
    config = config_file.get()
    framerate = config["current_framerate"]
    num_vids = config["num_vids"]
    if not current_time:
        current_time = 0
    config["frame_end"] = int(round(current_time * framerate))
    config_file.set(config)
    label_str = [
        html.P("Press ADD LABEL to add the following to the DataBase: \n"),
        html.P("frame_start : {} ( {} seconds)".format(
            config["frame_start"], config["frame_start"] / framerate)),
        html.P("frame_end : {} ( {} seconds)".format(
            config["frame_end"], config["frame_end"] / framerate)),
        html.P("label : {}".format(label)),
        html.P("Video {} of {}".format(config["current_video_pos"] + 1,
                                       num_vids))
    ]
    config_str = [html.P("{} : {} \n".format(k, v)) for k, v in config.items()]
    return label_str + config_str
Ejemplo n.º 2
0
def load_all():
    '''
    Perform the following initial steps:
    - Find and update csv file containing urls of all videos in args.STATIC
        - create it if it does not exist
    - Find csv file for storing frame labels
        - create it if it does not exist
    '''
    # load application configuration
    # generate the index of videos to be used
    gi.generate_index(STATIC_SHORTCUT_LOC, VIDEO_URLS_FILE_LOC, COLNAME)
    # generate the index of frames with labels from videos in the index.
    flu.generate_frame_labels(VIDEO_URLS_FILE_LOC,
                              COLNAME,
                              FRAME_URLS_FILE_LOC,
                              PAD=7)
    # setup the SQLite database for read/writes of labels from the tool
    for chunk in pd.read_csv(FRAME_URLS_FILE_LOC, chunksize=1024**2):
        chunk.to_sql(name=table_name,
                     con=connex,
                     if_exists="append",
                     index=False)
    connex.commit()
    # save configuration
    config_file = JSONPropertiesFile(CONFIG_FILE_LOC, default_properties)
    config = config_file.get()
    config["video_urls_file_loc"] = VIDEO_URLS_FILE_LOC
    config["frame_urls_file_loc"] = FRAME_URLS_FILE_LOC
    config["frame_db_loc"] = FRAMES_DB
    config["last_video_url"] = config["current_video_url"]
    config_file.set(config)
Ejemplo n.º 3
0
def write_label(n, current_time, current_label):
    '''
    Writes the label for frames between frame_start and frame_end
    as current_label
    '''
    config_file = JSONPropertiesFile(CONFIG_FILE_LOC, default_properties)
    config = config_file.get()
    framerate = config["current_framerate"]
    frame_start = config["frame_start"]
    current_video_url = config["current_video_url"]
    label_author = config["author"]
    frame_end = int(round(current_time * framerate))
    label_dic = {
        VIDEO_URL_COLNAME: current_video_url,
        FRAME_START_COLNAME: frame_start,
        FRAME_END_COLNAME: frame_end,
        LABEL_COLNAME: current_label,
        AUTHOR_COLNAME: label_author,
        TIMESTAMP_COLNAME: time.time()
    }
    squ.insert_label(connex, table_name, [k for k in label_dic.keys()],
                     [v for v in label_dic.values()])
    # reset the frame_start to current frame
    config["frame_start"] = frame_end
    config_file.set(config)
    return [
        html.P("Frames {} to {} Written to DataBase as {}!".format(
            frame_start, frame_end, current_label)),
        html.P("for video {}".format(current_video_url))
    ]
Ejemplo n.º 4
0
def update_output(value):
    # Initialise config file
    config_file = JSONPropertiesFile(CONFIG_FILE_LOC, default_properties)
    config = config_file.get()
    # write the new value to the config
    config["current_scene_label"] = value
    config_file.set(config)
    # Display the current selected step
    return 'This scene will be labelled: "{}"'.format(value)
Ejemplo n.º 5
0
def update_footage(value):
    # Initialise config file
    config_file = JSONPropertiesFile(CONFIG_FILE_LOC, default_properties)
    config = config_file.get()
    # write the new value to the config
    config["next_footage_step"] = value
    config_file.set(config)
    # Display the current selected step
    return 'The selection will move {} steps when "NEXT VIDEO" pressed.'.format(value)
Ejemplo n.º 6
0
def load_all():
    '''
    Perform the following initial steps:
    - Find and update csv file containing urls of all videos in args.STATIC
        - create it if it does not exist
    - Find csv file for storing frame labels
        - create it if it does not exist
    '''
    # load application configuration
    # generate the index of videos to be used
    gi.generate_index(STATIC_SHORTCUT_LOC, VIDEO_URLS_FILE_LOC, COLNAME)
    config_file = JSONPropertiesFile(CONFIG_FILE_LOC, default_properties)
    config = config_file.get()
    config["video_urls_file_loc"] = VIDEO_URLS_FILE_LOC
    # find the stored frames file
    
    config_file.set(config)
Ejemplo n.º 7
0
def update_label(current_label, current_time):
    '''
    This function is called when the label choice changes.
    To simplify operation, we will only update labels when the video is playing forwards
    ie.
        - if frame_start < current_frame and last_video_url = current_video_url:
            update the label for all frames: frame_start<= frame <current_frame
            to last_label
        - else:
            Do NOT write to database!
    '''
    print(current_time)
    config_file = JSONPropertiesFile(CONFIG_FILE_LOC, default_properties)
    config = config_file.get()
    config["last_label"] = current_label
    config_file.set(config)
    return 'This scene will be labelled: "{}"'.format(current_label)
Ejemplo n.º 8
0
def next_footage(footage, current_time):
    '''
    INPUTS:
    footage      : Dummy variable for number of times "NEXT VIDEO"
                   Button is triggered 
    current_time : Current time in seconds on the video
                   (Unused!)

    OUTPUTS:
    url          : Url of the next video
    '''
    # Find desired footage and update player video
    # find current video position and step to move
    config_file = JSONPropertiesFile(CONFIG_FILE_LOC, default_properties)
    config = config_file.get()
    last_video_url = config["last_video_url"]
    current_pos = config["current_video_pos"]
    next_footage_step = config["next_footage_step"]
    last_video_url = config["current_video_url"]
    num_vids = config["num_vids"]
    url_df = pd.read_csv(config["video_urls_file_loc"])
    new_pos = (current_pos + next_footage_step) % (num_vids)
    # find the video corresponding to new_pos
    full_url = url_df.at[new_pos, COLNAME]
    # must change so that it only refers to the static folder (limitation of Dash)
    url = full_url.replace(str(app_file_parent_path), '')

    # get framerate
    video = cv2.VideoCapture(full_url)
    # check we can read the frame
    res, image = video.read()
    if not res:
        print("Video unable to read video \n{}".format(full_url))
    FRAMERATE = int(video.get(cv2.CAP_PROP_FPS))
    # update config
    config["current_video_pos"] = new_pos
    config["current_framerate"] = FRAMERATE
    config["current_video_url"] = full_url
    # We are at the start of the video so do nothing
    # set frame_start, last_label, last_video_url now
    config["frame_start"] = 0
    config["last_label"] = labels[0]
    config["last_video_url"] = last_video_url
    config_file.set(config)
    # return new url
    return url
Ejemplo n.º 9
0
def next_footage(footage):
    # Find desired footage and update player video
    # find current video position and step to move
    config_file = JSONPropertiesFile(CONFIG_FILE_LOC, default_properties)
    config = config_file.get()
    current_pos = config["current_video_pos"]
    next_footage_step = config["next_footage_step"]
    new_pos = (current_pos + next_footage_step) % (len(url_list))
    # find the video corresponding to new_pos
    url = url_list[new_pos]
    # update config
    config["current_video_pos"] = new_pos
    config_file.set(config)
    # check if new url exists
    if not os.path.exists(url):
        print("Cannot find new video!")
    # return new url
    return url
Ejemplo n.º 10
0
def next_footage(footage):
    # Find desired footage and update player video
    # find current video position and step to move
    config_file = JSONPropertiesFile(CONFIG_FILE_LOC, default_properties)
    config = config_file.get()
    current_pos = config["current_video_pos"]
    next_footage_step = config["next_footage_step"]
    url_df = pd.read_csv(config["video_urls_file_loc"])
    new_pos = (current_pos + next_footage_step ) % (len(url_df))
    # find the video corresponding to new_pos
    # must change so that it only refers to the static folder (limitation of Dash)
    url = url_df.at[new_pos, COLNAME].replace(str(app_file_parent_path), '')
    # this url needs to be changed to its location in STATIC
    # update config
    config["current_video_pos"] = new_pos
    config_file.set(config)
    # return new url
    return url
Ejemplo n.º 11
0
def next_footage(footage, current_time):
    # Find desired footage and update player video
    # find current video position and step to move
    config_file = JSONPropertiesFile(CONFIG_FILE_LOC, default_properties)
    config = config_file.get()
    current_pos = config["current_video_pos"]
    next_footage_step = config["next_footage_step"]
    url_df = pd.read_csv(config["video_urls_file_loc"])
    new_pos = (current_pos + next_footage_step) % (len(url_df))
    # find the video corresponding to new_pos
    full_url = url_df.at[new_pos, COLNAME]
    # must change so that it only refers to the static folder (limitation of Dash)
    url = full_url.replace(str(app_file_parent_path), '')
    # get framerate
    video = cv2.VideoCapture(full_url)
    FRAMERATE = int(video.get(cv2.CAP_PROP_FPS))
    # update config
    config["current_video_pos"] = new_pos
    config["current_framerate"] = FRAMERATE
    config["current_video_url"] = full_url
    last_frame = config["last_frame"]
    last_label = config["last_label"]
    last_video_url = config["last_video_url"]
    current_video_url = config["current_video_url"]
    framerate = config["current_framerate"]
    current_label = last_label  # Did not change the label!
    # get the current frame
    if current_time:
        current_frame = int(round(current_time * framerate))
        if last_frame <= current_frame:
            # update the sql fields
            print("Updating Video: {} \nFrames: {} to {}\nLabel: {}".format(
                current_video_url, last_frame, current_frame, last_label))
    else:
        current_frame = 0
        # We are at the start of the video so do nothing
    # set last_frame, last_label, last_video_url now
    config["last_frame"] = current_frame
    config["last_label"] = current_label
    config["last_video_url"] = current_video_url
    config_file.set(config)
    # return new url
    return url
Ejemplo n.º 12
0
def update_label(current_label, current_time):
    '''
    This function is called when the label choice changes.
    To simplify operation, we will only update labels when the video is playing forwards
    ie.
        - if last_frame < current_frame and last_video_url = current_video_url:
            update the label for all frames: last_frame<= frame <current_frame
            to last_label
        - else:
            Do NOT write to database!
    '''
    print(current_time)
    config_file = JSONPropertiesFile(CONFIG_FILE_LOC, default_properties)
    config = config_file.get()
    last_frame = config["last_frame"]
    last_label = config["last_label"]
    last_video_url = config["last_video_url"]
    current_video_url = config["current_video_url"]
    framerate = config["current_framerate"]
    # get the current frame
    if current_time:
        current_frame = int(round(current_time * framerate))
        if (last_frame <= current_frame) and (current_video_url
                                              == last_video_url) and (
                                                  current_label != last_label):
            # update the sql fields
            print("Updating Video: {} \nFrames: {} to {}\nLabel: {}".format(
                current_video_url, last_frame, current_frame, last_label))
    else:
        current_frame = 0
        # We are at the start of the video so do nothing
    # set last_frame, last_label, last_video_url now
    config["last_frame"] = current_frame
    config["last_label"] = current_label
    config["last_video_url"] = current_video_url
    config_file.set(config)
    return 'This scene will be labelled: "{}"'.format(current_label)
Ejemplo n.º 13
0
    # generate configuration file
    os.mkdir(CONFIG_LOC)
    print("Directory {} created.".format(CONFIG_LOC))
    print("{} did not exist. \nIt will now be created.".format(
        CONFIG_LOC, CONFIG_FILE_LOC))
except:
    print("Directory {} already exists.".format(CONFIG_LOC))
    try:
        file = open(CONFIG_FILE_LOC, 'r')
        print("{} already exists.".format(CONFIG_FILE_LOC))
    except IOError:
        print(
            "{} did not exist but the {} directory did. \nIt will now be created."
            .format(CONFIG_LOC, CONFIG_FILE_LOC))

config_file = JSONPropertiesFile(CONFIG_FILE_LOC, default_properties)
config = config_file.get()
print("Config read successful.")

# Get CSS stylesheets
external_stylesheets = ['https://codepen.io/chriddyp/pen/bWLwgP.css']

app = dash.Dash(__name__, external_stylesheets=external_stylesheets)

### TEMPORARY FIXES  ###
# attempt to use an array of urls
url_list = ["static/output.mp4", "static/1_CPU.mp4", "static/2_CPU.mp4"]

### \TEMPORARY FIXES ###

app.layout = html.Div(children=[
Ejemplo n.º 14
0
# custom scripts
from common.data.labels.app.config_utils import JSONPropertiesFile

app_file_parent_path = Path(__file__).absolute().parent
CONFIG_LOC = os.path.join(app_file_parent_path, "config")
CONFIG_FILE_LOC = os.path.join(CONFIG_LOC, "config.json")
# Ensure the configuration file exists
try:
    # generate configuration file
    os.mkdir(CONFIG_LOC)
    print("Directory {} created.".format(CONFIG_LOC))
    # file = open(CONFIG_FILE_LOC, 'w')
    print("{} did not exist. \nIt will now be created.".format(
        CONFIG_LOC, CONFIG_FILE_LOC))
except:
    print("Directory {} already exists.".format(CONFIG_LOC))
    try:
        file = open(CONFIG_FILE_LOC, 'r')
        print("{} already exists.".format(CONFIG_FILE_LOC))
    except IOError:
        print(
            "{} did not exist but the {} directory did. \nIt will now be created."
            .format(CONFIG_LOC, CONFIG_FILE_LOC))

file_path = CONFIG_FILE_LOC
default_properties = {}
config_file = JSONPropertiesFile(file_path, default_properties)
config = config_file.get()
print(config)
config["PROD"] = "k else"
config_file.set(config)  #  save new config
Ejemplo n.º 15
0
def inference_demo(v, o, m):
    ## initialise camera
    cap = cv2.VideoCapture(v)
    vid_FPS = cap.get(cv2.CAP_PROP_FPS)
    # perform camera test
    ret, frame = cap.read()
    print("The camera was initialised: {}".format(ret))

    # initialise audio track from mp4 file
    temp_fn = "audio.wav"  # temporary filename
    # make sure this filename doesn't exist
    while os.path.isfile(temp_fn):
        # delete temporary file
        # file deletions appear to fail sometimes
        os.remove(temp_fn)
        time.sleep(0.01)
    command = [
        "ffmpeg", "-i", v, "-ab", "160k", "-ac", "2", "-ar", "44100", "-vn",
        temp_fn
    ]
    subprocess.call(command)

    # initialise models
    cfgs = []  # configuration files
    clfs = []  # classifier pipelines
    prev = []  # number of previous frames required
    nms = []  # names

    for i in range(len(m)):
        # load the configuration file
        config_file = JSONPropertiesFile(m[i])
        config = config_file.get()
        cfgs.append(config)
        clfs.append(joblib.load(config["model_store"]))  # load the classifiers
        prev.append(config["n_prev"])  # number of previous frames required
        nms.append(config["name"])
    print("Models loaded")

    # all share the same dataset config, s
    s = importlib.import_module(cfgs[0]["m_loc"])  # loads the model location
    headers = s.const_header()  # feature headers

    # read the audio file
    wf = wave.open(temp_fn, 'rb')
    p = pyaudio.PyAudio()
    # define hardware specific parameters
    RATE = wf.getframerate()
    CHUNK = int(
        np.floor(RATE * s.const_trail())
    )  # how many samples to listen for each time prediction attempted
    # open stream based on the wave object which has been input.
    stream = p.open(format=p.get_format_from_width(wf.getsampwidth()),
                    channels=wf.getnchannels(),
                    rate=wf.getframerate(),
                    output=True)

    # describe the models (requires s to be loaded in first)
    # decribe the models to be used:
    for i in range(len(m)):
        print(
            "\n\nMODEL {}: \n {} \nFeatures: \n{}\nMean: \n{}\nVariance: \n{}".
            format(nms[i], "-*-" * 10,
                   dict(zip(headers[3:], cfgs[i]["sel_headers"][3:])),
                   clfs[i].named_steps[cfgs[i]["scaler"]].mean_,
                   clfs[i].named_steps[cfgs[i]["scaler"]].var_))

    # loop until keyboard exception or video complete
    frames = 0
    n_frames = int(cap.get(cv2.CAP_PROP_FRAME_COUNT))
    offset = int(
        np.ceil(s.const_trail() * vid_FPS) +
        1 * round(vid_FPS))  # audio may not be read correctly in last second

    # store predicted probability and the features and were supplied to model
    res = np.zeros((n_frames - offset, len(headers[3:]) + len(m)))
    start = time.time()
    start_frame = 0  # frame to start inference from
    with progressbar.ProgressBar(max_value=n_frames - offset -
                                 start_frame) as bar:
        cap.set(cv2.CAP_PROP_POS_FRAMES, start_frame)
        for i in range(n_frames - offset - start_frame):
            try:
                # run the loop
                # gather camera frame

                ret, frame = cap.read()
                # put frame into correct format
                frame = cv2.resize(frame, (224, 224),
                                   interpolation=cv2.INTER_NEAREST)
                # do PIL conversion to numpy using the Keras preprocessing functions
                frame = img_to_array(frame)
                frame = np.expand_dims(frame, axis=0)
                # preprocess_input for image_net
                frame = preprocess_input(frame)
                if not ret:
                    print("Failed to obtain camera data")
                    break
                # gather audio data
                audio = audio_numpy(wf, start_frame + i, vid_FPS, CHUNK, RATE)
                # begin storing historical data
                if i == 0:
                    # no previous data, instead update with new
                    image_batch = np.repeat(frame, max(prev) + 1, axis=0)
                    audio_batch = np.repeat(audio, max(prev) + 1, axis=0)
                else:
                    # be careful with the order here! Take special care
                    # to ensure this matches the order of frames that preprocess_input expects
                    image_batch[:-1] = image_batch[
                        1:]  # update all prev, drop last
                    audio_batch[:-1] = audio_batch[1:]
                    image_batch[-1] = frame  # first entry becomes new frame
                    audio_batch[-1] = audio
                # obtain the dataset features
                feats = s.preprocess_input(image_batch,
                                           audio_batch,
                                           inference=True,
                                           RATE=RATE)
                # obtain classifications from each model
                p = np.zeros((len(m)))
                for j in range(len(clfs)):
                    # check if we need a subset of the features only
                    sel_headers = cfgs[j][
                        "sel_headers"]  # some array of booleans
                    feats_j = feats[:, sel_headers[
                        3:]]  # selected features for the model
                    pred = clfs[j].predict_proba(
                        feats_j)  # save the predicted probability
                    p[j] = pred[0, 1]
                res[i, ] = np.insert(feats, 0, p)
                bar.update(i)

            except KeyboardInterrupt:
                break
    effective_FPS = (n_frames - offset - start_frame) / (time.time() - start)
    print("Effective Frame Rate: {}".format(effective_FPS))
    # write the results to a csv
    colnames = np.insert(headers[3:], 0, nms)
    print(colnames)
    df = pd.DataFrame(res, columns=colnames)
    df.to_csv(o)
    # release camera and microphone
    print("Releasing Camera and Microphone")
    cap.release()  # release camera
    stream.stop_stream  # release audio
    stream.close
    return df