Ejemplo n.º 1
0
def XOR(x):
    a1 = NAND(x)
    a2 = OR(x)
    a3 = AND(np.array([a1, a2]))

    y = identity(a3)  #출력함수 적용 지점 : q

    return y
def forward_propagation(network, x):
    w1, w2, w3 = network['w1'], network['w2'], network['w3']
    b1, b2, b3 = network['b1'], network['b2'], network['b3']

    a1 = np.dot(x, w1) + b1
    z1 = sigmoid(a1)

    a2 = np.dot(z1, w2) + b2
    z2 = sigmoid(a2)

    a3 = np.dot(z2, w3) + b3
    y = identity(a3)

    return y
Ejemplo n.º 3
0
# 출력함수(출력층 활성함수) σ() - 항등함수(Identity Function)
import os
import sys
import numpy as np
from matplotlib import pyplot as plt
from pathlib import Path
try:
    sys.path.append(os.path.join(Path(os.getcwd()).parent, 'lib'))
    from common import identity
except ImportError:
    print('Library Module Can Not Found')

x = np.arange(-10, 10, 0.1)
y = identity(x)

plt.plot(x, y)
plt.show()
Ejemplo n.º 4
0
# 3층 신경망 신호 전달 구현6: 출력층 출력함수 σ() 적용
import os
import sys
from pathlib import Path
try:
    sys.path.append(os.path.join(os.getcwd()))
    sys.path.append(os.path.join(Path(os.getcwd()).parent, 'lib'))
    from ex05 import a3
    from common import identity
except ImportError:
    print('Library Module Can Not Found')

print('\n= 신호 전달 구현6: 출력층 출력함수 σ() 적용 ======================')
print(f'a3 dimension: {a3.shape}')  # 2 vector

y = identity(a3)
print(f'y = {y}')