Ejemplo n.º 1
0
def get_models():
    # tanh + backward
    rnn1 = Single_layer_RNN(input_size=INPUT_SIZE,
                            hidden_size=HIDDEN_SIZE,
                            output_size=OUTPUT_SIZE)
    optim1 = Adam()

    # tanh + backward_truncate
    rnn2 = Single_layer_RNN(input_size=INPUT_SIZE,
                            hidden_size=HIDDEN_SIZE,
                            output_size=OUTPUT_SIZE,
                            bptt_truncate=BPTT_TRUNCATE)
    optim2 = Adam()

    # relu + backward_truncate
    rnn3 = Single_layer_RNN(input_size=INPUT_SIZE,
                            hidden_size=HIDDEN_SIZE,
                            output_size=OUTPUT_SIZE,
                            bptt_truncate=BPTT_TRUNCATE,
                            activation_func='relu')
    optim3 = Adam()

    labels = [
        'model1: tanh + backward', 'model2: tanh + backward_truncate',
        'model3: relu + backward'
    ]
    rnns = [rnn1, rnn2, rnn3]
    optims = [optim1, optim2, optim3]
    return labels, rnns, optims
Ejemplo n.º 2
0
def train(network,
          x_train,
          y_train,
          x_test,
          y_test,
          iter_times=10000,
          hidden_size=10,
          batch_size=100,
          lr=0.1):
    nn = network
    optimizers = {
        'SGD': SGD(lr),
        'Momentum': Momentum(lr),
        'Nesterov': Nesterov(lr),
        'AdaGrad': AdaGrad(lr),
        'RMSProp':
        RMSProp(0.02),  # lr == 0.1 may make loss += ln(eps), eps == 1e-15
        'Adam': Adam(0.005)
    }
    opt = optimizers['Adam']

    for i in range(iter_times):
        if i % max(x_train.shape[0] // batch_size, 1) == 0:
            print('{:.1%}'.format(i / iter_times))
        batch_mask = np.random.choice(x_train.shape[0], batch_size)
        x_batch, y_batch = x_train[batch_mask], y_train[batch_mask]
        grads = nn.grad(x_batch, y_batch)
        opt.update(nn.params, grads)

    print('Train acc: {:.4}  Test acc: {:.4}'.format(
        nn.accuracy(x_train, y_train), nn.accuracy(x_test, y_test)))
Ejemplo n.º 3
0
def main():
    # ハイパーパラメータの設定
    window_size = 5
    hidden_size = 100
    batch_size = 100
    max_epoch = 10

    # データの読み込み
    corpus, word_to_id, id_to_word = ptb.load_data('train')
    vocab_size = len(word_to_id)

    contexts, target = create_contexts_target(corpus, window_size)

    # モデルなどの生成
    model = CBOW(vocab_size, hidden_size, window_size, corpus)
    optimizer = Adam()
    trainer = Trainer(model, optimizer)

    # 学習開始
    trainer.fit(contexts, target, max_epoch, batch_size)
    trainer.plot()

    # 後ほど利用できるように、必要なデータを保存
    word_vecs = model.word_vecs

    params = {}
    params['word_vecs'] = word_vecs.astype(np.float16)
    params['word_to_id'] = word_to_id
    params['id_to_word'] = id_to_word
    pkl_file = 'cbow_params.pkl'
    with open(pkl_file, 'wb') as f:
        pickle.dump(params, f, -1)
Ejemplo n.º 4
0
def train_eval(x_train, x_test, is_peeky):
    if is_peeky:
        model = PeekySeq2seq(vocab_size, wordvec_size, hidden_size)
    else:
        model = Seq2seq(vocab_size, wordvec_size, hidden_size)
    optimizer = Adam()
    trainer = Trainer(model, optimizer)

    acc_list = []
    for epoch in range(max_epoch):
        trainer.fit(x_train,
                    t_train,
                    max_epoch=1,
                    batch_size=batch_size,
                    max_grad=max_grad)
        correct_num = 0
        for i in range(len(x_test)):
            question, correct = x_test[[i]], t_test[[i]]
            verbose = i < 10
            correct_num += eval_seq2seq(model, question, correct, id_to_char,
                                        verbose)
        acc = float(correct_num) / len(x_test)
        acc_list.append(acc)
        print('val acc %.3f%%' % (acc * 100))
    return acc_list
Ejemplo n.º 5
0
 def setup_actor_optimizer(self):
     logger.info('setting up actor optimizer')
     self.actor_loss = -tf.reduce_mean(self.critic_with_actor_tf)
     actor_shapes = [var.get_shape().as_list() for var in self.actor.trainable_vars]
     actor_nb_params = sum([reduce(lambda x, y: x * y, shape) for shape in actor_shapes])
     logger.info('  actor shapes: {}'.format(actor_shapes))
     logger.info('  actor params: {}'.format(actor_nb_params))
     self.actor_grads = U.flatgrad(self.actor_loss, self.actor.trainable_vars, clip_norm=self.clip_norm)
     self.actor_optimizer = Adam(var_list=self.actor.trainable_vars,
                                 beta1=0.9, beta2=0.999, epsilon=1e-08)
Ejemplo n.º 6
0
def main():

    # データセットの読み込み
    (x_train, t_train), (x_test, t_test) = sequence.load_data('addition.txt')
    char_to_id, id_to_char = sequence.get_vocab()

    # 入力列を逆順にするとSeq2Se2の精度が上がるらしいが。。。クソ理論
    is_reverse = True
    if is_reverse:
        x_train, x_test = x_train[:, ::-1], x_test[:, ::-1]

    # ハイパーパラメータの設定
    vocab_size = len(char_to_id)
    wordvec_size = 16
    hidden_size = 128
    batch_size = 128
    max_epoch = 25
    max_grad = 5.0

    # モデル/オプティマイザ/トレーナーの生成
    # model = Seq2seq(vocab_size, wordvec_size, hidden_size)
    model = PeekySeq2seq(vocab_size, wordvec_size, hidden_size)
    optimizer = Adam()
    trainer = Trainer(model, optimizer)

    acc_list = []
    for epoch in range(max_epoch):
        trainer.fit(x_train,
                    t_train,
                    max_epoch=1,
                    batch_size=batch_size,
                    max_grad=max_grad)

        correct_num = 0
        for i in range(len(x_test)):
            question, correct = x_test[[i]], t_test[[i]]
            verbose = i < 10
            correct_num += eval_seq2seq(model, question, correct, id_to_char,
                                        verbose)

        acc = float(correct_num) / len(x_test)
        acc_list.append(acc)
        print(f'val acc {acc * 100}')
Ejemplo n.º 7
0
Archivo: train.py Proyecto: MATOBAD/NLP
def main():
    # データの読み込み
    (x_train, t_train), (x_test, t_test) = sequence.load_data('date.txt')
    char_to_id, id_to_char = sequence.get_vocab()

    # 入力文を反転
    x_train, x_test = x_train[:, ::-1], x_test[:, ::-1]

    # ハイパーパラメータの設定
    vocab_size = len(char_to_id)
    wordvec_size = 16
    hidden_size = 256
    batch_size = 128
    max_epoch = 10
    max_grad = 5.0

    model = AttentionSeq2seq(vocab_size, wordvec_size, hidden_size)
    optimizer = Adam()
    trainer = Trainer(model, optimizer)

    acc_list = []
    for epoch in range(max_epoch):
        trainer.fit(x_train,
                    t_train,
                    max_epoch=1,
                    batch_size=batch_size,
                    max_grad=max_grad)

        correct_num = 0
        for i in range(len(x_test)):
            question, correct = x_test[[i]], t_test[[i]]
            verbose = i < 10
            correct_num += eval_seq2seq(model,
                                        question,
                                        correct,
                                        id_to_char,
                                        verbose,
                                        is_reverse=True)

        acc = float(correct_num) / len(x_test)
        acc_list.append(acc)
        print('val acc %.3f%%' % (acc * 100))
Ejemplo n.º 8
0
def main():
    window_size = 1
    hidden_size = 5
    batch_size = 3
    max_epoch = 1000

    text = 'You say goodbye and I say hello.'
    corpus, word_to_id, id_to_word = preprocess(text)

    vocab_size = len(word_to_id)
    contexts, target = create_contexts_target(corpus, window_size)
    target = convert_one_hot(target, vocab_size)
    contexts = convert_one_hot(contexts, vocab_size)

    model = SimpleCBOW(vocab_size, hidden_size)
    optimizer = Adam()
    trainer = Trainer(model, optimizer)

    trainer.fit(contexts, target, max_epoch, batch_size)
    trainer.plot()
Ejemplo n.º 9
0
 def setup_critic_optimizer(self):
     logger.info('setting up critic optimizer')
     normalized_critic_target_tf = tf.clip_by_value(normalize(self.critic_target, self.ret_rms),
                                                    self.return_range[0], self.return_range[1])
     self.critic_loss = tf.reduce_mean(tf.square(self.normalized_critic_tf - normalized_critic_target_tf))
     if self.critic_l2_reg > 0.:
         critic_reg_vars = [var for var in self.critic.trainable_vars if
                            'kernel' in var.name and 'output' not in var.name]
         for var in critic_reg_vars:
             logger.info('  regularizing: {}'.format(var.name))
         logger.info('  applying l2 regularization with {}'.format(self.critic_l2_reg))
         critic_reg = tc.layers.apply_regularization(
             tc.layers.l2_regularizer(self.critic_l2_reg),
             weights_list=critic_reg_vars
         )
         self.critic_loss += critic_reg
     critic_shapes = [var.get_shape().as_list() for var in self.critic.trainable_vars]
     critic_nb_params = sum([reduce(lambda x, y: x * y, shape) for shape in critic_shapes])
     logger.info('  critic shapes: {}'.format(critic_shapes))
     logger.info('  critic params: {}'.format(critic_nb_params))
     self.critic_grads = U.flatgrad(self.critic_loss, self.critic.trainable_vars, clip_norm=self.clip_norm)
     self.critic_optimizer = Adam(var_list=self.critic.trainable_vars,
                                  beta1=0.9, beta2=0.999, epsilon=1e-08)
Ejemplo n.º 10
0
def test_train_word2vec_model():
    """word2vecモデルの学習
    """

    window_size = 1
    hidden_size = 5 # 単語の分散表現ベクトルの次元数
    batch_size = 3
    max_epoch = 1000

    text = 'You say goodbye and I say hello.'

    # コーパスの作成
    corpus, word_to_id, id_to_word = preprocess(text)

    # コンテキストとターゲットの作成
    vocab_size = len(word_to_id)
    contexts, target = create_context_target(corpus, window_size)
    target = convert_one_hot(target, vocab_size)
    contexts = convert_one_hot(contexts, vocab_size)
    print("one-hot target: ", target)
    print("one-hot contexts: ", contexts)

    # CBOWモデル
    model = SimpleCBOW(vocab_size, hidden_size)
    optimizer = Adam()

    # trainer
    trainer = Trainer(model, optimizer)

    # 学習
    trainer.fit(contexts, target, max_epoch=max_epoch, batch_size=batch_size)
    trainer.plot()

    # CBOWの重み(W_in)を取得する
    word_vecs = model.word_vecs
    for word_id, word in id_to_word.items():
        print(word, word_vecs[word_id])
from dataset.mnist import load_mnist
from common.util import smooth_curve
from common.multi_layer_net import MultiLayerNet
from common.optimizer import Adam

(x_train, t_train), (x_test, t_test) = load_mnist(normalize=True)

train_size = x_train.shape[0]
batch_size = 128
max_iterations = 2000

optimizers = {}
optimizers['SGD'] = SGD()
optimizers['Momentum'] = Momentum()
optimizers['AdaGrad'] = AdaGrad()
optimizers['Adam'] = Adam()

networks = {}
train_loss = {}
for key in optimizers.keys():
    networks[key] = MultiLayerNet(input_size=784,
                                  hidden_size_list=[100, 100, 100, 100],
                                  output_size=10)
    train_loss[key] = []

for i in range(max_iterations):
    batch_mask = np.random.choice(train_size, batch_size)
    x_batch = x_train[batch_mask]
    t_batch = t_train[batch_mask]

    for key in networks.keys():
Ejemplo n.º 12
0
if config.GPU:
    corpus = to_gpu(corpus_train)
    corpus_val = to_gpu(corpus_val)
    corpus_test = to_gpu(corpus_test)

vocab_size = len(preprocessing.word_to_id)

xs = sum(corpus_train, [])[:-1]
ts = sum(corpus_train, [])[1:]
corpus_val = sum(corpus_val, [])
corpus_test = sum(corpus_test, [])

model = BetterRnnlm(vocab_size, wordvec_size, hidden_size, dropout)
# optimizer = SGD(lr)
optimizer = Adam(lr=lr)
trainer = RnnlmTrainer(model, optimizer)

best_ppl = float('inf')
for epoch in range(max_epoch):
    trainer.fit(xs,
                ts,
                max_epoch=1,
                batch_size=batch_size,
                time_size=time_size,
                max_grad=max_grad)

    model.reset_state()
    ppl = eval_perplexity(model, corpus_val)
    print('검증 퍼플렉서티: ', ppl)
    print("y train: ",y_train.shape)
    print("x_test: ",x_test.shape)
    print("y_test: ",y_test.shape)

    if(run):
       
        #MedInc, HouseAge, AveRooms, AveBedrms, Population, AveOccup, Latiture, Longitude
        network = MultiLayerNetRegression(
            input_size=8, 
            hidden_size_list=[
            100,1000,100,
            ], 
            output_size=1,
            )
        
        optimizer = Adam(lr=learning_rate)
        
        train_acc_list = []

        iter_per_epoch = max(train_size / batch_size, 1)

        epoch_cnt = 0

        #学習
        for i in range(1000000000):
            batch_mask = np.random.choice(train_size, batch_size)

            x_batch = x_train[batch_mask]
            y_batch = y_train[batch_mask]

            grads = network.gradient(x_batch, y_batch)
Ejemplo n.º 14
0
    x, t, x_submission = hp_data.load(scale=True,
                                      label_log10=True,
                                      non_nan_ratio=0.8)
    print('x.shape:', x.shape)
    feature_count = x.shape[-1]

    train_num = 1450
    train_x, train_y, test_x, test_y = x[:train_num, :], t[:train_num, :], x[
        train_num:, :], t[train_num:, :]

    max_iterations = 30000
    batch_size = 128
    # initialize network optimizer
    weight_init_types = {'std=0.01': 0.01, 'Xavier': 'sigmoid', 'He': 'relu'}
    # optimizer = SGD(lr=0.01)
    optimizer = Adam(lr=1e-3)

    # network = MultiLayerRegression(input_size=feature_count, hidden_size_list=[100, 100, 100, 300], output_size=1,
    #                                weight_init_std='relu', activation='relu',
    #                                weight_decay_lambda=1e-4,
    #                                use_dropout=True, dropout_ratio=0.2,
    #                                use_batchnorm=True)
    network = MultiLayerRegression(input_size=feature_count,
                                   hidden_size_list=[300, 200, 100, 10],
                                   output_size=1,
                                   weight_init_std='relu',
                                   activation='relu',
                                   weight_decay_lambda=1e-4,
                                   use_dropout=True,
                                   dropout_ratio=0.3,
                                   use_batchnorm=True)
Ejemplo n.º 15
0
 [0 0 0 0 1 0 0]
 [0 1 0 0 0 0 0]
 [0 0 0 0 0 1 0]]
 
 contexts:
[[[1 0 0 0 0 0 0]
  [0 0 1 0 0 0 0]]

 [[0 1 0 0 0 0 0]
  [0 0 0 1 0 0 0]]

 [[0 0 1 0 0 0 0]
  [0 0 0 0 1 0 0]]

 [[0 0 0 1 0 0 0]
  [0 1 0 0 0 0 0]]

 [[0 0 0 0 1 0 0]
  [0 0 0 0 0 1 0]]

 [[0 1 0 0 0 0 0]
  [0 0 0 0 0 0 1]]]"""

model = SimpleCBOW(vocab_size, hidden_size)

optimizier = Adam()
trainer = Trainer(model, optimizier)

trainer.fit(contexts, target, max_epoch, batch_size)
trainer.plot()
Ejemplo n.º 16
0
def df(x, y):
    return x / 10.0, 2.0*y

init_pos = (-7.0, 2.0)
params = {}
params['x'], params['y'] = init_pos[0], init_pos[1]
grads = {}
grads['x'], grads['y'] = 0, 0


optimizers = OrderedDict()
optimizers["SGD"] = SGD(lr=0.95)
optimizers["Momentum"] = Momentum(lr=0.1)
optimizers["AdaGrad"] = AdaGrad(lr=1.5)
optimizers["Adam"] = Adam(lr=0.3)

idx = 1

for key in optimizers:
    optimizer = optimizers[key]
    x_history = []
    y_history = []
    params['x'], params['y'] = init_pos[0], init_pos[1]
    
    for i in range(30):
        x_history.append(params['x'])
        y_history.append(params['y'])
        
        grads['x'], grads['y'] = df(params['x'], params['y'])
        optimizer.update(params, grads)
Ejemplo n.º 17
0
def main():

    parser = argparse.ArgumentParser()

    parser.add_argument('--D', '-d', type=int, default=8, help='Dimension of feature vector')
    parser.add_argument('--T', '-t', type=int, default=2, help='Max step of aggregation')
    parser.add_argument('--epoch', '-e', type=int, default=100, help='Number of training dataset')
    parser.add_argument('--batch', '-b', type=int, default=256, help='batch size')
    parser.add_argument('--flag', '-f', action='store_true', help='make prediction file')

    args = parser.parse_args()

    train_H, train_y, train_node_size = get_train()

    seed = 1996

    train_H, train_y, val_H, val_y, train_node_size, val_node_size = shuffle_split(train_H, train_y, train_node_size, split_size=0.7, seed=seed)

    # feature dimension
    D = args.D

    # step size
    T = args.T

    # learning rate
    alpha = 0.015

    # epoch size
    max_epoch = args.epoch

    # batch size
    batch_size = args.batch

    # get step per epoch
    train_size = len(train_H)
    iter_per_epoch = train_size//batch_size if (train_size%batch_size) == 0 else (train_size//batch_size)+1

    make_pred = args.flag

    ## make feature vector(train)
    train_x = get_feature(D, train_H, train_node_size)

    ## make feature vector(validation)
    val_x = get_feature(D, val_H, val_node_size)

    model = GNN(D, T)
    optimizer = Adam(alpha=alpha, beta1=0.9, beta2=0.999, eps=1e-8)

    train_loss_list = []
    train_acc_list = []
    val_loss_list = []
    val_acc_list = []

    for epoch in range(max_epoch):
        np.random.seed(int(epoch*1234))
        shuffle_idx = np.random.permutation(train_H.shape[0])
        train_H = train_H[shuffle_idx]
        train_x = train_x[shuffle_idx]
        train_y = train_y[shuffle_idx]
        for num in range(iter_per_epoch):
            if train_size > (num+1)*batch_size:
                batch_H = train_H[num*batch_size:(num+1)*batch_size]
                batch_x = train_x[num*batch_size:(num+1)*batch_size]
                batch_y = train_y[num*batch_size:(num+1)*batch_size]
            else:
                batch_H = train_H[num*(batch_size):]
                batch_x = train_x[num*(batch_size):]
                batch_y = train_y[num*(batch_size):]
        
            # get batch gradient and update parameters
            batch_grads = None
            for idx in range(len(batch_H)):
                grad = model.get_gradient(batch_x[idx], batch_H[idx], batch_y[idx])
                if batch_grads == None:
                    batch_grads = {}
                    for key, val in grad.items():
                        batch_grads[key] = np.zeros_like(val)
                for key in grad.keys():
                    batch_grads[key] += (grad[key] / len(batch_H))
            optimizer.update(model.params, batch_grads)
        
        # train loss and average accuracy
        loss = 0
        train_pred = np.zeros((len(train_y), 1))
        for idx in range(len(train_H)):
            loss += model.loss(train_x[idx], train_H[idx], train_y[idx]) / len(train_H)
            predict = 0 if model.predict(train_x[idx], train_H[idx]) < 1/2 else 1
            train_pred[idx] = predict
        train_score = avg_acc(train_y, train_pred)
        
        # validation loss and average accuracy
        val_loss = 0
        val_pred = np.zeros((len(val_y), 1))
        for idx in range(len(val_H)):
            val_loss += model.loss(val_x[idx], val_H[idx], val_y[idx]) / len(val_H)
            predict = 0 if model.predict(val_x[idx], val_H[idx]) < 1/2 else 1
            val_pred[idx] = predict
        val_score = avg_acc(val_y, val_pred)

        print('epoch:{} loss:{:.5f} val_loss:{:.5f} avg_acc:{:.5f} val_avg_acc:{:.5f}'.format(epoch+1, loss, val_loss, train_score, val_score))
        train_loss_list.append(loss)
        val_loss_list.append(val_loss)
        train_acc_list.append(train_score)
        val_acc_list.append(val_score)
    
    fig, (ax1, ax2) = plt.subplots(ncols=2, figsize=(10,4))
    x = np.arange(len(train_loss_list))
    ax1.plot(x, train_loss_list, label='train')
    x = np.arange(len(val_loss_list))
    ax1.plot(x, val_loss_list, label='validation')
    ax1.legend()
    ax1.set_xlabel('epoch')
    ax1.set_ylabel('loss')

    x = np.arange(len(train_acc_list))
    ax2.plot(x, train_acc_list, label='train')
    x = np.arange(len(val_acc_list))
    ax2.plot(x, val_acc_list, label='validation')
    ax2.legend()
    ax2.set_xlabel('epoch')
    ax2.set_ylabel('average accuracy')

    fig.savefig('src/graph/GNN_Adam.png')
    plt.close()

    if make_pred:
        ## predict test data
        test_H, test_node_size = get_test()

        ## make feature vector(test)
        test_x = get_feature(D, test_H, test_node_size)

        with open('prediction.txt', mode='w') as f:
            for idx in range(len(test_node_size)):
                predict = 0 if model.predict(test_x[idx], test_H[idx]) < 1/2 else 1
                f.write('{}'.format(predict) + '\n')
Ejemplo n.º 18
0
max_grad = 5.0

x_test, x_train = preprocessing.divide_test_train(x_train, test_rate=0.1)
t_test, t_train = preprocessing.divide_test_train(t_train, test_rate=0.1)

model = Transformer(vocab_size,
                    wordvec_size,
                    head_size,
                    num_heads=8,
                    num_encoders=1,
                    num_decoders=1)

if os.path.isfile("../pkl/myTransformer_params.pkl"):
    model.load_params("../pkl/myTransformer_params.pkl")

optimizer = Adam(lr=0.00001)
# optimizer = SGD(lr=0.00005)
# optimizer = RMSprop(lr=0.00005)
trainer = Trainer(model, optimizer)

acc_list = []
for epoch in range(max_epoch):
    trainer.fit(x_train,
                t_train,
                max_epoch=1,
                batch_size=batch_size,
                max_grad=max_grad,
                eval_interval=10)
    model.save_params('../pkl/myTransformer_params.pkl')

    correct_num = 0
Ejemplo n.º 19
0
ts = corpus[1:]

# ハイパーパラメータの設定
vocab_size = len(word_to_id)
wordvec_size = 16
hidden_size = 128
batch_size = 1
max_epoch = 50
max_grad = 5.0
sample_size = 100
lr = 0.001
time_size = 35

#モデルの生成
model = PeekySeq2seq(vocab_size, wordvec_size, hidden_size)
optimizer = Adam()
trainer = RnnlmTrainer(model, optimizer)

#学習
best_ppl = float('inf')
t1 = time.time()
for epoch in range(max_epoch):
    trainer.fit(xs, ts, max_epoch=1, batch_size=batch_size, max_grad=max_grad)

    model.reset_state()
    ppl = eval_perplexity(model, corpus)
    print('valid perplexity: ', ppl)

    if best_ppl > ppl:
        best_ppl = ppl
        model.save_params()
def df(x, y):
    return x / 10.0, 2.0 * y


init_pos = (-7.0, 2.0)
params = {}
params['x'], params['y'] = init_pos[0], init_pos[1]
grads = {}
grads['x'], grads['y'] = 0, 0

optimizers = OrderedDict()
optimizers['SGD'] = SGD(lr=0.95)
optimizers['Momentum'] = Momentum(lr=0.1)
optimizers['AdaGrad'] = AdaGrad(lr=1.5)
optimizers['Adam'] = Adam(lr=0.3)

idx = 1

for key in optimizers:
    optimizer = optimizers[key]
    x_history = []
    y_history = []
    params['x'], params['y'] = init_pos[0], init_pos[1]

    for i in range(30):
        x_history.append(params['x'])
        y_history.append(params['y'])

        grads['x'], grads['y'] = df(params['x'], params['y'])
        optimizer.update(params, grads)