def save_data(self, x, name, save_dir, x_is_real_x=False): """Save dataspace instances. Args: x: A numpy array of dataspace points. name: A string indicating the name in the saved file. save_dir: A string indicating the directory to put the saved file. x_is_real_x: An boolean indicating whether `x` is already in dataspace. If not, `x` is converted to dataspace before saving """ real_x = x if x_is_real_x else self.decode(x) real_x = common.post_proc(real_x, self.config) batched_real_x = common.batch_image(real_x) sample_file = join(save_dir, '%s.png' % name) common.save_image(batched_real_x, sample_file)
def main(unused_argv): del unused_argv # Load Config config_name = FLAGS.config config_module = importlib.import_module('configs.%s' % config_name) config = config_module.config model_uid = common.get_model_uid(config_name, FLAGS.exp_uid) n_latent = config['n_latent'] # Load dataset dataset = common.load_dataset(config) basepath = dataset.basepath save_path = dataset.save_path train_data = dataset.train_data # Make the directory save_dir = os.path.join(save_path, model_uid) best_dir = os.path.join(save_dir, 'best') tf.gfile.MakeDirs(save_dir) tf.gfile.MakeDirs(best_dir) tf.logging.info('Save Dir: %s', save_dir) # Set random seed np.random.seed(FLAGS.random_seed) tf.set_random_seed(FLAGS.random_seed) # Load Model tf.reset_default_graph() sess = tf.Session() with tf.device(tf.train.replica_device_setter(ps_tasks=0)): m = model_dataspace.Model(config, name=model_uid) _ = m() # noqa # Initialize sess.run(tf.global_variables_initializer()) # Load m.vae_saver.restore( sess, os.path.join(best_dir, 'vae_best_%s.ckpt' % model_uid)) # Sample from prior sample_count = 64 image_path = os.path.join(basepath, 'sample', model_uid) tf.gfile.MakeDirs(image_path) # from prior z_p = np.random.randn(sample_count, m.n_latent) x_p = sess.run(m.x_mean, {m.z: z_p}) x_p = common.post_proc(x_p, config) common.save_image(common.batch_image(x_p), os.path.join(image_path, 'sample_prior.png')) # Sample from priro, as Grid boundary = 2.0 number_grid = 50 blob = common.make_grid(boundary=boundary, number_grid=number_grid, dim_latent=n_latent) z_grid, dim_grid = blob.z_grid, blob.dim_grid x_grid = sess.run(m.x_mean, {m.z: z_grid}) x_grid = common.post_proc(x_grid, config) batch_image_grid = common.make_batch_image_grid(dim_grid, number_grid) common.save_image(batch_image_grid(x_grid), os.path.join(image_path, 'sample_grid.png')) # Reconstruction sample_count = 64 x_real = train_data[:sample_count] mu, sigma = sess.run([m.mu, m.sigma], {m.x: x_real}) x_rec = sess.run(m.x_mean, {m.mu: mu, m.sigma: sigma}) x_rec = common.post_proc(x_rec, config) x_real = common.post_proc(x_real, config) common.save_image(common.batch_image(x_real), os.path.join(image_path, 'image_real.png')) common.save_image(common.batch_image(x_rec), os.path.join(image_path, 'image_rec.png'))
def main(unused_argv): # pylint:disable=unused-variable # Reason: # This training script relys on many programmatical call to function and # access to variables. Pylint cannot infer this case so it emits false alarm # of unused-variable if we do not disable this warning. # pylint:disable=invalid-name # Reason: # Following variables have their name consider to be invalid by pylint so # we disable the warning. # - Variable that in its name has A or B indictating their belonging of # one side of data. del unused_argv # Load main config config_name = FLAGS.config config = load_config(config_name) config_name_A = config['config_A'] config_name_B = config['config_B'] config_name_classifier_A = config['config_classifier_A'] config_name_classifier_B = config['config_classifier_B'] # Load dataset dataset_A = common_joint.load_dataset(config_name_A, FLAGS.exp_uid_A) (dataset_blob_A, train_data_A, train_label_A, train_mu_A, train_sigma_A, index_grouped_by_label_A) = dataset_A dataset_B = common_joint.load_dataset(config_name_B, FLAGS.exp_uid_B) (dataset_blob_B, train_data_B, train_label_B, train_mu_B, train_sigma_B, index_grouped_by_label_B) = dataset_B # Prepare directories dirs = common_joint.prepare_dirs('joint', config_name, FLAGS.exp_uid) save_dir, sample_dir = dirs # Set random seed np.random.seed(FLAGS.random_seed) tf.set_random_seed(FLAGS.random_seed) # Real Training. tf.reset_default_graph() sess = tf.Session() # Load model's architecture (= build) one_side_helper_A = common_joint.OneSideHelper(config_name_A, FLAGS.exp_uid_A, config_name_classifier_A, FLAGS.exp_uid_classifier) one_side_helper_B = common_joint.OneSideHelper(config_name_B, FLAGS.exp_uid_B, config_name_classifier_B, FLAGS.exp_uid_classifier) m = common_joint.load_model(model_joint.Model, config_name, FLAGS.exp_uid) # Initialize and restore sess.run(tf.global_variables_initializer()) one_side_helper_A.restore(dataset_blob_A) one_side_helper_B.restore(dataset_blob_B) # Restore from ckpt config_name = FLAGS.config model_uid = common.get_model_uid(config_name, FLAGS.exp_uid) save_name = join(save_dir, 'transfer_%s_%d.ckpt' % (model_uid, FLAGS.load_ckpt_iter)) m.vae_saver.restore(sess, save_name) # prepare intepolate dir intepolate_dir = join(sample_dir, 'interpolate_sample', '%010d' % FLAGS.load_ckpt_iter) tf.gfile.MakeDirs(intepolate_dir) # things interpolate_labels = [int(_) for _ in FLAGS.interpolate_labels.split(',')] nb_images_between_labels = FLAGS.nb_images_between_labels index_list_A = [] last_pos = [0] * 10 for label in interpolate_labels: index_list_A.append(index_grouped_by_label_A[label][last_pos[label]]) last_pos[label] += 1 index_list_B = [] last_pos = [-1] * 10 for label in interpolate_labels: index_list_B.append(index_grouped_by_label_B[label][last_pos[label]]) last_pos[label] -= 1 z_A = [] z_A.append(train_mu_A[index_list_A[0]]) for i_label in range(1, len(interpolate_labels)): last_z_A = z_A[-1] this_z_A = train_mu_A[index_list_A[i_label]] for j in range(1, nb_images_between_labels + 1): z_A.append(last_z_A + (this_z_A - last_z_A) * (float(j) / nb_images_between_labels)) z_B = [] z_B.append(train_mu_B[index_list_B[0]]) for i_label in range(1, len(interpolate_labels)): last_z_B = z_B[-1] this_z_B = train_mu_B[index_list_B[i_label]] for j in range(1, nb_images_between_labels + 1): z_B.append(last_z_B + (this_z_B - last_z_B) * (float(j) / nb_images_between_labels)) z_B_tr = [] for this_z_A in z_A: this_z_B_tr = sess.run(m.x_A_to_B_direct, {m.x_A: np.array([this_z_A])}) z_B_tr.append(this_z_B_tr[0]) # Generate data domain instances and save. z_A = np.array(z_A) x_A = one_side_helper_A.m_helper.decode(z_A) x_A = common.post_proc(x_A, one_side_helper_A.m_helper.config) batched_x_A = common.batch_image( x_A, max_images=len(x_A), rows=len(x_A), cols=1, ) common.save_image(batched_x_A, join(intepolate_dir, 'x_A.png')) z_B = np.array(z_B) x_B = one_side_helper_B.m_helper.decode(z_B) x_B = common.post_proc(x_B, one_side_helper_B.m_helper.config) batched_x_B = common.batch_image( x_B, max_images=len(x_B), rows=len(x_B), cols=1, ) common.save_image(batched_x_B, join(intepolate_dir, 'x_B.png')) z_B_tr = np.array(z_B_tr) x_B_tr = one_side_helper_B.m_helper.decode(z_B_tr) x_B_tr = common.post_proc(x_B_tr, one_side_helper_B.m_helper.config) batched_x_B_tr = common.batch_image( x_B_tr, max_images=len(x_B_tr), rows=len(x_B_tr), cols=1, ) common.save_image(batched_x_B_tr, join(intepolate_dir, 'x_B_tr.png'))